1
|
Shouman S, Hesham N, Salem TZ. Viruses and neurodegeneration: a growing concern. J Transl Med 2025; 23:46. [PMID: 39800721 PMCID: PMC11727702 DOI: 10.1186/s12967-024-06025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Neurodegenerative diseases (NDDs) cause a progressive loss of neurons. Since NDDs are multifactorial, the precise etiology varies on the basis of the type of disease and patient history. Cohort studies and case studies have demonstrated a potential link between viral infections and the onset or progression of NDDs. Recent findings concerning the mechanisms by which neuropathic infections occur have provided more insights into the importance of such connections. In this review, we aim to elaborate on the occurrence of the neuropathic effects of viruses from epidemiological, clinical, and biological perspectives while highlighting potential treatments and challenges. One of the key players in viral neuropathogenesis is neuroinflammation caused by the immune response to the virus; this can occur due to both neurotropic and nonneurotropic viruses. The COVID-19 pandemic has raised concerns about whether vaccines are essential for preventing viruses or whether vaccines may play a part in exacerbating or accelerating NDDs. By classifying viruses and the common NDDs associated with them and further delving into their cellular pathways, this review provides insights to advance the development of potential treatments and diagnostic methods.
Collapse
Affiliation(s)
- S Shouman
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - N Hesham
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Molecular Biology and Virology Laboratory (MBVL), Center for X-Ray Determination of the Structure of Matter (CXDS), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - T Z Salem
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
- Molecular Biology and Virology Laboratory (MBVL), Center for X-Ray Determination of the Structure of Matter (CXDS), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
| |
Collapse
|
2
|
Bedlack R, Li X, Evangelista BA, Panzetta ME, Kwan J, Gittings LM, Sattler R. The Scientific and Therapeutic Rationale for Off-Label Treatments in Amyotrophic Lateral Sclerosis. Ann Neurol 2024. [PMID: 39503319 DOI: 10.1002/ana.27126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024]
Abstract
There are no dramatically effective pharmacological treatments for most patients with amyotrophic lateral sclerosis, a complex disease with multiple underlying mechanisms, such as neuroinflammation, oxidative stress, mitochondrial dysfunction, microbiome alteration, and antiretroviral activity. We sifted through 15 years of reviews by a group called ALSUntangled to identify 8 alternative and off-label treatments that target ≥1 of these mechanisms, and have ≥1 human trial suggesting meaningful benefits. Given the overlapping pathological mechanisms of the highlighted products, we suggest that combinations of these treatments targeting diverse mechanisms might be worthwhile for future amyotrophic lateral sclerosis therapy development. ANN NEUROL 2024.
Collapse
Affiliation(s)
| | - Xiaoyan Li
- Duke University Department of Neurology, Durham, NC, USA
| | | | - Maria E Panzetta
- Duke University Department of Integrative Immunobiology, Durham, NC, USA
| | - Justin Kwan
- Neurodegeneration Disorders Clinic, National Institute of Health, Bethesda, MD, USA
| | - Lauren M Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
3
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Zhao Y, Xu K, Shu F, Zhang F. Neurotropic virus infection and neurodegenerative diseases: Potential roles of autophagy pathway. CNS Neurosci Ther 2024; 30:e14548. [PMID: 38082503 PMCID: PMC11163195 DOI: 10.1111/cns.14548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 06/11/2024] Open
Abstract
Neurodegenerative diseases (NDs) constitute a group of disorders characterized by the progressive deterioration of nervous system functionality. Currently, the precise etiological factors responsible for NDs remain incompletely elucidated, although it is probable that a combination of aging, genetic predisposition, and environmental stressors participate in this process. Accumulating evidence indicates that viral infections, especially neurotropic viruses, can contribute to the onset and progression of NDs. In this review, emerging evidence supporting the association between viral infection and NDs is summarized, and how the autophagy pathway mediated by viral infection can cause pathological aggregation of cellular proteins associated with various NDs is discussed. Furthermore, autophagy-related genes (ARGs) involved in Herpes simplex virus (HSV-1) infection and NDs are analyzed, and whether these genes could link HSV-1 infection to NDs is discussed. Elucidating the mechanisms underlying NDs is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of NDs.
Collapse
Affiliation(s)
- Yu‐jia Zhao
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Kai‐fei Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| | - Fu‐xing Shu
- Bioresource Institute for Healthy UtilizationZunyi Medical UniversityZunyiGuizhouChina
| | - Feng Zhang
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
5
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
6
|
Espinar-Buitrago MDLS, Magro-López E, Vázquez-Alejo E, Muñoz-Fernández MÁ. Enhanced Immunomodulatory Effects of Thymosin-Alpha-1 in Combination with Polyanionic Carbosilane Dendrimers against HCMV Infection. Int J Mol Sci 2024; 25:1952. [PMID: 38396631 PMCID: PMC10887890 DOI: 10.3390/ijms25041952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Resistance and toxicity associated with current treatments for human cytomegalovirus (HCMV) infection highlight the need for alternatives and immunotherapy has emerged as a promising strategy. This study examined the in vitro immunological effects of co-administration of Thymosin-alpha-1 (Tα1) and polyanionic carbosilane dendrimers (PCDs) on peripheral blood mononuclear cells (PBMCs) during HCMV infection. The biocompatibility of PCDs was assessed via MTT and LDH assays. PBMCs were pre-treated with the co-administered compounds and then exposed to HCMV for 48 h. Morphological alterations in PBMCs were observed using optical microscopy and total dendritic cells (tDCs), myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs), along with CD4+/CD8+ T cells and regulatory T cells (Treg), and were characterized using multiparametric flow cytometry. The findings revealed that Tα1 + PCDs treatments increased DC activation and maturation. Furthermore, increased co-receptor expression, intracellular IFNγ production in T cells and elevated Treg functionality and reduced senescence were evident with Tα1 + G2-S24P treatment. Conversely, reduced co-receptor expression, intracellular cytokine production in T cells, lower functionality and higher senescence in Treg were observed with Tα1 + G2S16 treatment. In summary, Tα1 + PCDs treatments demonstrate synergistic effects during early HCMV infection, suggesting their use as an alternative therapeutic for preventing virus infection.
Collapse
Affiliation(s)
- María de la Sierra Espinar-Buitrago
- Section of Immunology, Immuno-Molecular Biology Laboratory (LIBM), University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain; (M.d.l.S.E.-B.); (E.M.-L.); (E.V.-A.)
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
- Center for Biomedical Research in Bioengineering, Biomaterials and Nanotechnology Network (CIBER-BBN), 28029 Madrid, Spain
| | - Esmeralda Magro-López
- Section of Immunology, Immuno-Molecular Biology Laboratory (LIBM), University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain; (M.d.l.S.E.-B.); (E.M.-L.); (E.V.-A.)
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
- Center for Biomedical Research in Bioengineering, Biomaterials and Nanotechnology Network (CIBER-BBN), 28029 Madrid, Spain
| | - Elena Vázquez-Alejo
- Section of Immunology, Immuno-Molecular Biology Laboratory (LIBM), University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain; (M.d.l.S.E.-B.); (E.M.-L.); (E.V.-A.)
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
- Center for Biomedical Research in Bioengineering, Biomaterials and Nanotechnology Network (CIBER-BBN), 28029 Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Section of Immunology, Immuno-Molecular Biology Laboratory (LIBM), University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain; (M.d.l.S.E.-B.); (E.M.-L.); (E.V.-A.)
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
- Center for Biomedical Research in Bioengineering, Biomaterials and Nanotechnology Network (CIBER-BBN), 28029 Madrid, Spain
- HIV-HGM Biobank, University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain
| |
Collapse
|
7
|
Zheng Q, Wang D, Lin R, Chen Y, Huang H, Xu Z, Zheng C, Xu W. Mendelian randomization analysis suggests no associations of human herpes viruses with amyotrophic lateral sclerosis. Front Neurosci 2023; 17:1299122. [PMID: 38156274 PMCID: PMC10754516 DOI: 10.3389/fnins.2023.1299122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023] Open
Abstract
Background The causal associations between infections with human herpes viruses (HHVs) and amyotrophic lateral sclerosis (ALS) has been disputed. This study investigated the causal associations between herpes simplex virus (HSV), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), HHV-6, and HHV-7 infections and ALS through a bidirectional Mendelian randomization (MR) method. Methods The genome-wide association studies (GWAS) database were analyzed by inverse variance weighted (IVW), MR-Egger, weighted median, simple mode, and weighted mode methods. MR-Egger intercept test, MR-PRESSO test, Cochran's Q test, funnel plots, and leaveone-out analysis were used to verify the validity and robustness of the MR results. Results In the forward MR analysis of the IVW, genetically predicted HSV infections [odds ratio (OR) = 0.9917; 95% confidence interval (CI): 0.9685-1.0154; p = 0.4886], HSV keratitis and keratoconjunctivitis (OR = 0.9897; 95% CI: 0.9739-1.0059; p = 0.2107), anogenital HSV infection (OR = 1.0062; 95% CI: 0.9826-1.0304; p = 0.6081), VZV IgG (OR = 1.0003; 95% CI: 0.9849-1.0160; p = 0.9659), EBV IgG (OR = 0.9509; 95% CI: 0.8879-1.0183; p = 0.1497), CMV (OR = 0.9481; 95% CI: 0.8680-1.0357; p = 0.2374), HHV-6 IgG (OR = 0.9884; 95% CI: 0.9486-1.0298; p = 0.5765) and HHV-7 IgG (OR = 0.9991; 95% CI: 0.9693-1.0299; p = 0.9557) were not causally associated with ALS. The reverse MR analysis of the IVW revealed comparable findings, indicating no link between HHVs infections and ALS. The reliability and validity of the findings were verified by the sensitivity analysis. Conclusion According to the MR study, there is no evidence of causal associations between genetically predicted HHVs (HSV, VZV, EBV, CMV, HHV-6, and HHV-7) and ALS.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuchao Chen
- Department of Paediatrics, Fujian Provincial Hospital South Branch, Fuzhou, China
| | - Haoen Huang
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zixing Xu
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Weihong Xu
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Ke H, Liu K, Jiao B, Zhao L. Implications of TDP-43 in non-neuronal systems. Cell Commun Signal 2023; 21:338. [PMID: 37996849 PMCID: PMC10666381 DOI: 10.1186/s12964-023-01336-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 11/25/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a versatile RNA/DNA-binding protein with multifaceted processes. While TDP-43 has been extensively studied in the context of degenerative diseases, recent evidence has also highlighted its crucial involvement in diverse life processes beyond neurodegeneration. Here, we mainly reviewed the function of TDP-43 in non-neurodegenerative physiological and pathological processes, including spermatogenesis, embryonic development, mammary gland development, tumor formation, and viral infection, highlighting its importance as a key regulatory factor for the maintenance of normal functions throughout life. TDP-43 exhibits diverse and sometimes opposite functionality across different cell types through various mechanisms, and its roles can shift at distinct stages within the same biological system. Consequently, TDP-43 operates in both a context-dependent and a stage-specific manner in response to a variety of internal and external stimuli. Video Abstract.
Collapse
Affiliation(s)
- Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Kang Liu
- Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Baowei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| |
Collapse
|
9
|
Webber CJ, Murphy CN, Rondón-Ortiz AN, van der Spek SJF, Kelly EX, Lampl NM, Chiesa G, Khalil AS, Emili A, Wolozin B. Human herpesvirus 8 ORF57 protein is able to reduce TDP-43 pathology: network analysis identifies interacting pathways. Hum Mol Genet 2023; 32:2966-2980. [PMID: 37522762 PMCID: PMC10549787 DOI: 10.1093/hmg/ddad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023] Open
Abstract
Aggregation of TAR DNA-binding protein 43 kDa (TDP-43) is thought to drive the pathophysiology of amyotrophic lateral sclerosis and some frontotemporal dementias. TDP-43 is normally a nuclear protein that in neurons translocates to the cytoplasm and can form insoluble aggregates upon activation of the integrated stress response (ISR). Viruses evolved to control the ISR. In the case of Herpesvirus 8, the protein ORF57 acts to bind protein kinase R, inhibit phosphorylation of eIF2α and reduce activation of the ISR. We hypothesized that ORF57 might also possess the ability to inhibit aggregation of TDP-43. ORF57 was expressed in the neuronal SH-SY5Y line and its effects on TDP-43 aggregation characterized. We report that ORF57 inhibits TDP-43 aggregation by 55% and elicits a 2.45-fold increase in the rate of dispersion of existing TDP-43 granules. These changes were associated with a 50% decrease in cell death. Proteomic studies were carried out to identify the protein interaction network of ORF57. We observed that ORF57 directly binds to TDP-43 as well as interacts with many components of the ISR, including elements of the proteostasis machinery known to reduce TDP-43 aggregation. We propose that viral proteins designed to inhibit a chronic ISR can be engineered to remove aggregated proteins and dampen a chronic ISR.
Collapse
Affiliation(s)
- Chelsea J Webber
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Caroline N Murphy
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Alejandro N Rondón-Ortiz
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sophie J F van der Spek
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Elena X Kelly
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Noah M Lampl
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
| | - Giulio Chiesa
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biochemistry, Boston University, Boston, MA 02115, USA
- Department of Biochemistry, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Benjamin Wolozin
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
- Center for Neurophotonics, Boston University, Boston, MA 02115, USA
- Department of Neurology, Boston University, Boston, MA 02115, USA
| |
Collapse
|
10
|
Reviewing the Potential Links between Viral Infections and TDP-43 Proteinopathies. Int J Mol Sci 2023; 24:ijms24021581. [PMID: 36675095 PMCID: PMC9867397 DOI: 10.3390/ijms24021581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Transactive response DNA binding protein 43 kDa (TDP-43) was discovered in 2001 as a cellular factor capable to inhibit HIV-1 gene expression. Successively, it was brought to new life as the most prevalent RNA-binding protein involved in several neurological disorders, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite the fact that these two research areas could be considered very distant from each other, in recent years an increasing number of publications pointed out the existence of a potentially important connection. Indeed, the ability of TDP-43 to act as an important regulator of all aspects of RNA metabolism makes this protein also a critical factor during expression of viral RNAs. Here, we summarize all recent observations regarding the involvement of TDP-43 in viral entry, replication and latency in several viruses that include enteroviruses (EVs), Theiler's murine encephalomyelitis virus (TMEV), human immunodeficiency virus (HIV), human endogenous retroviruses (HERVs), hepatitis B virus (HBV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), West Nile virus (WNV), and herpes simplex virus-2 (HSV). In particular, in this work, we aimed to highlight the presence of similarities with the most commonly studied TDP-43 related neuronal dysfunctions.
Collapse
|
11
|
Zanella I, Zacchi E, Fornari C, Fumarola B, Antoni MD, Zizioli D, Quiros-Roldan E. An exploratory pilot study on the involvement of APOE, HFE, C9ORF72 variants and comorbidities in neurocognitive and physical performance in a group of HIV-infected people. Metab Brain Dis 2022; 37:1569-1583. [PMID: 35353274 PMCID: PMC8964929 DOI: 10.1007/s11011-022-00975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
Abstract
Cognitive decline of aging is modulated by chronic inflammation and comorbidities. In people with HIV-infection (PWH) it may also be affected by HIV-induced inflammation, lifestyle and long-term effects of antiretroviral therapies (ART). The role of genetics in the susceptibility to HIV-associated neurocognitive disorders (HAND) is not fully understood. Here we explored the possible relations among variants in 3 genes involved in inflammation and neurodegenerative disorders (APOE: ε2/ε3/ε4; HFE: H63D; C9ORF72: hexanucleotide expansions ≥ 9 repeats), cognitive/functional impairment (MiniMental State Examination MMSE, Clock Drawing Test CDT, Short Physical Performance Battery SPPB), comorbidities and HIV-related variables in a cohort of > 50 years old PWH (n = 60) with at least 10 years efficient ART. Patients with diabetes or hypertension showed significantly lower MMSE (p = .031) or SPPB (p = .010) scores, respectively, while no relations between HIV-related variables and cognitive/functional scores were observed. Patients with at least one APOEε3 allele had higher CDT scores (p = .019), APOEε2/ε4 patients showing the lowest scores in all tests. Patients with HFE-H63D variant showed more frequently hypertriglyceridemia (p = .023) and those harboring C9ORF72 expansions > 9 repeats had higher CD4+-cell counts (p = .032) and CD4% (p = .041). Multiple linear regression analysis computed to verify possible associations among cognitive/functional scores and all variables further suggested positive association between higher CDT scores and the presence of at least one APOEε3 allele (2,2; 95% CI [0,03 0,8]; p = .037), independent of other variables, although the model did not reach the statistical significance (p = .14). These data suggest that in PWH on efficient ART cognitive abilities and physical performances may be partly associated with comorbidities and genetic background. However, further analyses are needed to establish whether they could be also dependent and influenced by comorbidities and genetic background.
Collapse
Affiliation(s)
- Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy.
- Clinical Chemistry Laboratory, Cytogenetics and Molecular Genetics Section, Diagnostic Department, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy.
| | - Eliana Zacchi
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Chiara Fornari
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Benedetta Fumarola
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Melania Degli Antoni
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| |
Collapse
|
12
|
Hernáez B, Viejo-Borbolla A, Cabrera JR. Editorial: Neuronal and Glial Alterations Caused by Viral Infections. Front Cell Neurosci 2022; 16:883221. [PMID: 35450209 PMCID: PMC9016110 DOI: 10.3389/fncel.2022.883221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bruno Hernáez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
- *Correspondence: Bruno Hernáez
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hanover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hanover, Germany
- Abel Viejo-Borbolla
| | | |
Collapse
|
13
|
Molecular Pathology of ALS: What We Currently Know and What Important Information Is Still Missing. Diagnostics (Basel) 2021; 11:diagnostics11081365. [PMID: 34441299 PMCID: PMC8391180 DOI: 10.3390/diagnostics11081365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/25/2021] [Indexed: 12/23/2022] Open
Abstract
Despite an early understanding of amyotrophic lateral sclerosis (ALS) as a disease affecting the motor system, including motoneurons in the motor cortex, brainstem, and spinal cord, today, many cases involving dementia and behavioral disorders are reported. Therefore, we currently divide ALS not only based on genetic predisposition into the most common sporadic variant (90% of cases) and the familial variant (10%), but also based on cognitive and/or behavioral symptoms, with five specific subgroups of clinical manifestation—ALS with cognitive impairment, ALS with behavioral impairment, ALS with combined cognitive and behavioral impairment, the fully developed behavioral variant of frontotemporal dementia in combination with ALS, and comorbid ALS and Alzheimer’s disease (AD). Generally, these cases are referred to as amyotrophic lateral sclerosis-frontotemporal spectrum disorder (ALS-FTSD). Clinical behaviors and the presence of the same pathognomonic deposits suggest that FTLD and ALS could be a continuum of one entity. This review was designed primarily to compare neuropathological findings in different types of ALS relative to their characteristic locations as well as the immunoreactivity of the inclusions, and thus, foster a better understanding of the immunoreactivity, distribution, and morphology of the pathological deposits in relation to genetic mutations, which can be useful in specifying the final diagnosis.
Collapse
|
14
|
The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021; 10:cells10071836. [PMID: 34360004 PMCID: PMC8303900 DOI: 10.3390/cells10071836] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.
Collapse
|
15
|
C9orf72 Intermediate Repeats Confer Genetic Risk for Severe COVID-19 Pneumonia Independently of Age. Int J Mol Sci 2021; 22:ijms22136991. [PMID: 34209673 PMCID: PMC8268051 DOI: 10.3390/ijms22136991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
A cytokine storm, autoimmune features and dysfunctions of myeloid cells significantly contribute to severe coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Genetic background of the host seems to be partly responsible for severe phenotype and genes related to innate immune response seem critical host determinants. The C9orf72 gene has a role in vesicular trafficking, autophagy regulation and lysosome functions, is highly expressed in myeloid cells and is involved in immune functions, regulating the lysosomal degradation of mediators of innate immunity. A large non-coding hexanucleotide repeat expansion (HRE) in this gene is the main genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), both characterized by neuroinflammation and high systemic levels of proinflammatory cytokines, while HREs of intermediate length, although rare, are more frequent in autoimmune disorders. C9orf72 full mutation results in haploinsufficiency and intermediate HREs seem to modulate gene expression as well and impair autophagy. Herein, we sought to explore whether intermediate HREs in C9orf72 may be a risk factor for severe COVID-19. Although we found intermediate HREs in only a small portion of 240 patients with severe COVID-19 pneumonia, the magnitude of risk for requiring non-invasive or mechanical ventilation conferred by harboring intermediate repeats >10 units in at least one C9orf72 allele was more than twice respect to having shorter expansions, when adjusted for age (odds ratio (OR) 2.36; 95% confidence interval (CI) 1.04-5.37, p = 0.040). The association between intermediate repeats >10 units and more severe clinical outcome (p = 0.025) was also validated in an independent cohort of 201 SARS-CoV-2 infected patients. These data suggest that C9orf72 HREs >10 units may influence the pathogenic process driving more severe COVID-19 phenotypes.
Collapse
|