2
|
Sürün D, Schneider A, Mircetic J, Neumann K, Lansing F, Paszkowski-Rogacz M, Hänchen V, Lee-Kirsch MA, Buchholz F. Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors. Genes (Basel) 2020; 11:E511. [PMID: 32384610 PMCID: PMC7288465 DOI: 10.3390/genes11050511] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
In contrast to CRISPR/Cas9 nucleases, CRISPR base editors (BE) and prime editors (PE) enable predefined nucleotide exchanges in genomic sequences without generating DNA double strand breaks. Here, we employed BE and PE mRNAs in conjunction with chemically synthesized sgRNAs and pegRNAs for efficient editing of human induced pluripotent stem cells (iPSC). Whereas we were unable to correct a disease-causing mutation in patient derived iPSCs using a CRISPR/Cas9 nuclease approach, we corrected the mutation back to wild type with high efficiency utilizing an adenine BE. We also used adenine and cytosine BEs to introduce nine different cancer associated TP53 mutations into human iPSCs with up to 90% efficiency, generating a panel of cell lines to investigate the biology of these mutations in an isogenic background. Finally, we pioneered the use of prime editing in human iPSCs, opening this important cell type for the precise modification of nucleotides not addressable by BEs and to multiple nucleotide exchanges. These approaches eliminate the necessity of deriving disease specific iPSCs from human donors and allows the comparison of different disease-causing mutations in isogenic genetic backgrounds.
Collapse
Affiliation(s)
- Duran Sürün
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| | - Aksana Schneider
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| | - Jovan Mircetic
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
- Mildred Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Katrin Neumann
- Stem Cell Engineering Facility, Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany;
| | - Felix Lansing
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| | - Vanessa Hänchen
- Department of Pediatrics, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (V.H.); (M.A.L.-K.)
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (V.H.); (M.A.L.-K.)
| | - Frank Buchholz
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| |
Collapse
|
3
|
Ou M, Li C, Tang D, Xue W, Xu Y, Zhu P, Li B, Xie J, Chen J, Sui W, Yin L, Dai Y. Genotyping, generation and proteomic profiling of the first human autosomal dominant osteopetrosis type II-specific induced pluripotent stem cells. Stem Cell Res Ther 2019; 10:251. [PMID: 31412925 PMCID: PMC6693165 DOI: 10.1186/s13287-019-1369-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background Autosomal dominant osteopetrosis type II (ADO2) is a rare human genetic disease that has been broadly studied as an important osteopetrosis model; however, there are no disease-specific induced pluripotent stem cells (ADO2-iPSCs) that may be valuable for understanding the pathogenesis and may be a potential source of cells for autologous cell-based therapies. Methods To generate the first human ADO2-iPSCs from a Chinese family with ADO2 and to identify their characteristics, blood samples were collected from the proband and his parents and were used for genotyping by whole-exome sequencing (WES); the urine-derived cells of the proband were reprogrammed with episomal plasmids that contained transcription factors, such as KLF4, OCT4, c-MYC, and SOX2. The proteome-wide protein quantification and lysine 2-hydroxyisobutyrylation detection of the ADO2-iPSCs and normal control iPSCs (NC-iPSCs) were performed by high-resolution LC-MS/MS and bioinformatics analysis. Results WES with filtering strategies identified a mutation in CLCN7 (R286W) in the proband and his father, which was absent in the proband’s mother and the healthy controls; this was confirmed by Sanger sequencing. The ADO2-iPSCs were successfully generated, which carried a normal male karyotype (46, XY) and the mutation of CLCN7 (R286W); the ADO2-iPSCs positively expressed alkaline phosphatase and other surface markers; and no vector and transgene were detected. The ADO2-iPSCs could differentiate into all three germ cell layers, both in vitro and in vivo. The proteomic profiling revealed similar expression of pluripotency markers in the two cell lines and identified 7405 proteins and 3664 2-hydroxyisobutyrylated peptides in 1036 proteins in the ADO2-iPSCs. Conclusions Our data indicated that the mutation CLCN7 (R286W) may be a cause of the osteopetrosis family. The generated vector-free and transgene-free ADO2-iPSCs with known proteomic characteristics may be valuable for personalized and cell-based regenerative medicine in the future. Electronic supplementary material The online version of this article (10.1186/s13287-019-1369-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minglin Ou
- Clinical Medical Research Center of The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China.,Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory of Guilin No. 181 Hospital, No. 1, Xinqiaoyuan Road, Guilin, 541002, China
| | - Chunhong Li
- Clinical Medical Research Center of The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China.,Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory of Guilin No. 181 Hospital, No. 1, Xinqiaoyuan Road, Guilin, 541002, China.,College of Life Science, Guangxi Normal University, Guilin, 541004, China
| | - Donge Tang
- Clinical Medical Research Center of The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China.,Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory of Guilin No. 181 Hospital, No. 1, Xinqiaoyuan Road, Guilin, 541002, China
| | - Wen Xue
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory of Guilin No. 181 Hospital, No. 1, Xinqiaoyuan Road, Guilin, 541002, China
| | - Yong Xu
- Clinical Medical Research Center of The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China
| | - Peng Zhu
- Clinical Medical Research Center of The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China
| | - Bo Li
- Clinical Medical Research Center of The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China
| | - Jiansheng Xie
- Shenzen Maternity & Child Healthcare Hospital, Shenzhen, 518017, China
| | - Jiejing Chen
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory of Guilin No. 181 Hospital, No. 1, Xinqiaoyuan Road, Guilin, 541002, China
| | - Weiguo Sui
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory of Guilin No. 181 Hospital, No. 1, Xinqiaoyuan Road, Guilin, 541002, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yong Dai
- Clinical Medical Research Center of The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China. .,Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory of Guilin No. 181 Hospital, No. 1, Xinqiaoyuan Road, Guilin, 541002, China.
| |
Collapse
|