1
|
Yi H, Ye R, Wang J, Gao L, Zhang W, Liu C. Diagnostic Value of Serum Ficolin-3 and Gal-3 in Sepsis Complicated with Acute Kidney Injury. Int J Gen Med 2024; 17:5299-5307. [PMID: 39569323 PMCID: PMC11577257 DOI: 10.2147/ijgm.s478736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Objective To investigate the diagnostic value of serum fibrinogen domain-containing lectin-3 (Ficolin-3) and galectin-3 (Gal-3) in sepsis-associated acute kidney injury (SA-AKI). Methods This study retrospectively analyzed 126 SA-AKI patients with SA-AKI and 103 septic patients without AKI as controls. Based on the severity of renal injury, the SA-AKI patients were divided into three groups: mild (41 cases), moderate (53 cases), and severe (32 cases). Serum levels of Ficolin-3 and Gal-3 were measured using ELISA, and their correlation was determined through Pearson analysis. Multivariate logistic regression was used to identify factors associated with the occurrence of SA-AKI. Results The serum creatinine (SCr), blood urea nitrogen (BUN), as well as the expression levels of serum Ficolin-3 and Gal-3 in the SA-AKI group were higher than those in the non SA-AKI group (P<0.05). The expression levels of Ficolin-3 and Gal-3 in the serum of the SA-AKI group were also higher than those of the non SA-AKI group (P<0.05). The expression levels of Ficolin-3 and Gal-3 in serum gradually increased with the severity of renal injury in SA-AKI patients (P<0.05). The expression levels of Ficolin-3 and Gal-3 in serum were greatly positively correlated (P<0.001). Elevated levels of BUN, Ficolin-3, and Gal-3 were risk factors affecting the occurrence of SA-AKI (P<0.05). The area under the curve (AUC) of serum Ficolin-3 and Gal-3 for individual diagnosis of SA-AKI was 0.877 and 0.867, respectively, the AUC of their combined diagnosis was 0.953, and the diagnostic sensitivity was higher than that of their individual diagnosis (P<0.001). Conclusion The expression levels of serum Ficolin-3 and Gal-3 are closely related to associated with the onset and progression of SA-AKI and hold diagnostic value for its detection. Furthermore, the combined use of both markers provides a more accurate diagnosis than either marker alone.
Collapse
Affiliation(s)
- Hang Yi
- Department of Intensive Care Medicine, Qianjiang Central Hospital, Qianjiang City, Hubei Province, 433100, People's Republic of China
| | - Ruiping Ye
- Department of Intensive Care Medicine, The First People's Hospital of Dingnan County, Ganzhou City, Jiangxi Province, 341900, People's Republic of China
| | - Jinfeng Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| | - Lin Gao
- Department of Intensive Care Medicine, Ganzhou People's Hospital, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| | - Weiwei Zhang
- Department of Intensive Care Medicine, Ganzhou People's Hospital, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| | - Chao Liu
- Department of Intensive Care Medicine, Ganzhou People's Hospital, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| |
Collapse
|
2
|
Zhang A, Liu Y, Wang X, Xu H, Fang C, Yuan L, Wang K, Zheng J, Qi Y, Chen S, Zhang J, Shao A. Clinical Potential of Immunotherapies in Subarachnoid Hemorrhage Treatment: Mechanistic Dissection of Innate and Adaptive Immune Responses. Aging Dis 2023; 14:1533-1554. [PMID: 37196120 PMCID: PMC10529760 DOI: 10.14336/ad.2023.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 05/19/2023] Open
Abstract
Subarachnoid hemorrhage (SAH), classified as a medical emergency, is a devastating and severe subtype of stroke. SAH induces an immune response, which further triggers brain injury; however, the underlying mechanisms need to be further elucidated. The current research is predominantly focused on the production of specific subtypes of immune cells, especially innate immune cells, post-SAH onset. Increasing evidence suggests the critical role of immune responses in SAH pathophysiology; however, studies on the role and clinical significance of adaptive immunity post-SAH are limited. In this present study, we briefly review the mechanistic dissection of innate and adaptive immune responses post-SAH. Additionally, we summarized the experimental studies and clinical trials of immunotherapies for SAH treatment, which may form the basis for the development of improved therapeutic approaches for the clinical management of SAH in the future.
Collapse
Affiliation(s)
- Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - KaiKai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yangjian Qi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Chai CZ, Ho UC, Kuo LT. Systemic Inflammation after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:10943. [PMID: 37446118 DOI: 10.3390/ijms241310943] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is one of the most severe neurological disorders, with a high mortality rate and severe disabling functional sequelae. Systemic inflammation following hemorrhagic stroke may play an important role in mediating intracranial and extracranial tissue damage. Previous studies showed that various systemic inflammatory biomarkers might be useful in predicting clinical outcomes. Anti-inflammatory treatment might be a promising therapeutic approach for improving the prognosis of patients with aSAH. This review summarizes the complicated interactions between the nervous system and the immune system.
Collapse
Affiliation(s)
- Chang-Zhang Chai
- Department of Medical Education, National Taiwan University, School of Medicine, Taipei 100, Taiwan
| | - Ue-Cheung Ho
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
4
|
Tartara F, Montalbetti A, Crobeddu E, Armocida D, Tavazzi E, Cardia A, Cenzato M, Boeris D, Garbossa D, Cofano F. Compartmental Cerebrospinal Fluid Events Occurring after Subarachnoid Hemorrhage: An "Heparin Oriented" Systematic Review. Int J Mol Sci 2023; 24:7832. [PMID: 37175544 PMCID: PMC10178276 DOI: 10.3390/ijms24097832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a severe acute event with high morbidity and mortality due to the development of early brain injury (EBI), secondary delayed cerebral ischemia (DCI), and shunt-related hydrocephalus. Secondary events (SSE) such as neuroinflammation, vasospasm, excitotoxicity, blood-brain barrier disruption, oxidative cascade, and neuronal apoptosis are related to DCI. Despite improvement in management strategies and therapeutic protocols, surviving patients frequently present neurological deficits with neurocognitive impairment. The aim of this paper is to offer to clinicians a practical review of the actually documented pathophysiological events following subarachnoid hemorrhage. To reach our goal we performed a literature review analyzing reported studies regarding the mediators involved in the pathophysiological events following SAH occurring in the cerebrospinal fluid (CSF) (hemoglobin degradation products, platelets, complement, cytokines, chemokines, leucocytes, endothelin-1, NO-synthase, osteopontin, matricellular proteins, blood-brain barrier disruption, microglia polarization). The cascade of pathophysiological events secondary to SAH is very complex and involves several interconnected, but also distinct pathways. The identification of single therapeutical targets or specific pharmacological agents may be a limited strategy able to block only selective pathophysiological paths, but not the global evolution of SAH-related events. We report furthermore on the role of heparin in SAH management and discuss the rationale for use of intrathecal heparin as a pleiotropic therapeutical agent. The combination of the anticoagulant effect and the ability to interfere with SSE theoretically make heparin a very interesting molecule for SAH management.
Collapse
Affiliation(s)
- Fulvio Tartara
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Montalbetti
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Emanuela Crobeddu
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Daniele Armocida
- A.U.O. Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Eleonora Tavazzi
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Cardia
- Department of Neurosurgery, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Marco Cenzato
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Davide Boeris
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| |
Collapse
|
5
|
Wen D, Chen R, Zhang T, Li H, Zheng J, Fu W, You C, Ma L. “Atypical” Mild Clinical Presentation in Elderly Patients With Ruptured Intracranial Aneurysm: Causes and Clinical Characteristics. Front Surg 2022; 9:927351. [PMID: 35874135 PMCID: PMC9304704 DOI: 10.3389/fsurg.2022.927351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThunderclap-like severe headache or consciousness disturbance is the common “typical” clinical presentation after aneurysmal subarachnoid hemorrhage (aSAH); however, a slowly developing “atypical” clinical pattern, with mild headache, vomiting, or dizziness, is frequently noted in elderly patients. The aim of this study was to evaluate the clinical characteristics of this “atypical” subgroup, as well as related factors associated with the presence of these mild symptoms.MethodsThe data of 176 elderly patients (≥70 years old) with ruptured intracranial aneurysms (IAs) treated at our center from January 2016 to January 2020 were retrospectively collected and analyzed. The patients were divided into “typical” and “atypical” groups based on their initial and development of clinical symptoms after the diagnosis of aSAH. Intergroup differences were analyzed, and factors related to the presence of these two clinical patterns were explored through multiple logistic regression analyses.ResultsDespite significant admission delay (P < 0.001) caused by mild initial symptoms with slow development, patients in the “atypical” group achieved better clinical prognosis, as indicated by a significantly higher favourable outcome ratio and lower death rate upon discharge and at different time points during the 1-year follow-up, than the “typical” group (P < 0.05). Multiple logistic regression analysis revealed that modified Fisher grade III-IV (OR = 11.182, P = 0.003), brain atrophy (OR = 10.010, P = 0.001), a larger lesion diameter (OR = 1.287, P < 0.001) and current smoking (OR = 5.728, P < 0.001) were independently associated with the presence of “typical” symptoms. Aneurysms with wide necks (OR = 0.013, P < 0.001) were independently associated with the presence of “atypical” symptoms.Conclusions“Atypical” presentations, with mild clinical symptoms and slow development, were commonly recorded in elderly patients after the onset of aSAH. Despite the prolonged admission delay, these “atypical” patients achieved better clinical outcomes than those with “typical” symptoms. Modified Fisher grade (III-IV), current smoking, brain atrophy and larger lesion diameter were factors predictive of “typical” symptoms, while aneurysms with wide necks were independently associated with “atypical” symptoms.
Collapse
|