1
|
Marbade P, Shanmugam SA, Suresh E, Rathipriya A, Rather MA, Agarwal D. Gene expression profiling and physiological adaptations of pearl spot (Etroplus suratensis) under varying salinity conditions. Int J Biol Macromol 2023; 253:127569. [PMID: 37865362 DOI: 10.1016/j.ijbiomac.2023.127569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Eutroplus suratensis (Pearl spot) is naturally found in estuarine environments and has been noted to have a high salinity tolerance. By examining the impact of various salinity levels on the growth and survival of pearl spot, the present study aims to enhance aquaculture profitability by assessing their adaptability and physiological adjustments to changes in salinity and determining their potential to acclimate to a broad range of salinity regimes. Results revealed no mortality in the control group (0 ppt), and in 15, 25 and 35 ppt treatment groups. However, the remaining groups (45, 60, and 75 ppt) showed differing levels of mortality with 44 % mortality observed in the 45 ppt group and 100 % mortality in both the 60 and 75 ppt groups. The expression analysis showed that liver IGF-1 mRNA expression increased by 2.6-fold at 15 ppt, and HSP70 mRNA expression in the liver also showed a significant increase with rising salinity levels. In addition, OSTF1 expression exhibited an increase at 15 ppt, whereas SOD and CAT expression reached their highest levels at 25 ppt. At 15 ppt, the expression of NKA mRNA increased significantly by 2.8-fold. The study's overall findings suggested that utilizing a salinity level of 15 ppt for pearl spot production could be viable for profitable aquaculture.
Collapse
Affiliation(s)
- Pranali Marbade
- TNJFU Institute of Fisheries Post Graduate Studies, OMR Campus, Chennai, India
| | - S A Shanmugam
- TNJFU Institute of Fisheries Post Graduate Studies, OMR Campus, Chennai, India
| | - E Suresh
- TNJFU Institute of Fisheries Post Graduate Studies, OMR Campus, Chennai, India
| | - A Rathipriya
- TNJFU Institute of Fisheries Post Graduate Studies, OMR Campus, Chennai, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil Ganderbal- SKUAST-Kashmir, India
| | - Deepak Agarwal
- TNJFU Institute of Fisheries Post Graduate Studies, OMR Campus, Chennai, India.
| |
Collapse
|
2
|
Lin YT, Lee TH. Rapid response of osmotic stress transcription factor 1 (OSTF1) expression to salinity challenge in gills of marine euryhaline milkfish (Chanos chanos). PLoS One 2022; 17:e0271029. [PMID: 35793350 PMCID: PMC9258805 DOI: 10.1371/journal.pone.0271029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/22/2022] [Indexed: 12/13/2022] Open
Abstract
Euryhaline teleosts can survive in environments with different salinities. Cortisol is an important hormone for acclimation to seawater (SW) of euryhaline teleosts. Osmotic stress transcription factor 1 (OSTF1), also called the transforming growth factor-beta stimulated clone 22 domain 3 (tsc22d3), was first reported in tilapia as an acute response gene and protein under hyperosmotic stress, and it is regulated by cortisol. To date, most studies on OSTF1 have focused on freshwater inhabitants, such as tilapia, medaka, and catadromous eel. The expression of OSTF1 and the correlation between OSTF1 and cortisol in marine inhabitant euryhaline teleosts, to our knowledge, remain unclear. This study reveals the changes in the expression levels of branchial OSTF1, plasma cortisol levels, and their correlation in the marine inhabitant milkfish with ambient salinities. The two sequences of milkfish TSC22D3 transcripts were classified as OSTF1a and OSTF1b. Both genes were expressed universally in all detected organs and tissues but were the most abundant in the liver. Similar gene expression levels of ostf1a and ostf1b were found in SW- and fresh water (FW)-acclimated milkfish gills, an important osmoregulatory organ. Within 12 hours of being transferred from FW to SW, the gene expression level of ostf1b increased significantly (4 folds) within 12 h, whereas the expression level of ostf1a remained constant. Moreover, cortisol levels increased rapidly after being transferred to a hyperosmotic environment. After an intraperitoneal injection of cortisol, the gene expression levels of ostf1a and ostf1b were elevated. However, under hyperosmotic stress, ostf1a gene expression remained stable. Overall, the results revealed that ostf1b was the primary gene in milkfish responding to hypertonic stress, and cortisol concentration increased after the transfer of milkfish from FW to SW. Furthermore, cortisol injection increased the expression of ostf1a and ostf1b. As a result, factors other than cortisol may activate ostf1b in milkfish gills in response to an environmental salinity challenge.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
3
|
Kim C, Wang X, Kültz D. Prediction and Experimental Validation of a New Salinity-Responsive Cis-Regulatory Element (CRE) in a Tilapia Cell Line. Life (Basel) 2022; 12:787. [PMID: 35743818 PMCID: PMC9225295 DOI: 10.3390/life12060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Transcriptional regulation is a major mechanism by which organisms integrate gene x environment interactions. It can be achieved by coordinated interplay between cis-regulatory elements (CREs) and transcription factors (TFs). Euryhaline tilapia (Oreochromis mossambicus) tolerate a wide range of salinity and thus are an appropriate model to examine transcriptional regulatory mechanisms during salinity stress in fish. Quantitative proteomics in combination with the transcription inhibitor actinomycin D revealed 19 proteins that are transcriptionally upregulated by hyperosmolality in tilapia brain (OmB) cells. We searched the extended proximal promoter up to intron1 of each corresponding gene for common motifs using motif discovery tools. The top-ranked motif identified (STREME1) represents a binding site for the Forkhead box TF L1 (FoxL1). STREME1 function during hyperosmolality was experimentally validated by choosing two of the 19 genes, chloride intracellular channel 2 (clic2) and uridine phosphorylase 1 (upp1), that are enriched in STREME1 in their extended promoters. Transcriptional induction of these genes during hyperosmolality requires STREME1, as evidenced by motif mutagenesis. We conclude that STREME1 represents a new functional CRE that contributes to gene x environment interactions during salinity stress in tilapia. Moreover, our results indicate that FoxL1 family TFs are contribute to hyperosmotic induction of genes in euryhaline fish.
Collapse
Affiliation(s)
- Chanhee Kim
- Stress-Induced Evolution Laboratory, Department of Animal Sciences, University of California, Davis, CA 95616, USA;
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - Dietmar Kültz
- Stress-Induced Evolution Laboratory, Department of Animal Sciences, University of California, Davis, CA 95616, USA;
| |
Collapse
|
4
|
Schäfer N, Kaya Y, Rebl H, Stüeken M, Rebl A, Nguinkal JA, Franz GP, Brunner RM, Goldammer T, Grunow B, Verleih M. Insights into early ontogenesis: characterization of stress and development key genes of pikeperch (Sander lucioperca) in vivo and in vitro. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:515-532. [PMID: 33559015 PMCID: PMC8026417 DOI: 10.1007/s10695-021-00929-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/18/2021] [Indexed: 05/11/2023]
Abstract
There are still numerous difficulties in the successful farming of pikeperch in the anthropogenic environment of various aquaculture systems, especially during early developmental steps in the hatchery. To investigate the physiological processes involved on the molecular level, we determined the basal expression patterns of 21 genes involved in stress and immune responses and early ontogenesis of pikeperch between 0 and 175 days post hatch (dph). Their transcription patterns most likely reflect the challenges of growth and feed conversion. The gene coding for apolipoprotein A (APOE) was strongly expressed at 0 dph, indicating its importance for yolk sac utilization. Genes encoding bone morphogenetic proteins 4 and 7 (BMP4, BMP7), creatine kinase M (CKM), and SRY-box transcription factor 9 (SOX9) were highly abundant during the peak phases of morphological changes and acclimatization processes at 4-18 dph. The high expression of genes coding for peroxisome proliferator-activated receptors alpha and delta (PPARA, PPARD) at 121 and 175 dph, respectively, suggests their importance during this strong growth phase of juvenile stages. As an alternative experimental model to replace further in vivo investigations of ontogenetically important processes, we initiated the first approach towards a long-lasting primary cell culture from whole pikeperch embryos. The present study provides a set of possible biomarkers to support the monitoring of pikeperch farming and provides a first basis for the establishment of a suitable cell model of this emerging aquaculture species.
Collapse
Affiliation(s)
- Nadine Schäfer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Yagmur Kaya
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, 18059, Rostock, Germany
| | - Marcus Stüeken
- Institute of Fisheries, Department of Aquaculture, Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, 17194, Hohen Wangelin, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Julien A Nguinkal
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - George P Franz
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ronald M Brunner
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Tom Goldammer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059, Rostock, Germany
| | - Bianka Grunow
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Marieke Verleih
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
5
|
Kültz D. Evolution of cellular stress response mechanisms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:359-378. [PMID: 31970941 DOI: 10.1002/jez.2347] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
The cellular stress response (CSR) is pervasive to all domains of life. It has shaped the interaction between organisms and their environment since the origin of the first cell. Although the CSR has been subject to a myriad of nuanced modifications in the various branches of life present today, its core features remain preserved. The scientific literature covering the CSR is enormous and the broad scope of this brief overview was challenging. However, it is critical to conceptually understand how cells respond to stress in a holistic sense and to point out how fundamental aspects of the CSR framework are integrated. It was necessary to be extremely selective and not feasible to even mention many interesting and important developments in this expansive field. The purpose of this overview is to sketch out general and emerging CSR concepts with an emphasis on the initial cellular strain resulting from stress (macromolecular damage) and the evolutionarily most highly conserved elements of the CSR. Examples emphasize fish and aquatic invertebrates to highlight what is known in organisms beyond mammals, yeast, and other common models. Nonetheless, select pioneering studies using canonical models are also considered and the concepts discussed are applicable to all cells. More detail on important aspects of the CSR in aquatic animals is provided in the accompanying articles of this special issue.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Davis, California
| |
Collapse
|
6
|
Liu B, Guo HY, Zhu KC, Guo L, Liu BS, Zhang N, Yang JW, Jiang SG, Zhang DC. Growth, physiological, and molecular responses of golden pompano Trachinotus ovatus (Linnaeus, 1758) reared at different salinities. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1879-1893. [PMID: 31396801 DOI: 10.1007/s10695-019-00684-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Golden pompano (Trachinotus ovatus) is a commercially important marine fish and is widely cultured in the coastal area of South China. Salinity is one of the most important environmental factors influencing the growth and survival of fish. The aims of this study are to investigate the growth, physiological, and molecular responses of juvenile golden pompano reared at different salinities. Juveniles reared at 15 and 25‰ salinity grew significantly faster than those reared at the other salinities. According to the final body weights, weight gain rate, and feed conversion ratio, the suitable culture salinity range was 15-25‰ salinity. The levels of branchial NKA activity showed a typical "U-shaped" pattern with the lowest level at 15‰ salinity, which suggested a lower energy expenditure on osmoregulation at this level of salinity. The results of this study showed that the alanine aminotransferase, aspartate aminotransferase, and cortisol of juveniles at 5‰ were higher than those of other salinity groups. Our results showed that glucose-6-phosphate dehydrogenase significantly increased at 5‰ and 35‰ salinity. Our study showed that osmolality had significant differences in each salinity group. GH, GHR1, and GHR2 had a wide range of tissue expression including the liver, intestine, kidneys, muscle, gills and brain. The expression levels of GH, GHR1 and GHR2 in the intestine, kidneys, and muscle at 15‰ salinity were significantly higher than those in other three salinity groups. Based on the growth parameters and physiological and molecular responses, the results of the present study indicated that the optimal salinity for rearing golden pompano was 21.36‰ salinity.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 200090, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Jing-Wen Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China.
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Lema SC, Carvalho PG, Egelston JN, Kelly JT, McCormick SD. Dynamics of Gene Expression Responses for Ion Transport Proteins and Aquaporins in the Gill of a Euryhaline Pupfish during Freshwater and High-Salinity Acclimation. Physiol Biochem Zool 2019; 91:1148-1171. [PMID: 30334669 DOI: 10.1086/700432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pupfishes (genus Cyprinodon) evolved some of the broadest salinity tolerances of teleost fishes, with some taxa surviving in conditions from freshwater to nearly 160 ppt. In this study, we examined transcriptional dynamics of ion transporters and aquaporins in the gill of the desert Amargosa pupfish (Cyprinodon nevadensis amargosae) during rapid salinity change. Pupfish acclimated to 7.5 ppt were exposed to freshwater (0.3 ppt), seawater (35 ppt), or hypersaline (55 ppt) conditions over 4 h and sampled at these salinities over 14 d. Plasma osmolality and Cl- concentration became elevated 8 h after the start of exposure to 35 or 55 ppt but returned to baseline levels after 14 d. Osmolality recovery was paralleled by increased gill Na+/K+-ATPase activity and higher relative levels of messenger RNAs (mRNAs) encoding cystic fibrosis transmembrane conductance regulator (cftr) and Na+/K+/2Cl- cotransporter-1 (nkcc1). Transcripts encoding one Na+-HCO3- cotransporter-1 isoform (nbce1.1) also increased in the gills at higher salinities, while a second isoform (nbce1.2) increased expression in freshwater. Pupfish in freshwater also had lower osmolality and elevated gill mRNAs for Na+/H+ exchanger isoform-2a (nhe2a) and V-type H+-ATPase within 8 h, followed by increases in Na+/H+ exchanger-3 (nhe3), carbonic anhydrase 2 (ca2), and aquaporin-3 (aqp3) within 1 d. Gill mRNAs for Na+/Cl- cotransporter-2 (ncc2) also were elevated 14 d after exposure to 0.3 ppt. These results offer insights into how coordinated transcriptional responses for ion transporters in the gill facilitate reestablishment of osmotic homeostasis after changes in environmental salinity and provide evidence that the teleost gill expresses two Na+-HCO3- cotransporter-1 isoforms with different roles in freshwater and seawater acclimation.
Collapse
|
8
|
Isolation and characterization of Aquaporin 1 (AQP1), sodium/potassium-transporting ATPase subunit alpha-1 (Na/K-ATPase α1), Heat Shock Protein 90 (HSP90), Heat Shock Cognate 71 (HSC71), Osmotic Stress Transcription Factor 1 (OSTF1) and Transcription Factor II B (TFIIB) genes from a euryhaline fish, Etroplus suratensis. Mol Biol Rep 2018; 45:2783-2789. [PMID: 30194561 DOI: 10.1007/s11033-018-4350-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
The present study reports the complete sequences of Aquaporin 1 (AQP1) gene and partial sequences of genes, Sodium/potassium-transporting ATPase subunit alpha-1 (Na/K-ATPase α1 subunit), Osmotic Stress Transcription Factor 1 (OSTF1), Transcription Factor II B (TFIIB), Heat Shock Cognate 71 (HSC71) and Heat Shock Protein 90 (HSP90) obtained from mRNA and genomic DNA of Etroplus suratensis. They are candidate genes involved in stress responses of fishes. AQP1 gene was 2163 bp long. Its mRNA sequence has 55 bp 5' UTR, 783 bp open reading frame (ORF), 119 bp 3' UTR, three intronic regions and 90% identity with AQP1 of Oreochromis niloticus. The partial Na/K-ATPase α1subunit gene obtained 5998 bp length with an ORF of 2213 bp and 12 intronic regions. The partial OSTF1, TF IIB, HSC71 and HSP90 mRNA sequences obtained were 1473 bp, 587 bp, 1708 bp and 151 bp in length respectively. All the genes showed a high sequence similarity with respective genes reported from fishes. Comparison of AQP1 and Na/K-ATPase α1 genomic DNA sequence of E. suratensis collected from different water system showed two type of AQP1 with one synonymous mutation in exon-1 and higher sequence difference in intronic regions (including addition, deletion, transition and transversion mutations) with few synonymous and non-synonymous mutations in the exons of Na/K-ATPase α1. The sequence information of these major candidate genes involved in stress responses will help in further studies on population genetics, adaptive variations and genetic improvement programs of this cichlid species having aquaculture, ornamental and evolutionary importance.
Collapse
|
9
|
Wang X, Kültz D. Osmolality/salinity-responsive enhancers (OSREs) control induction of osmoprotective genes in euryhaline fish. Proc Natl Acad Sci U S A 2017; 114:E2729-E2738. [PMID: 28289196 PMCID: PMC5380061 DOI: 10.1073/pnas.1614712114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fish respond to salinity stress by transcriptional induction of many genes, but the mechanism of their osmotic regulation is unknown. We developed a reporter assay using cells derived from the brain of the tilapia Oreochromis mossambicus (OmB cells) to identify osmolality/salinity-responsive enhancers (OSREs) in the genes of Omossambicus Genomic DNA comprising the regulatory regions of two strongly salinity-induced genes, inositol monophosphatase 1 (IMPA1.1) and myo-inositol phosphate synthase (MIPS), was isolated and analyzed with dual luciferase enhancer trap reporter assays. We identified five sequences (two in IMPA1.1 and three in MIPS) that share a common consensus element (DDKGGAAWWDWWYDNRB), which we named "OSRE1." Additional OSREs that were less effective in conferring salinity-induced trans-activation and do not match the OSRE1 consensus also were identified in both MIPS and IMPA1.1 Although OSRE1 shares homology with the mammalian osmotic-response element/tonicity-responsive enhancer (ORE/TonE) enhancer, the latter is insufficient to confer osmotic induction in fish. Like other enhancers, OSRE1 trans-activates genes independent of orientation. We conclude that OSRE1 is a cis-regulatory element (CRE) that enhances the hyperosmotic induction of osmoregulated genes in fish. Our study also shows that tailored reporter assays developed for OmB cells facilitate the identification of CREs in fish genomes. Knowledge of the OSRE1 motif allows affinity-purification of the corresponding transcription factor and computational approaches for enhancer screening of fish genomes. Moreover, our study enables targeted inactivation of OSRE1 enhancers, a method superior to gene knockout for functional characterization because it confines impairment of gene function to a specific context (salinity stress) and eliminates pitfalls of constitutive gene knockouts (embryonic lethality, developmental compensation).
Collapse
Affiliation(s)
- Xiaodan Wang
- Biochemical Evolution Laboratory, Department of Animal Science, University of California, Davis, CA, 95616
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dietmar Kültz
- Biochemical Evolution Laboratory, Department of Animal Science, University of California, Davis, CA, 95616;
| |
Collapse
|
10
|
Wang X, Yin D, Li P, Yin S, Wang L, Jia Y, Shu X. MicroRNA-Sequence Profiling Reveals Novel Osmoregulatory MicroRNA Expression Patterns in Catadromous Eel Anguilla marmorata. PLoS One 2015; 10:e0136383. [PMID: 26301415 PMCID: PMC4547744 DOI: 10.1371/journal.pone.0136383] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate gene expression by post-transcriptional repression of mRNAs. Recently, several miRNAs have been confirmed to execute directly or indirectly osmoregulatory functions in fish via translational control. In order to clarify whether miRNAs play relevant roles in the osmoregulation of Anguilla marmorata, three sRNA libraries of A. marmorata during adjusting to three various salinities were sequenced by Illumina sRNA deep sequencing methods. Totally 11,339,168, 11,958,406 and 12,568,964 clear reads were obtained from 3 different libraries, respectively. Meanwhile, 34 conserved miRNAs and 613 novel miRNAs were identified using the sequence data. MiR-10b-5p, miR-181a, miR-26a-5p, miR-30d and miR-99a-5p were dominantly expressed in eels at three salinities. Totally 29 mature miRNAs were significantly up-regulated, while 72 mature miRNAs were significantly down-regulated in brackish water (10‰ salinity) compared with fresh water (0‰ salinity); 24 mature miRNAs were significantly up-regulated, while 54 mature miRNAs were significantly down-regulated in sea water (25‰ salinity) compared with fresh water. Similarly, 24 mature miRNAs were significantly up-regulated, while 45 mature miRNAs were significantly down-regulated in sea water compared with brackish water. The expression patterns of 12 dominantly expressed miRNAs were analyzed at different time points when the eels transferred from fresh water to brackish water or to sea water. These miRNAs showed differential expression patterns in eels at distinct salinities. Interestingly, miR-122, miR-140-3p and miR-10b-5p demonstrated osmoregulatory effects in certain salinities. In addition, the identification and characterization of differentially expressed miRNAs at different salinities can clarify the osmoregulatory roles of miRNAs, which will shed lights for future studies on osmoregulation in fish.
Collapse
Affiliation(s)
- Xiaolu Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Danqing Yin
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville VIC 3010, Australia
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Shaowu Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Li Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Yihe Jia
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow, United Kingdom
| |
Collapse
|