1
|
Chung H, Bak SH, Shin E, Park T, Kim J, Jeong H, Jung H, Yoon SR, Noh JY. Resveratrol from Peanut Sprout Extract Promotes NK Cell Activation and Antitumor Activity. Biomol Ther (Seoul) 2025; 33:355-364. [PMID: 39971707 PMCID: PMC11893499 DOI: 10.4062/biomolther.2024.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/21/2025] Open
Abstract
Natural killer (NK) cells are innate immune cells that are crucial for anticancer activity and have been developed as an immune cell therapy for leukemia. However, their limited effectiveness against solid tumors has prompted research into methods to enhance NK cell activity through combination therapies. Health supplements capable of boosting immune surveillance against tumor cells are gaining attention owing to their potential benefits. Resveratrol, a stilbenoid produced by several plants including peanuts and grapes, reportedly exerts anticancer effects and can activate immune cells. The peanut sprout extract cultivated with fermented sawdust medium (PSEFS) is rich in resveratrol, leveraging its health benefits in terms of the dry weight of herbal products, thus maximizing the utilization of resveratrol's beneficial properties. Our study compared the efficacy of resveratrol and PSEFS and revealed that PSEFS significantly enhanced NK cell activation compared with an equivalent dose of resveratrol. We investigated the ability of PSEFS to potentiate NK cell anticancer activity, focusing on NK cell survival, tumor cell lysis, and NK cell activation in PSEFS-administered mice. Our findings suggest that PSEFS could be a potential NK cell booster for cancer immunotherapy.
Collapse
Affiliation(s)
- Hyunmin Chung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Jinwoo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Hanseul Jeong
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Suk Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Kaszubowska L, Kaczor JJ, Karnia MJ, Foerster J, Kmieć Z. Expression of a stress-inducible heme oxygenase-1 in NK cells is maintained in the process of human aging. Front Immunol 2024; 15:1398468. [PMID: 39100660 PMCID: PMC11294084 DOI: 10.3389/fimmu.2024.1398468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Heme oxygenase-1 (HO-1) is a stress-inducible heat shock protein (HSP32) that exerts cytoprotective effects against oxidative stress and inflammation, and is involved in the maintenance of cellular homeostasis. This study aimed to evaluate the expression of HO-1 in natural killer (NK) cells from individuals of different age groups after stimulation with various factors, and to analyze the relationships between the concentration of this cytoprotective protein and parameters corresponding to oxidative stress and inflammation, that is, NOD-like receptor protein 3 (NLRP3), glutathione (GSH), GSH disulfide (GSSG), and interleukin 6 (IL-6). Methods The study population comprised three age groups: young adults (age range, 19-23 years), older adults aged under 85 years (age range, 73-84 years), and older adults aged over 85 years (age range, 85-92 years). NLRP3, GSH, and GSSG concentrations were measured in serum, whereas the HO-1 concentration and IL-6 expression were studied in NK cells cultivated for 48 h and stimulated with IL-2, lipopolysaccharide (LPS), or phorbol 12-myristate 13-acetate (PMA) with ionomycin. Results The analysis of serum NLRP3, GSH, and GSSG concentrations revealed no statistically significant differences among the studied age groups. However, some typical trends of aging were observed, such as a decrease in GSH concentration and an increase in both GSSG level, and GSSG/GSH ratio. The highest basal expression of IL-6 and lowest basal content of HO-1 were found in NK cells of adults over 85 years of age. The NK cells in this age group also showed the highest sensitivity to stimulation with the applied factors. Moreover, statistically significant negative correlations were observed between HO-1 and IL-6 expression levels in the studied NK cells. Conclusions These results showed that NK cells can express HO-1 at a basal level, which was significantly increased in activated cells, even in the oldest group of adults. The reciprocal relationship between HO-1 and IL-6 expression suggests a negative feedback loop between these parameters.
Collapse
Affiliation(s)
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, Poland
| | | | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
3
|
Kaszubowska L, Foerster J, Kaczor JJ, Karnia MJ, Kmieć Z. Anti-Inflammatory Klotho Protein Serum Concentration Correlates with Interferon Gamma Expression Related to the Cellular Activity of Both NKT-like and T Cells in the Process of Human Aging. Int J Mol Sci 2023; 24:ijms24098393. [PMID: 37176100 PMCID: PMC10179552 DOI: 10.3390/ijms24098393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Klotho is a beta-glucuronidase that reveals both anti-inflammatory and anti-oxidative properties that have been associated with mechanisms of aging. The study aimed to analyze the relationships between the serum concentration of soluble α-Klotho and cellular activity of two populations of lymphocytes; T and NKT-like cells corresponding to the level of cytokine secretion; i.e., IFN-γ, TNF-α, and IL-6. The studied population comprised three age groups: young individuals ('young'), seniors aged under 85 ('old'), and seniors aged over 85 ('oldest'). Both NKT-like and T cells were either non-cultured or cultured for 48 h and stimulated appropriately with IL-2, LPS or PMA with ionomycin to compare with unstimulated control cells. In all studied age groups non-cultured or cultured NKT-like cells revealed higher expressions of TNF-α, IL-6, and IFN-γ than T cells. α-Klotho concentration in serum decreased significantly in the process of aging. Intriguingly, only IFN-γ expression revealed a positive correlation with α-Klotho protein serum concentration in both non-cultured and cultured T and NKT-like cells. Since IFN-γ is engaged in the maintenance of immune homeostasis, the observed relationships may indicate the involvement of α-Klotho and cellular IFN-γ expression in the network of adaptive mechanisms developed during the process of human aging.
Collapse
Affiliation(s)
- Lucyna Kaszubowska
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, University of Gdańsk, J. Bażyńskiego 8 Street, 80-308 Gdańsk, Poland
| | - Mateusz Jakub Karnia
- Department of Animal and Human Physiology, University of Gdańsk, J. Bażyńskiego 8 Street, 80-308 Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| |
Collapse
|
4
|
Kaszubowska L, Foerster J, Kmieć Z. NKT-like (CD3 + CD56+) cells differ from T cells in expression level of cellular protective proteins and sensitivity to stimulation in the process of ageing. Immun Ageing 2022; 19:18. [PMID: 35410272 PMCID: PMC8996639 DOI: 10.1186/s12979-022-00274-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND NKT-like cells are T lymphocytes coexpressing several NK cell-associated receptors. They are effector lymphocytes of innate and adaptive immunity, and their number increases with age. The study aimed to analyze the expression of cellular protective proteins, i.e. sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in NKT-like and T cells of the young ('young', 31 subjects, age range 19-24 years), seniors aged under 85 ('old'; 30 subjects, age range 65-84 years) and seniors aged over 85 ('oldest', 24 subjects, age range 85-94 years). Both NKT-like and T cells were cultured for 48 h and stimulated with IL-2, LPS and PMA with ionomycin and compared with unstimulated control cells. RESULTS The oldest seniors varied from the other age groups by significantly increased expression of SIRT1 and HSP70 in both NKT-like and T cells observed in both stimulated and nonstimulated cells. The analyzed lymphocyte populations of the oldest revealed not only the highest expression of these proteins but also insensitivity to all types of applied stimulation. When NKT-like cells were compared to T cells, higher expression of the studied protective proteins was observed in both stimulated and unstimulated NKT-like cells. Neither CD3 + CD56+ nor CD3+ cells revealed elevated expression of SOD2, and these cells responded to stimulation until very advanced age. T cells revealed higher sensitivity to stimulation with IL-2 regarding SIRT1 and HSP70 expression. NKT-like cells were more sensitive to stimulation with PMA and ionomycin concerning the expression of these proteins. IL-2 did not induce a significant increase in SOD2 expression in the studied age groups. CONCLUSIONS The oldest seniors developed an adaptive stress response in both T and NKT-like cells regarding the expression of SIRT1 and HSP70, which was increased and insensitive to further stimulation in contrast to SOD2, which showed a more inducible pattern of expression. CD3 + CD56+ cells exhibited higher expression of cellular protective proteins than CD3+ cells in both stimulated and control, nonstimulated cells. NKT-like and T cells showed a distinct sensitivity to the applied stimulatory factors in the respective age groups.
Collapse
Affiliation(s)
- Lucyna Kaszubowska
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
5
|
Fang F, Xie S, Chen M, Li Y, Yue J, Ma J, Shu X, He Y, Xiao W, Tian Z. Advances in NK cell production. Cell Mol Immunol 2022; 19:460-481. [PMID: 34983953 PMCID: PMC8975878 DOI: 10.1038/s41423-021-00808-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy based on natural killer (NK) cells is a promising approach for treating a variety of cancers. Unlike T cells, NK cells recognize target cells via a major histocompatibility complex (MHC)-independent mechanism and, without being sensitized, kill the cells directly. Several strategies for obtaining large quantities of NK cells with high purity and high cytotoxicity have been developed. These strategies include the use of cytokine-antibody fusions, feeder cells or membrane particles to stimulate the proliferation of NK cells and enhance their cytotoxicity. Various materials, including peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs) and NK cell lines, have been used as sources to generate NK cells for immunotherapy. Moreover, genetic modification technologies to improve the proliferation of NK cells have also been developed to enhance the functions of NK cells. Here, we summarize the recent advances in expansion strategies with or without genetic manipulation of NK cells derived from various cellular sources. We also discuss the closed, automated and GMP-controlled large-scale expansion systems used for NK cells and possible future NK cell-based immunotherapy products.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Siqi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Minhua Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yutong Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jingjing Yue
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jie Ma
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Xun Shu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yongge He
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Weihua Xiao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhigang Tian
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
6
|
Gámez-García A, Vazquez BN. Nuclear Sirtuins and the Aging of the Immune System. Genes (Basel) 2021; 12:1856. [PMID: 34946805 PMCID: PMC8701065 DOI: 10.3390/genes12121856] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system undergoes major changes with age that result in altered immune populations, persistent inflammation, and a reduced ability to mount effective immune responses against pathogens and cancer cells. Aging-associated changes in the immune system are connected to other age-related diseases, suggesting that immune system rejuvenation may provide a feasible route to improving overall health in the elderly. The Sir2 family of proteins, also called sirtuins, have been broadly implicated in genome homeostasis, cellular metabolism, and aging. Sirtuins are key responders to cellular and environmental stress and, in the case of the nuclear sirtuins, they do so by directing responses to chromatin that include gene expression regulation, retrotransposon repression, enhanced DNA damage repair, and faithful chromosome segregation. In the immune system, sirtuins instruct cellular differentiation from hematopoietic precursors and promote leukocyte polarization and activation. In hematopoietic stem cells, sirtuins safeguard quiescence and stemness to prevent cellular exhaustion. Regulation of cytokine production, which, in many cases, requires NF-κB regulation, is the best-characterized mechanism by which sirtuins control innate immune reactivity. In adaptive immunity, sirtuins promote T cell subset differentiation by controlling master regulators, thereby ensuring an optimal balance of helper (Th) T cell-dependent responses. Sirtuins are very important for immune regulation, but the means by which they regulate immunosenescence are not well understood. This review provides an integrative overview of the changes associated with immune system aging and its potential relationship with the roles of nuclear sirtuins in immune cells and overall organismal aging. Given the anti-aging properties of sirtuins, understanding how they contribute to immune responses is of vital importance and may help us develop novel strategies to improve immune performance in the aging organism.
Collapse
Affiliation(s)
- Andrés Gámez-García
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Berta N. Vazquez
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain;
- Unitat de Citologia i d’Histologia, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Valles, 08193 Barcelona, Spain
| |
Collapse
|
7
|
Erdman VV, Nasibullin TR, Tuktarova IA, Timasheva YR, Danilko KV, Viktorova TV, Mustafina OE. The Study of Association of Polymorphic Markers of the SOD1, SOD2, and SOD3 Genes with Longevity. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795420120066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Kaszubowska L, Foerster J, Schetz D, Kmieć Z. CD56bright cells respond to stimulation until very advanced age revealing increased expression of cellular protective proteins SIRT1, HSP70 and SOD2. Immun Ageing 2018; 15:31. [PMID: 30534181 PMCID: PMC6262966 DOI: 10.1186/s12979-018-0136-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/02/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND NK cells are cytotoxic lymphocytes of innate immunity composed of: cytotoxic CD56dim and immunoregulatory CD56bright cells. The study aimed to analyze the expression of cellular protective proteins: sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in CD56dim and CD56bright NK cells of the young, seniors aged under 85 ('the old') and seniors aged over 85 ('the oldest'). We studied both non-stimulated NK cells and cells stimulated by IL-2, LPS or PMA with ionomycin. The expression level of proinflammatory cytokines TNF and IFN-γ was also assessed in NK cell subsets and some relationships between the studied parameters were analyzed. RESULTS CD56bright cells showed sensitivity to most of the applied stimulatory agents until very advanced age in regards to the expression of SIRT1 and intracellular HSP70. On the contrary, CD56dim cells, sensitive to stimulation by most of the stimulatory agents in the young and the old, in the oldest lost this sensitivity and presented rather high, constant expression of SIRT1 and HSP70, resistant to further stimulation. With reference to SOD2 expression, CD56dim cells were insensitive to stimulation in the young, but their sensitivity increased with ageing. CD56bright cells were sensitive to most of the applied agents in the young and the old but in the oldest they responded to all of the stimulatory agents used in the study. Similarly, both NK cell subsets were sensitive to stimulation until very advanced age in regards to the expression of TNF and IFN-γ. CONCLUSIONS CD56bright cells maintained sensitivity to stimulation until very advanced age presenting also an increased expression of SIRT1 and HSP70. CD56dim cells showed a constantly increased expression of these cellular protective proteins in the oldest, insensitive for further stimulation. The oldest, however, did not reveal an increased level of SOD2 expression, but it was significantly elevated in both NK cell subsets after stimulation.The pattern of expression of the studied cellular protective proteins in ageing process revealed the adaptation of NK cells to stress response in the oldest seniors which might accompany the immunosenescence and contribute to the long lifespan of this group of the elderly.
Collapse
Affiliation(s)
- Lucyna Kaszubowska
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Daria Schetz
- Department of Pharmacology, Medical University of Gdańsk, Dębowa 23, 80-204 Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| |
Collapse
|
9
|
Kaszubowska L, Foerster J, Kaczor JJ, Schetz D, Ślebioda TJ, Kmieć Z. NK cells of the oldest seniors represent constant and resistant to stimulation high expression of cellular protective proteins SIRT1 and HSP70. IMMUNITY & AGEING 2018. [PMID: 29541147 PMCID: PMC5840822 DOI: 10.1186/s12979-018-0115-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Natural killer cells (NK cells) are cytotoxic lymphocytes of innate immunity that reveal some immunoregulatory properties, however, their role in the process of ageing is not completely understood. The study aimed to analyze the expression of proteins involved in cellular stress response: sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in human NK cells with reference to the process of ageing. Non-stimulated and stimulated with IL-2, LPS or PMA with ionomycin cells originated from peripheral blood samples of: seniors aged over 85 (‘the oldest’; n = 25; 88.5 ± 0.5 years, mean ± SEM), seniors aged under 85 (‘the old’; n = 30; 75.6 ± 0.9 years) and the young (n = 31; 20.9 ± 0.3 years). The relationships between the levels of expression of cellular protective proteins in the studied population were also analyzed. The concentrations of carbonyl groups and 8-isoprostanes, markers of oxidative stress, in both stimulated and non-stimulated cultured NK cells were measured to assess the level of the oxidative stress in the cells. Results The oldest seniors varied from the other age groups by significantly higher expression of SIRT1 and HSP70 both in non-stimulated and stimulated NK cells. These cells also appeared to be resistant to further stimulations with IL-2, LPS or PMA with ionomycin. Highly positive correlations between SIRT1 and intracellular HSP70 in both stimulated and non-stimulated NK cells were observed. SOD2 presented low expression in non-stimulated cells, whereas its sensitivity to stimulation increased with age of donors. High positive correlations between SOD2 and surface HSP70 were observed. We found that the markers of oxidative stress in NK cells did not change with ageing. Conclusions The oldest seniors revealed well developed adaptive stress response in NK cells with increased, constant levels of SIRT1 and intracellular HSP70. They presented also very high positive correlations between expression of these cellular protective proteins both in stimulated and non-stimulated cells. These phenomena may contribute to the long lifespan of this group of elderly. Interestingly, in NK cells SOD2 revealed a distinct role in cellular stress response since it showed sensitivity to stimulation increasing with age of participants. These observations provide novel data concerning the role of NK cells in the process of ageing.
Collapse
Affiliation(s)
- Lucyna Kaszubowska
- 1Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jerzy Foerster
- 2Department of Social and Clinical Gerontology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jan Jacek Kaczor
- 3Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Daria Schetz
- 4Department of Pharmacology, Medical University of Gdańsk, Dębowa 23, 80-204 Gdańsk, Poland
| | - Tomasz Jerzy Ślebioda
- 1Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Zbigniew Kmieć
- 1Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| |
Collapse
|
10
|
Cervoni MS, Cardoso-Júnior CAM, Craveiro G, Souza ADO, Alberici LC, Hartfelder K. Mitochondrial capacity, oxidative damage and hypoxia gene expression are associated with age-related division of labor in honey bee ( Apis mellifera L.) workers. ACTA ACUST UNITED AC 2017; 220:4035-4046. [PMID: 28912256 DOI: 10.1242/jeb.161844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
Abstract
During adult life, honey bee workers undergo a succession of behavioral states. Nurse bees perform tasks inside the nest, and when they are about 2-3 weeks old they initiate foraging. This switch is associated with alterations in diet, and with the levels of juvenile hormone and vitellogenin circulating in hemolymph. It is not clear whether this behavioral maturation involves major changes at the cellular level, such as mitochondrial activity and the redox environment in the head, thorax and abdomen. Using high-resolution respirometry, biochemical assays and RT-qPCR, we evaluated the association of these parameters with this behavioral change. We found that tissues from the head and abdomen of nurses have a higher oxidative phosphorylation capacity than those of foragers, while for the thorax we found the opposite situation. As higher mitochondrial activity tends to generate more H2O2, and H2O2 is known to stabilize HIF-1α, this would be expected to stimulate hypoxia signaling. The positive correlation that we observed between mitochondrial activity and hif-1α gene expression in abdomen and head tissue of nurses would be in line with this hypothesis. Higher expression of antioxidant enzyme genes was observed in foragers, which could explain their low levels of protein carbonylation. No alterations were seen in nitric oxide (NO) levels, suggesting that NO signaling is unlikely to be involved in behavioral maturation. We conclude that the behavioral change seen in honey bee workers is reflected in differential mitochondrial activities and redox parameters, and we consider that this can provide insights into the underlying aging process.
Collapse
Affiliation(s)
- Mário S Cervoni
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Carlos A M Cardoso-Júnior
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Giovana Craveiro
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Anderson de O Souza
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Luciane C Alberici
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|