1
|
Dauchy RT, Hanifin JP, Brainard GC, Blask DE. Light: An Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:116-147. [PMID: 38211974 PMCID: PMC11022951 DOI: 10.30802/aalas-jaalas-23-000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 01/13/2024]
Abstract
Light is an environmental factor that is extrinsic to animals themselves and that exerts a profound influence on the regulation of circadian, neurohormonal, metabolic, and neurobehavioral systems of all animals, including research animals. These widespread biologic effects of light are mediated by distinct photoreceptors-rods and cones that comprise the conventional visual system and melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) of the nonvisual system that interact with the rods and cones. The rods and cones of the visual system, along with the ipRGCs of the nonvisual system, are species distinct in terms of opsins and opsin concentrations and interact with one another to provide vision and regulate circadian rhythms of neurohormonal and neurobehavioral responses to light. Here, we review a brief history of lighting technologies, the nature of light and circadian rhythms, our present understanding of mammalian photoreception, and current industry practices and standards. We also consider the implications of light for vivarium measurement, production, and technological application and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and well-being and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- ign, intergeniculate nucleus
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- k, kelvin temperature
- lan, light at night
- led, light-emitting diode
- lgn, lateral geniculate nucleus
- plr, pupillary light reflex
- pot, primary optic tract
- rht, retinohypothalamic tract
- scn, suprachiasmatic nuclei
- spd, spectral power distribution.
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana;,
| | - John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
2
|
Vincent EP, Perry BW, Kelley JL, Robbins CT, Jansen HT. Circadian gene transcription plays a role in cellular metabolism in hibernating brown bears, Ursus arctos. J Comp Physiol B 2023; 193:699-713. [PMID: 37819371 DOI: 10.1007/s00360-023-01513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
Hibernation is a highly seasonal physiological adaptation that allows brown bears (Ursus arctos) to survive extended periods of low food availability. Similarly, daily or circadian rhythms conserve energy by coordinating body processes to optimally match the environmental light/dark cycle. Brown bears express circadian rhythms in vivo and their cells do in vitro throughout the year, suggesting that these rhythms may play important roles during periods of negative energy balance. Here, we use time-series analysis of RNA sequencing data and timed measurements of ATP production in adipose-derived fibroblasts from active and hibernation seasons under two temperature conditions to confirm that rhythmicity was present. Culture temperature matching that of hibernation body temperature (34 °C) resulted in a delay of daily peak ATP production in comparison with active season body temperatures (37 °C). The timing of peaks of mitochondrial gene transcription was altered as were the amplitudes of transcripts coding for enzymes of the electron transport chain. Additionally, we observed changes in mean expression and timing of key metabolic genes such as SIRT1 and AMPK which are linked to the circadian system and energy balance. The amplitudes of several circadian gene transcripts were also reduced. These results reveal a link between energy conservation and a functioning circadian system in hibernation.
Collapse
Affiliation(s)
- Ellery P Vincent
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Joanna L Kelley
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Charles T Robbins
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
- School of the Environment, Washington State University, Pullman, WA, 99163, USA
| | - Heiko T Jansen
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA.
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99163, USA.
| |
Collapse
|
3
|
Curry E, Philpott ME, Wojtusik J, Haffey WD, Wyder MA, Greis KD, Roth TL. Label-Free Quantification (LFQ) of Fecal Proteins for Potential Pregnancy Detection in Polar Bears. Life (Basel) 2022; 12:life12060796. [PMID: 35743827 PMCID: PMC9225558 DOI: 10.3390/life12060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
Reliable pregnancy diagnostics would be beneficial for monitoring polar bear (Ursus maritimus) populations both in situ and ex situ, but currently there is no method of non-invasive pregnancy detection in this species. Recent reports in several carnivore species described the identification of fecal proteins that may serve as pregnancy biomarkers; however, repeatability has been limited. The objective of the current analysis was to utilize an unbiased, antibody-free, label-free method for the identification and quantification of fecal proteins to determine if differences associated with pregnancy are detectable in polar bears. Protein was extracted from fecal samples (n = 48) obtained from parturient (n = 6) and non-parturient (n = 6) profiles each at four timepoints: pre-breeding season, embryonic diapause, early placental pregnancy, and mid-placental pregnancy. Protein was prepared and analyzed on the Thermo Orbitrap Eclipse nanoLC-MS/MS system. A total of 312 proteins was identified and quantified; however, coefficients of variation (CV) were high for both abundance ratio variability (384.8 ± 61.0% SEM) and within group variability (86.8 ± 1.5%). Results of this study suggest that the inconsistencies in specific protein concentrations revealed previously by antibody-based assays may not be due to that methodology’s limitations, but rather, are reflective of true variation that exists among samples.
Collapse
Affiliation(s)
- Erin Curry
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, OH 45220, USA; (M.E.P.); (J.W.); (T.L.R.)
- Correspondence:
| | - Megan E. Philpott
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, OH 45220, USA; (M.E.P.); (J.W.); (T.L.R.)
| | - Jessye Wojtusik
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, OH 45220, USA; (M.E.P.); (J.W.); (T.L.R.)
- Department of Reproductive Sciences, Omaha’s Henry Doorly Zoo and Aquarium, Omaha, NE 68107, USA
| | - Wendy D. Haffey
- UC Proteomics Laboratory, Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (W.D.H.); (M.A.W.); (K.D.G.)
| | - Michael A. Wyder
- UC Proteomics Laboratory, Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (W.D.H.); (M.A.W.); (K.D.G.)
| | - Kenneth D. Greis
- UC Proteomics Laboratory, Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (W.D.H.); (M.A.W.); (K.D.G.)
| | - Terri L. Roth
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, OH 45220, USA; (M.E.P.); (J.W.); (T.L.R.)
| |
Collapse
|
4
|
Thiel A, Giroud S, Hertel AG, Friebe A, Devineau O, Fuchs B, Blanc S, Støen OG, Laske TG, Arnemo JM, Evans AL. Seasonality in Biological Rhythms in Scandinavian brown Bears. Front Physiol 2022; 13:785706. [PMID: 35600291 PMCID: PMC9118031 DOI: 10.3389/fphys.2022.785706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/02/2022] [Indexed: 11/25/2022] Open
Abstract
Biological rhythms, such as rhythms in activity and body temperature, are usually highly synchronized and entrained by environmental conditions, such as photoperiod. However, how the expression of these rhythms changes during hibernation, when the perception of environmental cues is limited, has not yet been fully understood for all hibernators, especially in the wild. The brown bear (Ursus arctos) in Scandinavia lives in a highly seasonal environment and adapts to harsh winter conditions by exhibiting hibernation, characterized by reduced metabolism and activity. In this study, we aimed to explore the expression of biological rhythms in activity, body temperature and heart rate of free-ranging brown bears over the annual cycle, including active, hibernation and the transition states around den entry and exit. We found that rhythms in physiology and activity are mostly synchronized and entrained by the light-dark cycle during the bears' active state with predominantly diel and ultradian rhythms for body temperature, activity and heart rate. However, during hibernation, rhythms in body temperature and heart rate were considerably slowed down to infradian rhythms, influenced by the amount of snow in the denning area, whereas rhythms in activity remained diel. Rhythms in the transition states when bears prepared for entering or coming out of hibernation state displayed a combination of infradian and diel rhythms, indicating the preparation of the body for the change in environmental conditions. These results reveal that brown bears adjust their biological rhythms to the seasonal environment they inhabit. Rhythms in physiology and activity show simultaneity during the active state but are partly disconnected from each other during hibernation, when bears are most sheltered from the environment.
Collapse
Affiliation(s)
- Alexandra Thiel
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Anne G. Hertel
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Martinsried, Germany
| | - Andrea Friebe
- Scandinavian Brown Bear Research Project, Orsa, Sweden
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Olivier Devineau
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Boris Fuchs
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Stephane Blanc
- IPHC, University of Strasbourg, Strasbourg, France
- UMR7178, CNRS, Strasbourg, France
| | | | - Timothy G. Laske
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Jon M. Arnemo
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Alina L. Evans
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
| |
Collapse
|
5
|
Tseng E, Underwood JG, Evans Hutzenbiler BD, Trojahn S, Kingham B, Shevchenko O, Bernberg E, Vierra M, Robbins CT, Jansen HT, Kelley JL. Long-read isoform sequencing reveals tissue-specific isoform expression between active and hibernating brown bears (Ursus arctos). G3 (BETHESDA, MD.) 2022; 12:6472356. [PMID: 35100340 PMCID: PMC9210309 DOI: 10.1093/g3journal/jkab422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022]
Abstract
Understanding hibernation in brown bears (Ursus arctos) can provide insight into some human diseases. During hibernation, brown bears experience periods of insulin resistance, physical inactivity, extreme bradycardia, obesity, and the absence of urine production. These states closely mimic aspects of human diseases such as type 2 diabetes, muscle atrophy, as well as renal and heart failure. The reversibility of these states from hibernation to active season enables the identification of mediators with possible therapeutic value for humans. Recent studies have identified genes and pathways that are differentially expressed between active and hibernation seasons in bears. However, little is known about the role of differential expression of gene isoforms on hibernation physiology. To identify both distinct and novel mRNA isoforms, full-length RNA-sequencing (Iso-Seq) was performed on adipose, skeletal muscle, and liver from three individual bears sampled during both active and hibernation seasons. The existing reference genome annotation was improved by combining it with the Iso-Seq data. Short-read RNA-sequencing data from six individuals were mapped to the new reference annotation to quantify differential isoform usage (DIU) between tissues and seasons. We identified differentially expressed isoforms in all three tissues, to varying degrees. Adipose had a high level of DIU with isoform switching, regardless of whether the genes were differentially expressed. Our analyses revealed that DIU, even in the absence of differential gene expression, is an important mechanism for modulating genes during hibernation. These findings demonstrate the value of isoform expression studies and will serve as the basis for deeper exploration into hibernation biology.
Collapse
Affiliation(s)
| | | | - Brandon D Evans Hutzenbiler
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.,School of the Environment, Washington State University, Pullman, WA 99164, USA
| | - Shawn Trojahn
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Brewster Kingham
- Sequencing & Genotyping Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Olga Shevchenko
- Sequencing & Genotyping Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Erin Bernberg
- Sequencing & Genotyping Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | | - Charles T Robbins
- School of the Environment, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Heiko T Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
6
|
Hogan HRH, Hutzenbiler BDE, Robbins CT, Jansen HT. Changing lanes: seasonal differences in cellular metabolism of adipocytes in grizzly bears (Ursus arctos horribilis). J Comp Physiol B 2022; 192:397-410. [PMID: 35024905 DOI: 10.1007/s00360-021-01428-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022]
Abstract
Obesity is among the most prevalent of health conditions in humans leading to a multitude of metabolic pathologies such as type 2 diabetes and hyperglycemia. However, there are many wild animals that have large seasonal cycles of fat accumulation and loss that do not result in the health consequences observed in obese humans. One example is the grizzly bear (Ursus arctos horribilis) that can have body fat content > 40% that is then used as the energy source for hibernation. Previous in vitro studies found that hibernation season adipocytes exhibit insulin resistance and increased lipolysis. Yet, other aspects of cellular metabolism were not addressed, leaving this in vitro model incomplete. Thus, the current studies were performed to determine if the cellular energetic phenotype-measured via metabolic flux-of hibernating bears was retained in cultured adipocytes and to what extent that was due to serum or intrinsic cellular factors. Extracellular acidification rate and oxygen consumption rate were used to calculate proton efflux rate and total ATP defined as both ATP from glycolysis and from mitochondrial respiration. Hibernation adipocytes treated with hibernation serum produced less ATP and exhibited lower maximal respiration and glycolysis rates than active season adipocytes. These effects were reversed with serum from the opposite season. Insulin had little influence on total ATP production and lipolysis in both hibernation and active serum-treated adipocytes. Together, these results suggest that the metabolic suppression occurring in hibernation adipocytes are downstream of insulin signaling and likely due to a combined reduction in mitochondria number and/or function and glycolytic processes. Future elucidation of the serum components and the cellular mechanisms that enable alterations in mitochondrial function could provide a novel avenue for the development of treatments for human metabolic diseases.
Collapse
Affiliation(s)
- Hannah R Hapner Hogan
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA, 99164, USA.
| | - Brandon D E Hutzenbiler
- Department Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.,School of the Environment, College of Agricultural, Human and Natural Resource Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Charles T Robbins
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA, 99164, USA.,School of the Environment, College of Agricultural, Human and Natural Resource Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Heiko T Jansen
- Department Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
7
|
Xie Z, Ahmad IM, Zuo L, Xiao F, Wang Y, Li D. Hibernation with rhythmicity: the circadian clock and hormonal adaptations of the hibernating Asiatic toads (Bufo gargarizans). Integr Zool 2021; 17:656-669. [PMID: 34791783 DOI: 10.1111/1749-4877.12613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hibernation is one of the fundamental strategies in response to cold environmental temperatures. During hibernation, the endocrine and circadian systems ensure minimal expenditure of energy for survival. The circadian rhythms of key hormones, melatonin (MT), corticosterone (CORT), triiodothyronine (T3 ), and thyroxine (T4 ), and the underlying molecular regulatory mechanisms of hibernation have been well determined in mammals but not in ectotherms. Here, a terrestrial hibernating species, Asiatic toad (Bufo gargarizans), was employed to investigate the plasma CORT, MT, T3 , and T4 ; and the retina, brain, and liver mRNA expression of the core clock genes, including circadian locomotor output cycles kaput (Clock), brain and muscle ARNT-like 1 (Bmal1), cryptochrome (Cry) 1 and 2, and period (Per) 1 and 2, at 7-time points over a 24-h period under acute cold (1 day at 4°C), and hibernation (45 days at 4°C). Our results showed that the circadian rhythms of the core clock genes were rather unaffected by acute cold exposure in the retina, unlike the brain and liver. In contrast, during hibernation, the liver clock genes displayed significant circadian oscillations, while those in the retina and brain stopped ticking. Furthermore, plasma CORT expressed circadian oscillations in both groups, and T3 in acute cold exposure group, whereas T4 and MT did not. Our results reveal that the plasma CORT and the liver sustain rhythmicity when the brain was not, indicating that the liver clock along with the adrenal clock synergistically maintains the metabolic requirements to ensure basic survival in hibernating Asiatic toads.
Collapse
Affiliation(s)
- Zhigang Xie
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
| | - Ibrahim M Ahmad
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Lirong Zuo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Feng Xiao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
| | - Yongpeng Wang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
| | - Dongming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
8
|
Jansen HT, Evans Hutzenbiler B, Hapner HR, McPhee ML, Carnahan AM, Kelley JL, Saxton MW, Robbins CT. Can offsetting the energetic cost of hibernation restore an active season phenotype in grizzly bears (Ursus arctos horribilis)? J Exp Biol 2021; 224:269178. [PMID: 34137891 DOI: 10.1242/jeb.242560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/12/2021] [Indexed: 01/14/2023]
Abstract
Hibernation is characterized by depression of many physiological processes. To determine if this state is reversible in a non-food caching species, we fed hibernating grizzly bears (Ursus arctos horribilis) dextrose for 10 days to replace 53% or 100% of the estimated minimum daily energetic cost of hibernation. Feeding caused serum concentrations of glycerol and ketones (β-hydroxybutyrate) to return to active season levels irrespective of the amount of glucose fed. By contrast, free fatty acids (FFAs) and indices of metabolic rate, such as general activity, heart rate, strength of heart rate circadian rhythm, and insulin sensitivity were restored to approximately 50% of active season levels. Body temperature was unaffected by feeding. To determine the contribution of adipose to the metabolic effects observed after glucose feeding, we cultured bear adipocytes collected at the beginning and end of the feeding and performed metabolic flux analysis. We found a ∼33% increase in energy metabolism after feeding. Moreover, basal metabolism before feeding was 40% lower in hibernation cells compared with fed cells or active cells cultured at 37°C, thereby confirming the temperature independence of metabolic rate. The partial depression of circulating FFAs with feeding likely explains the incomplete restoration of insulin sensitivity and other metabolic parameters in hibernating bears. Further depression of metabolic function is likely to be an active process. Together, the results provide a highly controlled model to examine the relationship between nutrient availability and metabolism on the hibernation phenotype in bears.
Collapse
Affiliation(s)
- Heiko T Jansen
- Dept. Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Brandon Evans Hutzenbiler
- Dept. Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Hannah R Hapner
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Madeline L McPhee
- Dept. Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Anthony M Carnahan
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Joanna L Kelley
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Michael W Saxton
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Charles T Robbins
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA.,School of the Environment, College of Agricultural, Human and Natural Resource Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
9
|
Bertile F, Habold C, Le Maho Y, Giroud S. Body Protein Sparing in Hibernators: A Source for Biomedical Innovation. Front Physiol 2021; 12:634953. [PMID: 33679446 PMCID: PMC7930392 DOI: 10.3389/fphys.2021.634953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Proteins are not only the major structural components of living cells but also ensure essential physiological functions within the organism. Any change in protein abundance and/or structure is at risk for the proper body functioning and/or survival of organisms. Death following starvation is attributed to a loss of about half of total body proteins, and body protein loss induced by muscle disuse is responsible for major metabolic disorders in immobilized patients, and sedentary or elderly people. Basic knowledge of the molecular and cellular mechanisms that control proteostasis is continuously growing. Yet, finding and developing efficient treatments to limit body/muscle protein loss in humans remain a medical challenge, physical exercise and nutritional programs managing to only partially compensate for it. This is notably a major challenge for the treatment of obesity, where therapies should promote fat loss while preserving body proteins. In this context, hibernating species preserve their lean body mass, including muscles, despite total physical inactivity and low energy consumption during torpor, a state of drastic reduction in metabolic rate associated with a more or less pronounced hypothermia. The present review introduces metabolic, physiological, and behavioral adaptations, e.g., energetics, body temperature, and nutrition, of the torpor or hibernation phenotype from small to large mammals. Hibernating strategies could be linked to allometry aspects, the need for periodic rewarming from torpor, and/or the ability of animals to fast for more or less time, thus determining the capacity of individuals to save proteins. Both fat- and food-storing hibernators rely mostly on their body fat reserves during the torpid state, while minimizing body protein utilization. A number of them may also replenish lost proteins during arousals by consuming food. The review takes stock of the physiological, molecular, and cellular mechanisms that promote body protein and muscle sparing during the inactive state of hibernation. Finally, the review outlines how the detailed understanding of these mechanisms at play in various hibernators is expected to provide innovative solutions to fight human muscle atrophy, to better help the management of obese patients, or to improve the ex vivo preservation of organs.
Collapse
Affiliation(s)
- Fabrice Bertile
- University of Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Spectrométrie de Masse Bio-Organique, Strasbourg, France
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
| | - Yvon Le Maho
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
10
|
Abstract
Human cells, especially primary fibroblasts from skin punch biopsy, have emerged over the last decade as powerful, unlimited, and easily accessible resources that bridge the gap between animal models and human subjects in basic as well as clinical research. The cells also retain molecular circadian clocks that reflect subject-specific differences in circadian physiology, and the cellular rhythms can be measured easily in large scale. This is a series of protocols that describes the procedure to measure circadian rhythms in these cells, starting from deriving fibroblasts from skin punch biopsy, to generation of stable cells expressing a circadian reporter, and finally measurement of cellular rhythms in large scale.
Collapse
|
11
|
Nasoori A, Okamatsu-Ogura Y, Shimozuru M, Sashika M, Tsubota T. Hibernating bear serum hinders osteoclastogenesis in-vitro. PLoS One 2020; 15:e0238132. [PMID: 32853221 PMCID: PMC7451522 DOI: 10.1371/journal.pone.0238132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/10/2020] [Indexed: 01/17/2023] Open
Abstract
Bears do not suffer from osteoporosis during hibernation, which is associated with long-term inactivity, lack of food intake, and cold exposure. However, the mechanisms involved in bone loss prevention have scarcely been elucidated in bears. We investigated the effect of serum from hibernating Japanese black bears (Ursus thibetanus japonicus) on differentiation of peripheral blood mononuclear cells (PBMCs) to osteoclasts (OCs). PBMCs collected from 3 bears were separately cultured with 10% serum of 4 active and 4 hibernating bears (each individual serum type was assessed separately by a bear PBMCs), and differentiation were induced by treatment with macrophage colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL). PBMCs that were cultured with the active bear serum containing medium (ABSM) differentiated to multi-nucleated OCs, and were positive for TRAP stain. However, cells supplemented with hibernating bear serum containing medium (HBSM) failed to form OCs, and showed significantly lower TRAP stain (p < 0.001). On the other hand, HBSM induced proliferation of adipose derived mesenchymal stem cells (ADSCs) similarly to ABSM (p > 0.05), indicating no difference on cell growth. It was revealed that osteoclastogenesis of PBMCs is hindered by HBSM, implying an underlying mechanism for the suppressed bone resorption during hibernation in bears. In addition, this study for the first time showed the formation of bears’ OCs in-vitro.
Collapse
Affiliation(s)
- Alireza Nasoori
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Michito Shimozuru
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mariko Sashika
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Squire T, Ryan A, Bernard S. Radioprotective effects of induced astronaut torpor and advanced propulsion systems during deep space travel. LIFE SCIENCES IN SPACE RESEARCH 2020; 26:105-113. [PMID: 32718676 DOI: 10.1016/j.lssr.2020.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Human metabolic suppression is not a new concept, with 1950s scientific literature and movies demonstrating its potential use for deep space travel (Hock, 1960). An artificially induced state of metabolic suppression in the form of torpor would improve the amount of supplies required and therefore lessen weight and fuel required for missions to Mars and beyond (Choukèr et al., 2019). Transfer habitats for human stasis to Mars have been conceived (Bradford et al., 2018). Evidence suggests that animals, when hibernating, demonstrate relative radioprotection compared to their awake state. Experiments have also demonstrated relative radioprotection in conditions of hypothermia as well as during sleep (Bellesi et al., 2016 and Andersen et al., 2009). Circadian rhythm disrupted cells also appear to be more susceptible to radiation damage compared to those that are under a rhythmic control (Dakup et al., 2018). An induced torpor state for astronauts on deep space missions may provide a biological radioprotective state due to a decreased metabolism and hypothermic conditions. A regular enforced circadian rhythm might further limit DNA damage from radiation. The As Low As Reasonably Achievable (A.L.A.R.A.) radiation protection concept defines time, distance and shielding as ways to decrease radiation exposure. Whilst distance cannot be altered in space and shielding either passively or actively may be beneficial, time of exposure may be drastically decreased with improved propulsion systems. Whilst chemical propulsion systems have superior thrust to other systems, they lack high changes in velocity and fuel efficiency which can be achieved with nuclear or electric based propulsion systems. Radiation toxicity could be limited by reduced transit times, combined with the radioprotective effects of enforced circadian rhythms during a state of torpor or hibernation. OBJECTIVES 1. Investigate how the circadian clock and body temperature may contribute to radioprotection during human torpor on deep space missions. 2. Estimate radiation dose received by astronauts during a transit to Mars with varying propulsion systems. METHODS We simulated three types of conditions to investigate the potential radioprotective effect of the circadian clock and decreased temperature on cells being exposed to radiation such that may be the case during astronaut torpor. These conditions were: - Circadian clock strength: strong vs weak. - Light exposure: dark-dark vs light-dark cycle - Body temperature: 37C vs hypothermia vs torpor. We estimated transit times for a mission to Mars from Earth utilizing chemical, nuclear and electrical propulsion systems. Transit times were generated using the General Mission Analysis Tool (GMAT) and Matlab. These times were then input into the National Aeronautics and Space Administration (NASA) Online Tool for the Assessment of Radiation In Space (OLTARIS) computer simulator to estimate doses received by an astronaut for the three propulsion methods. RESULTS Our simulation demonstrated an increase in radioprotection with decreasing temperature. The greatest degree of radioprotection was shown in cells that maintained a strong circadian clock during torpor. This was in contrast to relatively lower radioprotection in cells with a weak clock during normothermia. We were also able to demonstrate that if torpor weakened the circadian clock, a protective effect could be partially restored by an external drive such as lighting schedules to aid entrainment i.e.: Blue light exposure for periods of awake and no light for rest times For the propulsion simulation, estimated transit times from Earth to Mars were 258 days for chemical propulsion with 165.9mSv received, 209 days for nuclear propulsion with 134.4mSv received and 80 days for electrical propulsion with 51.4mSv received. CONCLUSION A state of torpor for astronauts on deep space missions may not only improve weight, fuel and storage requirements but also provide a potential biological radiation protection strategy. Moreover, maintaining a controlled circadian rhythm during torpor conditions may aid radioprotection. In the not too distant future, propulsion techniques will be improved to limit transit time and hence decrease radiation dose to astronauts. Limiting exposure time and enhancing physiological radioprotection during transit could provide superior radioprotection benefits compared with active and passive radiation shielding strategies alone.
Collapse
Affiliation(s)
- T Squire
- The Canberra Hospital, Department of Radiation Oncology. Garran. Australian Capital Territory, Australia; University of Notre Dame Australia, School of Medicine. Darlinghurst, New South Wales, Australia.
| | - A Ryan
- University of Sydney, Applied and Plasma Physics Research Group. School of Aerospace Mechanical and Mechatronic Engineering, Camperdown, NSW 2006. Australia
| | - S Bernard
- Université de Lyon. CNRS UMR5208 Institut Camille Jordan. Villeurbanne, France & Inria Grenoble, France
| |
Collapse
|
13
|
Ware JV, Rode KD, Robbins CT, Leise T, Weil CR, Jansen HT. The Clock Keeps Ticking: Circadian Rhythms of Free-Ranging Polar Bears. J Biol Rhythms 2020; 35:180-194. [DOI: 10.1177/0748730419900877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Life in the Arctic presents organisms with multiple challenges, including extreme photic conditions, cold temperatures, and annual loss and daily movement of sea ice. Polar bears ( Ursus maritimus) evolved under these unique conditions, where they rely on ice to hunt their main prey, seals. However, very little is known about the dynamics of their daily and seasonal activity patterns. For many organisms, activity is synchronized (entrained) to the earth’s day/night cycle, in part via an endogenous (circadian) timekeeping mechanism. The present study used collar-mounted accelerometer and global positioning system data from 122 female polar bears in the Chukchi and Southern Beaufort Seas collected over an 8-year period to characterize activity patterns over the calendar year and to determine if circadian rhythms are expressed under the constant conditions found in the Arctic. We reveal that the majority of polar bears (80%) exhibited rhythmic activity for the duration of their recordings. Collectively within the rhythmic bear cohort, circadian rhythms were detected during periods of constant daylight (June-August; 24.40 ± 1.39 h, mean ± SD) and constant darkness (23.89 ± 1.72 h). Exclusive of denning periods (November-April), the time of peak activity remained relatively stable (acrophases: ~1200-1400 h) for most of the year, suggesting either entrainment or masking. However, activity patterns shifted during the spring feeding and seal pupping season, as evidenced by an acrophase inversion to ~2400 h in April, followed by highly variable timing of activity across bears in May. Intriguingly, despite the dynamic environmental photoperiodic conditions, unpredictable daily timing of prey availability, and high between-animal variability, the average duration of activity (alpha) remained stable (11.2 ± 2.9 h) for most of the year. Together, these results reveal a high degree of behavioral plasticity in polar bears while also retaining circadian rhythmicity. Whether this degree of plasticity will benefit polar bears faced with a loss of sea ice remains to be determined.
Collapse
Affiliation(s)
- Jasmine V. Ware
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
- Department of Environment, Government of Nunavut, Igloolik, NU, Canada
| | - Karyn D. Rode
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Charles T. Robbins
- School of the Environment and School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Tanya Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts, USA
| | - Colby R. Weil
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Heiko T. Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| |
Collapse
|
14
|
Affiliation(s)
- Thomas E Tomasi
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Briana N Anderson
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California – Riverside, Riverside, CA, USA
| |
Collapse
|
15
|
Life in the fat lane: seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears. J Comp Physiol B 2016; 187:649-676. [PMID: 27987017 DOI: 10.1007/s00360-016-1050-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 11/06/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
Abstract
Grizzly bears (Ursus arctos horribilis) have evolved remarkable metabolic adaptations including enormous fat accumulation during the active season followed by fasting during hibernation. However, these fluctuations in body mass do not cause the same harmful effects associated with obesity in humans. To better understand these seasonal transitions, we performed insulin and glucose tolerance tests in captive grizzly bears, characterized the annual profiles of circulating adipokines, and tested the anorectic effects of centrally administered leptin at different times of the year. We also used bear gluteal adipocyte cultures to test insulin and beta-adrenergic sensitivity in vitro. Bears were insulin resistant during hibernation but were sensitive during the spring and fall active periods. Hibernating bears remained euglycemic, possibly due to hyperinsulinemia and hyperglucagonemia. Adipokine concentrations were relatively low throughout the active season but peaked in mid-October prior to hibernation when fat content was greatest. Serum glycerol was highest during hibernation, indicating ongoing lipolysis. Centrally administered leptin reduced food intake in October, but not in August, revealing seasonal variation in the brain's sensitivity to its anorectic effects. This was supported by strong phosphorylated signal transducer and activator of transcription 3 labeling within the hypothalamus of hibernating bears; labeling virtually disappeared in active bears. Adipocytes collected during hibernation were insulin resistant when cultured with hibernation serum but became sensitive when cultured with active season serum. Heat treatment of active serum blocked much of this action. Clarifying the cellular mechanisms responsible for the physiology of hibernating bears may inform new treatments for metabolic disorders.
Collapse
|