1
|
Usman JS, Wong TWL, Ng SSM. Effects of treadmill training combined with transcranial direct current stimulation on mobility, motor performance, balance function, and other brain-related outcomes in stroke survivors: a systematic review and meta-analysis. Neurol Sci 2025; 46:99-111. [PMID: 39294410 PMCID: PMC11698808 DOI: 10.1007/s10072-024-07768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Treadmill training (TT) is a gait training technique that has commonly been used in neurorehabilitation, and has positive effects on gait, mobility, and related outcomes in stroke survivors. Transcranial direct current stimulation (tDCS) is a non-invasive approach for modulating brain cortex excitability. AIM To evaluate the available scientific evidence on the effects of TT combined with tDCS on mobility, motor performance, balance function, and brain-related outcomes in stroke survivors. METHODS Five databases namely the Cochrane library, PEDro, Web of Science, PubMed, and EMBASE, were searched for relevant studies from inception to March, 2024. Only randomized controlled trials were included, and their methodological quality and risk of bias (ROB) were evaluated using the PEDro scale and Cochrane ROB assessment tool respectively. Qualitative and quantitative syntheses (using fixed effects meta-analysis) were employed to analyze the data. RESULTS The results revealed that TT combined with active tDCS had significant beneficial effects on some mobility parameters, some gait spatiotemporal parameters, some gait kinematic parameters, gait endurance, gait ability, and corticomotor excitability in stroke survivors, but no significant difference on gait speed (P > 0.05), functional mobility (P > 0.05), motor performance (P > 0.05), or some balance functions (P > 0.05), compared with the control conditions. CONCLUSIONS TT combined with active tDCS significantly improves some gait/mobility outcomes and corticomotor excitability in stroke survivors.
Collapse
Affiliation(s)
- Jibrin Sammani Usman
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Thomson Wai-Lung Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Shamay Sheung Mei Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| |
Collapse
|
2
|
Phang CR, Su KH, Cheng YY, Chen CH, Ko LW. Time synchronization between parietal-frontocentral connectivity with MRCP and gait in post-stroke bipedal tasks. J Neuroeng Rehabil 2024; 21:101. [PMID: 38872209 PMCID: PMC11170849 DOI: 10.1186/s12984-024-01330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/20/2023] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND In post-stroke rehabilitation, functional connectivity (FC), motor-related cortical potential (MRCP), and gait activities are common measures related to recovery outcomes. However, the interrelationship between FC, MRCP, gait activities, and bipedal distinguishability have yet to be investigated. METHODS Ten participants were equipped with EEG devices and inertial measurement units (IMUs) while performing lower limb motor preparation (MP) and motor execution (ME) tasks. MRCP, FCs, and bipedal distinguishability were extracted from the EEG signals, while the change in knee degree during the ME phase was calculated from the gait data. FCs were analyzed with pairwise Pearson's correlation, and the brain-wide FC was fed into support vector machine (SVM) for bipedal classification. RESULTS Parietal-frontocentral connectivity (PFCC) dysconnection and MRCP desynchronization were related to the MP and ME phases, respectively. Hemiplegic limb movement exhibited higher PFCC strength than nonhemiplegic limb movement. Bipedal classification had a short-lived peak of 75.1% in the pre-movement phase. These results contribute to a better understanding of the neurophysiological functions during motor tasks, with respect to localized MRCP and nonlocalized FC activities. The difference in PFCCs between both limbs could be a marker to understand the motor function of the brain of post-stroke patients. CONCLUSIONS In this study, we discovered that PFCCs are temporally dependent on lower limb gait movement and MRCP. The PFCCs are also related to the lower limb motor performance of post-stroke patients. The detection of motor intentions allows the development of bipedal brain-controlled exoskeletons for lower limb active rehabilitation.
Collapse
Affiliation(s)
- Chun-Ren Phang
- International Ph.D. Program in Interdisciplinary Neuroscience (UST), College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Kai-Hsiang Su
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yuan-Yang Cheng
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Wei Ko
- International Ph.D. Program in Interdisciplinary Neuroscience (UST), College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
De Las Heras B, Rodrigues L, Cristini J, Moncion K, Ploughman M, Tang A, Fung J, Roig M. Measuring Neuroplasticity in Response to Cardiovascular Exercise in People With Stroke: A Critical Perspective. Neurorehabil Neural Repair 2024:15459683231223513. [PMID: 38291890 DOI: 10.1177/15459683231223513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND Rehabilitative treatments that promote neuroplasticity are believed to improve recovery after stroke. Animal studies have shown that cardiovascular exercise (CE) promotes neuroplasticity but the effects of this intervention on the human brain and its implications for the functional recovery of patients remain unclear. The use of biomarkers has enabled the assessment of cellular and molecular events that occur in the central nervous system after brain injury. Some of these biomarkers have proven to be particularly valuable for the diagnosis of severity, prognosis of recovery, as well as for measuring the neuroplastic response to different treatments after stroke. OBJECTIVES To provide a critical analysis on the current evidence supporting the use of neurophysiological, neuroimaging, and blood biomarkers to assess the neuroplastic response to CE in individuals poststroke. RESULTS Most biomarkers used are responsive to the effects of acute and chronic CE interventions, but the response appears to be variable and is not consistently associated with functional improvements. Small sample sizes, methodological variability, incomplete information regarding patient's characteristics, inadequate standardization of training parameters, and lack of reporting of associations with functional outcomes preclude the quantification of the neuroplastic effects of CE poststroke using biomarkers. CONCLUSION Consensus on the optimal biomarkers to monitor the neuroplastic response to CE is currently lacking. By addressing critical methodological issues, future studies could advance our understanding of the use of biomarkers to measure the impact of CE on neuroplasticity and functional recovery in patients with stroke.
Collapse
Affiliation(s)
- Bernat De Las Heras
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Jewish Rehabilitation Hospital, Laval, QC, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| | - Lynden Rodrigues
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Jewish Rehabilitation Hospital, Laval, QC, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| | - Jacopo Cristini
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Jewish Rehabilitation Hospital, Laval, QC, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| | - Kevin Moncion
- School of Rehabilitation Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ada Tang
- School of Rehabilitation Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Joyce Fung
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Jewish Rehabilitation Hospital, Laval, QC, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| |
Collapse
|
4
|
McCabe JP, Pundik S, Daly JJ. Targeting CNS Neural Mechanisms of Gait in Stroke Neurorehabilitation. Brain Sci 2022; 12:1055. [PMID: 36009118 PMCID: PMC9405607 DOI: 10.3390/brainsci12081055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/17/2023] Open
Abstract
The central nervous system (CNS) control of human gait is complex, including descending cortical control, affective ascending neural pathways, interhemispheric communication, whole brain networks of functional connectivity, and neural interactions between the brain and spinal cord. Many important studies were conducted in the past, which administered gait training using externally targeted methods such as treadmill, weight support, over-ground gait coordination training, functional electrical stimulation, bracing, and walking aids. Though the phenomenon of CNS activity-dependent plasticity has served as a basis for more recently developed gait training methods, neurorehabilitation gait training has yet to be precisely focused and quantified according to the CNS source of gait control. Therefore, we offer the following hypotheses to the field: Hypothesis 1. Gait neurorehabilitation after stroke will move forward in important ways if research studies include brain structural and functional characteristics as measures of response to treatment. Hypothesis 2. Individuals with persistent gait dyscoordination after stroke will achieve greater recovery in response to interventions that incorporate the current and emerging knowledge of CNS function by directly engaging CNS plasticity and pairing it with peripherally directed, plasticity-based motor learning interventions. These hypotheses are justified by the increase in the study of neural control of motor function, with emerging research beginning to elucidate neural factors that drive recovery. Some are developing new measures of brain function. A number of groups have developed and are sharing sophisticated, curated databases containing brain images and brain signal data, as well as other types of measures and signal processing methods for data analysis. It will be to the great advantage of stroke survivors if the results of the current state-of-the-art and emerging neural function research can be applied to the development of new gait training interventions.
Collapse
Affiliation(s)
- Jessica P. McCabe
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Svetlana Pundik
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH 44016, USA
| | - Janis J. Daly
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH 44016, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL 32608, USA
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
5
|
Bastos P, Meira B, Mendonça M, Barbosa R. Distinct gait dimensions are modulated by physical activity in Parkinson's disease patients. J Neural Transm (Vienna) 2022; 129:879-887. [PMID: 35426538 PMCID: PMC9011371 DOI: 10.1007/s00702-022-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/27/2022]
Abstract
Parkinson’s disease (PD) is the fastest growing neurodegenerative disease, but disease-modifying or preventive treatments are lacking. Physical activity is a modifiable factor that decreases the PD risk and improves motor symptoms in PD. Understanding which dimensions of gait performance correlate with physical activity in PD can have important pathophysiological and therapeutic implications. Clinical/demographic data together with physical activity levels were collected from thirty-nine PD patients. Gait analysis was performed wearing seven inertial measurement units on the lower body, reconstructing the subjects’ lower body motion using 3D kinematic biomechanical models. Higher physical activity scores were significantly correlated with MDS-UPDRS part III scores (r = − 0.58, p value = 9.2 × 10−5), age (r = − 0.39, p value = 1.5 × 10−2) and quality-of-life (r = − 0.47, p value = 5.9 × 10−3). Physical activity was negatively associated with MDS-UPDRS part III scores after adjusting for age and disease duration (β = − 0.08530, p value = 0.0010). The effect of physical activity on quality-of-life was mediated by the MDS-UPDRS part III (62.10%, 95% CI = 0.0758–1.78, p value = 0.022). The level of physical activity was correlated primarily with spatiotemporal performance. While spatiotemporal performance displays the strongest association with physical activity, other quality-of-movement dimensions of clinical relevance (e.g., smoothness, rhythmicity) fail to do so. Interventions targeting these ought to be leveraged for performance enhancement in PD through neuroprotective and brain network connectivity strengthening. It remains to be ascertained to which extent these are amenable to modulation.
Collapse
Affiliation(s)
- Paulo Bastos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Lisbon, Portugal
| | - Bruna Meira
- Neurology Department, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Marcelo Mendonça
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Raquel Barbosa
- Neurology Department, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal.
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
6
|
Mizuta N, Hasui N, Nishi Y, Higa Y, Matsunaga A, Deguchi J, Yamamoto Y, Nakatani T, Taguchi J, Morioka S. Association between temporal asymmetry and muscle synergy during walking with rhythmic auditory cueing in stroke survivors living with impairments. Arch Rehabil Res Clin Transl 2022; 4:100187. [PMID: 35756980 PMCID: PMC9214337 DOI: 10.1016/j.arrct.2022.100187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We examined the effect of temporal gait asymmetry on muscle synergy post stroke. In our design, the temporal asymmetry during gait was experimentally modulated. The temporal asymmetry was modulated using rhythmic auditory cueing. Rhythmic auditory cueing with gait immediately improved temporal asymmetry and muscle synergy deficits. The temporal asymmetry affected muscle synergy more than kinematics.
Objective To examine the relationship between temporal asymmetry and complexity of muscle synergy during walking using rhythmic auditory cueing (RAC) and the factors related to changes in muscle synergy during walking with RAC in survivors of stroke. Design Cross-sectional study. Setting Wards at 2 medical corporation hospitals. Participants Forty survivors of stroke (N=40; mean age, 70.4±10.3 years; time since stroke, 72.2±32.3 days) who could walk without physical assistance. Interventions Not applicable. Main Outcome Measures The participants were assessed in a random block design under 2 conditions: comfortable walking speed (CWS) and walking with RAC. Single-leg support time, kinematics, and electromyograms were measured. Factors related to the complexity of muscle synergy (variance accounted for by 1 synergy [VAF1]) between the walking conditions were examined using hierarchical multiple regression analysis. Results In the RAC condition, lower limb flexion and knee flexion angles, single-leg support time on the paretic side, and the symmetry index of single-leg support time were increased compared with those in the CWS condition. VAF1 was decreased in the RAC condition (73.9±0.15) compared with that in the CWS condition (76.9±0.13, P=.002). Hierarchical multiple regression analysis revealed that the change in VAF1 was explained by change in single-leg support time (R2=0.43, P=.002). Conclusions The RAC condition demonstrated a more complex representation of muscle synergy than the CWS condition; the change in single-leg support time on the paretic side related to the changes in muscle synergy more than changes in lower limb angle. These findings can help in the walking-training concept to improve muscle synergy deficits in survivors of stroke.
Collapse
Affiliation(s)
- Naomichi Mizuta
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara, Japan
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
- Corresponding author Naomichi Mizuta, PT, PhD, Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi-gun, Nara, 635-0832, Japan.
| | - Naruhito Hasui
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Yuki Nishi
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara, Japan
| | - Yasutaka Higa
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Ayaka Matsunaga
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Junji Deguchi
- Department of Rehabilitation, Nakazuyagi Hospital (HIMAWARIKAI Medical Corporation), Tokushima, Japan
| | - Yasutada Yamamoto
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Tomoki Nakatani
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Junji Taguchi
- Department of Therapy, Takarazuka Rehabilitation Hospital (SHOWAKAI Medical Corporation), Takarazuka, Japan
| | - Shu Morioka
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara, Japan
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| |
Collapse
|
7
|
Naro A, Billeri L, Balletta T, Lauria P, Onesta MP, Calabrò RS. Finding the Way to Improve Motor Recovery of Patients with Spinal Cord Lesions: A Case-Control Pilot Study on a Novel Neuromodulation Approach. Brain Sci 2022; 12:119. [PMID: 35053862 PMCID: PMC8773706 DOI: 10.3390/brainsci12010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
Robot-assisted rehabilitation (RAR) and non-invasive brain stimulation (NIBS) are interventions that, both individually and combined, can significantly enhance motor performance after spinal cord injury (SCI). We sought to determine whether repetitive transcranial magnetic stimulation (rTMS) combined with active transvertebral direct current stimulation (tvDCS) (namely, NIBS) in association with RAR (RAR + NIBS) improves lower extremity motor function more than RAR alone in subjects with motor incomplete SCI (iSCI). Fifteen adults with iSCI received one daily session of RAR+NIBS in the early afternoon, six sessions weekly, for eight consecutive weeks. Outcome measures included the 6 min walk test (6MWT), the 10 m walk test (10MWT), the timed up and go (TUG) to test mobility and balance, the Walking Index for Spinal Cord Injury (WISCI II), the Functional Independence Measure-Locomotion (FIM-L), the manual muscle testing for lower extremity motor score (LEMS), the modified Ashworth scale for lower limbs (MAS), and the visual analog scale (VAS) for pain. The data of these subjects were compared with those of 20 individuals matched for clinical and demographic features who previously received the same amount or RAR without NIBS (RAR - NIBS). All patients completed the trial, and none reported any side effects either during or following the training. The 10MWT improved in both groups, but the increase was significantly greater following RAR + NIBS than RAR - NIBS. The same occurred for the FIM-L, LEMS, and WISCI II. No significant differences were appreciable concerning the 6MWT and TUG. Conversely, RAR - NIBS outperformed RAR + NIBS regarding the MAS and VAS. Pairing tvDCS with rTMS during RAR can improve lower extremity motor function more than RAR alone can do. Future research with a larger sample size is recommended to determine longer-term effects on motor function and activities of daily living.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo Piemonte, Via Palermo, SS 113, Ctr. Casazza, 98124 Messina, Italy; (A.N.); (L.B.); (T.B.); (P.L.)
| | - Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo Piemonte, Via Palermo, SS 113, Ctr. Casazza, 98124 Messina, Italy; (A.N.); (L.B.); (T.B.); (P.L.)
| | - Tina Balletta
- IRCCS Centro Neurolesi Bonino Pulejo Piemonte, Via Palermo, SS 113, Ctr. Casazza, 98124 Messina, Italy; (A.N.); (L.B.); (T.B.); (P.L.)
| | - Paola Lauria
- IRCCS Centro Neurolesi Bonino Pulejo Piemonte, Via Palermo, SS 113, Ctr. Casazza, 98124 Messina, Italy; (A.N.); (L.B.); (T.B.); (P.L.)
| | | | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo Piemonte, Via Palermo, SS 113, Ctr. Casazza, 98124 Messina, Italy; (A.N.); (L.B.); (T.B.); (P.L.)
| |
Collapse
|
8
|
Brambilla C, Pirovano I, Mira RM, Rizzo G, Scano A, Mastropietro A. Combined Use of EMG and EEG Techniques for Neuromotor Assessment in Rehabilitative Applications: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:7014. [PMID: 34770320 PMCID: PMC8588321 DOI: 10.3390/s21217014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Electroencephalography (EEG) and electromyography (EMG) are widespread and well-known quantitative techniques used for gathering biological signals at cortical and muscular levels, respectively. Indeed, they provide relevant insights for increasing knowledge in different domains, such as physical and cognitive, and research fields, including neuromotor rehabilitation. So far, EEG and EMG techniques have been independently exploited to guide or assess the outcome of the rehabilitation, preferring one technique over the other according to the aim of the investigation. More recently, the combination of EEG and EMG started to be considered as a potential breakthrough approach to improve rehabilitation effectiveness. However, since it is a relatively recent research field, we observed that no comprehensive reviews available nor standard procedures and setups for simultaneous acquisitions and processing have been identified. Consequently, this paper presents a systematic review of EEG and EMG applications specifically aimed at evaluating and assessing neuromotor performance, focusing on cortico-muscular interactions in the rehabilitation field. A total of 213 articles were identified from scientific databases, and, following rigorous scrutiny, 55 were analyzed in detail in this review. Most of the applications are focused on the study of stroke patients, and the rehabilitation target is usually on the upper or lower limbs. Regarding the methodological approaches used to acquire and process data, our results show that a simultaneous EEG and EMG acquisition is quite common in the field, but it is mostly performed with EMG as a support technique for more specific EEG approaches. Non-specific processing methods such as EEG-EMG coherence are used to provide combined EEG/EMG signal analysis, but rarely both signals are analyzed using state-of-the-art techniques that are gold-standard in each of the two domains. Future directions may be oriented toward multi-domain approaches able to exploit the full potential of combined EEG and EMG, for example targeting a wider range of pathologies and implementing more structured clinical trials to confirm the results of the current pilot studies.
Collapse
Affiliation(s)
- Cristina Brambilla
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Ileana Pirovano
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| | - Robert Mihai Mira
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Giovanna Rizzo
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| | - Alessandro Scano
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Alfonso Mastropietro
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| |
Collapse
|
9
|
Bao SC, Chen C, Yuan K, Yang Y, Tong RKY. Disrupted cortico-peripheral interactions in motor disorders. Clin Neurophysiol 2021; 132:3136-3151. [PMID: 34749233 DOI: 10.1016/j.clinph.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022]
Abstract
Motor disorders may arise from neurological damage or diseases at different levels of the hierarchical motor control system and side-loops. Altered cortico-peripheral interactions might be essential characteristics indicating motor dysfunctions. By integrating cortical and peripheral responses, top-down and bottom-up cortico-peripheral coupling measures could provide new insights into the motor control and recovery process. This review first discusses the neural bases of cortico-peripheral interactions, and corticomuscular coupling and corticokinematic coupling measures are addressed. Subsequently, methodological efforts are summarized to enhance the modeling reliability of neural coupling measures, both linear and nonlinear approaches are introduced. The latest progress, limitations, and future directions are discussed. Finally, we emphasize clinical applications of cortico-peripheral interactions in different motor disorders, including stroke, neurodegenerative diseases, tremor, and other motor-related disorders. The modified interaction patterns and potential changes following rehabilitation interventions are illustrated. Altered coupling strength, modified coupling directionality, and reorganized cortico-peripheral activation patterns are pivotal attributes after motor dysfunction. More robust coupling estimation methodologies and combination with other neurophysiological modalities might more efficiently shed light on motor control and recovery mechanisms. Future studies with large sample sizes might be necessary to determine the reliabilities of cortico-peripheral interaction measures in clinical practice.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK, USA; Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Maggio MG, Naro A, Manuli A, Maresca G, Balletta T, Latella D, De Luca R, Calabrò RS. Effects of Robotic Neurorehabilitation on Body Representation in Individuals with Stroke: A Preliminary Study Focusing on an EEG-Based Approach. Brain Topogr 2021; 34:348-362. [PMID: 33661430 DOI: 10.1007/s10548-021-00825-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 02/15/2021] [Indexed: 11/30/2022]
Abstract
Patients with stroke can experience a drastic change in their body representation (BR), beyond the physical and psychological consequences of stroke itself. Noteworthy, the misperception of BR could affect patients' motor performance even more. Our study aimed at evaluating the usefulness of a robot-aided gait training (RAGT) equipped with augmented visuomotor feedback, expected to target BR (RAGT + VR) in improving lower limb sensorimotor function, gait performance (using Fugl-Meyer Assessment scale for lower extremities, FMA-LE), and BR (using the Body Esteem Scale-BES- and the Body Uneasiness Test-BUT), as compared to RAGT - VR. We also assessed the neurophysiologic basis putatively subtending the BR-based motor function recovery, using EEG recording during RAGT. Forty-five patients with stroke were enrolled in this study and randomized with a 1:2 ratio into either the RAGT + VR (n = 30) or the RAGT - VR (n = 15) group. The former group carried out rehabilitation training with the Lokomat©Pro; whereas, the latter used the Lokomat©Nanos. The rehabilitation protocol consisted of 40 one-hour training sessions. At the end of the training, the RAGT + VR improved in FMA-LE (p < 0.001) and BR (as per BES, (p < 0.001), and BUT, (p < 0.001)) more than the RAGT- did (p < 0.001). These differences in clinical outcomes were paralleled by a greater strengthening of visuomotor connectivity and corticomotor excitability (as detected at the EEG analyses) in the RAGT + VR than in the RAGT - VR (all comparisons p < 0.001), corresponding to an improved motor programming and execution in the former group.We may argue that BR recovery was important concerning functional motor improvement by its integration with the motor control system. This likely occurred through the activation of the Mirror Neuron System secondary to the visuomotor feedback provision, resembling virtual reality. Last, our data further confirm the important role of visuomotor feedback in post-stroke rehabilitation, which can achieve better patient-tailored improvement in functional gait by means of RAGT + VR targeting BR.
Collapse
Affiliation(s)
- Maria Grazia Maggio
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Alfredo Manuli
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Giuseppa Maresca
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Tina Balletta
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Desirèe Latella
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Rosaria De Luca
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy.
| |
Collapse
|
11
|
Lim SB, Louie DR, Peters S, Liu-Ambrose T, Boyd LA, Eng JJ. Brain activity during real-time walking and with walking interventions after stroke: a systematic review. J Neuroeng Rehabil 2021; 18:8. [PMID: 33451346 PMCID: PMC7811232 DOI: 10.1186/s12984-020-00797-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
Investigations of real-time brain activations during walking have become increasingly important to aid in recovery of walking after a stroke. Individual brain activation patterns can be a valuable biomarker of neuroplasticity during the rehabilitation process and can result in improved personalized medicine for rehabilitation. The purpose of this systematic review is to explore the brain activation characteristics during walking post-stroke by determining: (1) if different components of gait (i.e., initiation/acceleration, steady-state, complex) result in different brain activations, (2) whether brain activations differ from healthy individuals. Six databases were searched resulting in 22 studies. Initiation/acceleration showed bilateral activation in frontal areas; steady-state and complex walking showed broad activations with the majority exploring and finding increases in frontal regions and some studies also showing increases in parietal activation. Asymmetrical activations were often related to performance asymmetry and were more common in studies with slower gait speed. Hyperactivations and asymmetrical activations commonly decreased with walking interventions and as walking performance improved. Hyperactivations often persisted in individuals who had experienced severe strokes. Only a third of the studies included comparisons to a healthy group: individuals post-stroke employed greater brain activation compared to young adults, while comparisons to older adults were less clear and limited. Current literature suggests some indicators of walking recovery however future studies investigating more brain regions and comparisons with healthy age-matched adults are needed to further understand the effect of stroke on walking-related brain activation.
Collapse
Affiliation(s)
- Shannon B Lim
- Graduate Studies in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.,Rehabiliation Research Program, GF Strong Rehabilitation Centre, 4255 Laurel St, Vancouver, BC, V5Z 2G9, Canada
| | - Dennis R Louie
- Graduate Studies in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.,Rehabiliation Research Program, GF Strong Rehabilitation Centre, 4255 Laurel St, Vancouver, BC, V5Z 2G9, Canada
| | - Sue Peters
- Rehabiliation Research Program, GF Strong Rehabilitation Centre, 4255 Laurel St, Vancouver, BC, V5Z 2G9, Canada.,Department of Physical Therapy, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.,The Djavad Mowafaghian Centre for Brain Health, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.,Centre for Hip Health and Mobility, Vancouver, Canada
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.,The Djavad Mowafaghian Centre for Brain Health, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Janice J Eng
- Rehabiliation Research Program, GF Strong Rehabilitation Centre, 4255 Laurel St, Vancouver, BC, V5Z 2G9, Canada. .,Department of Physical Therapy, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
12
|
Robotic Rehabilitation in Spinal Cord Injury: A Pilot Study on End-Effectors and Neurophysiological Outcomes. Ann Biomed Eng 2020; 49:732-745. [PMID: 32918105 DOI: 10.1007/s10439-020-02611-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Robot-aided gait training (RAGT) has been implemented to provide patients with spinal cord injury (SCI) with a physiological limb activation during gait, cognitive engagement, and an appropriate stimulation of peripheral receptors, which are essential to entrain neuroplasticity mechanisms supporting functional recovery. We aimed at assessing whether RAGT by means of an end-effector device equipped with body weight support could improve functional ambulation in patients with subacute, motor incomplete SCI. In this pilot study, 15 patients were provided with six RAGT sessions per week for eight consecutive weeks. The outcome measures were muscle strength, ambulation, going upstairs, and disease burden. Furthermore, we estimated the activation patterns of lower limb muscles during RAGT by means of surface electromyography and the resting state networks' functional connectivity (RSN-FC) before and after RAGT. Patients achieved a clinically significant improvement in the clinical outcome measures substantially up to six months post-treatment. These data were paralleled by an improvement in the stair-climbing cycle and a potentiating of frequency-specific and area-specific RSN-FC patterns. Therefore, RAGT, by means of an end-effector device equipped with body weight support, is promising in improving gait in patients with subacute, motor incomplete SCI, and it could produce additive benefit for the neuromuscular reeducation to gait in SCI when combined with conventional physiotherapy.
Collapse
|
13
|
Yokoyama H, Kaneko N, Masugi Y, Ogawa T, Watanabe K, Nakazawa K. Gait-phase-dependent and gait-phase-independent cortical activity across multiple regions involved in voluntary gait modifications in humans. Eur J Neurosci 2020; 54:8092-8105. [PMID: 32557966 DOI: 10.1111/ejn.14867] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
Modification of ongoing walking movement to fit changes in external environments requires accurate voluntary control. In cats, the motor and posterior parietal cortices have crucial roles for precisely adjusting limb trajectory during walking. In human walking, however, it remains unclear which cortical information contributes to voluntary gait modification. In this study, we investigated cortical activity changes associated with visually guided precision stepping using electroencephalography source analysis. Our results demonstrated frequency- and gait-event-dependent changes in the cortical power spectrum elicited by voluntary gait modification. The main differences between normal walking and precision stepping were as follows: (a) the alpha, beta or gamma power decrease during the swing phases in the sensorimotor, anterior cingulate and parieto-occipital cortices, and (b) a power decrease in the theta, alpha and beta bands and increase in the gamma band throughout the gait cycle in the parieto-occipital cortex. Based on the previous knowledge of brain functions, the former change was considered to be related to execution and planning of leg movement, while the latter change was considered to be related to multisensory integration and motor awareness. Therefore, our results suggest that the gait modification is achieved by higher cortical involvements associated with different sensorimotor-related functions across multiple cortical regions including the sensorimotor, anterior cingulate and parieto-occipital cortices. The results imply the critical importance of the cortical contribution to voluntary modification in human locomotion. Further, the observed cortical information related to voluntary gait modification would contribute to developing volitional control systems of brain-machine interfaces for walking rehabilitation.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Naotsugu Kaneko
- Japan Society for the Promotion of Science, Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Sports Medicine and Science, Tokyo International University, Saitama, Japan
| | - Tetsuya Ogawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Department of Clothing, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Katsumi Watanabe
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan.,Art & Design, University of New South Wales, Sydney, NSW, Australia.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Fortes CE, Carmo AAD, Rosa KYA, Lara JPR, Mendes FADS. Immediate changes in post-stroke gait using a shoe lift on the nonaffected lower limb: A preliminary study. Physiother Theory Pract 2020; 38:528-533. [PMID: 32478616 DOI: 10.1080/09593985.2020.1771798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Gait impairment is one of the most important post-stroke complications and is associated with reduced mobility, limitations in activities of daily living and decreased quality of life. Gait recovery is an important goal in post-stroke rehabilitation and shoe lifts have been used on the nonaffected lower limb (NLL) to reduce compensatory strategies such as vaulting, pelvic hiking and hip circumduction during the swing phase of the affected lower limb. Moreover, in clinical practice shoe lifts seem to reduce tripping and the risk of falls. OBJECTIVE Evaluate walking speed and functional mobility with and without a 1.5 cm shoe lift under the non-affected lower limb in post-stroke gait. METHODS Forty-two subjects with hemiparesis after stroke were evaluated on a single day, under two conditions: with and without a 1.5 cm shoe lift. The assessment sequence was randomized and clinical tests (Ten-meter walk Test - 10MWT and Timed Up and Go - TUG) were performed one after the other. RESULTS There was a significant increase in walking speed in the 10MWT and shorter TUG times, with mean differences of 0.78 (CI95% 0.15-1.41, P ≤ 0.001, EF = 0.55) and 0.57 seconds (-0.11-1.25, P = .022, EF = 0.35), respectively. CONCLUSION The results showed that the immediate use of 1.5 cm shoe lifts seems to improve gait speed and functional mobility in chronic stroke patients. Further studies should focus on understanding the kinematics strategies and gait pattern alterations caused by shoe lifts under the NLL of post-stroke individuals.
Collapse
Affiliation(s)
- Caroline Echavarria Fortes
- Department of Physical Therapy and Graduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasília, Brasília, Brazil.,Department of Neurorehabilitation, SARAH Network of Rehabilitation Hospitals, Brasília, Brazil
| | - Aline Araujo Do Carmo
- Department of Physical Therapy and Graduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasília, Brasília, Brazil
| | - Karissa Yasmim Araújo Rosa
- Department of Physical Therapy and Graduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasília, Brasília, Brazil
| | | | - Felipe Augusto Dos Santos Mendes
- Department of Physical Therapy and Graduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasília, Brasília, Brazil
| |
Collapse
|
15
|
Berger A, Horst F, Steinberg F, Thomas F, Müller-Eising C, Schöllhorn WI, Doppelmayr M. Increased gait variability during robot-assisted walking is accompanied by increased sensorimotor brain activity in healthy people. J Neuroeng Rehabil 2019; 16:161. [PMID: 31882008 PMCID: PMC6935063 DOI: 10.1186/s12984-019-0636-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Gait disorders are major symptoms of neurological diseases affecting the quality of life. Interventions that restore walking and allow patients to maintain safe and independent mobility are essential. Robot-assisted gait training (RAGT) proved to be a promising treatment for restoring and improving the ability to walk. Due to heterogenuous study designs and fragmentary knowlegde about the neural correlates associated with RAGT and the relation to motor recovery, guidelines for an individually optimized therapy can hardly be derived. To optimize robotic rehabilitation, it is crucial to understand how robotic assistance affect locomotor control and its underlying brain activity. Thus, this study aimed to investigate the effects of robotic assistance (RA) during treadmill walking (TW) on cortical activity and the relationship between RA-related changes of cortical activity and biomechanical gait characteristics. METHODS Twelve healthy, right-handed volunteers (9 females; M = 25 ± 4 years) performed unassisted walking (UAW) and robot-assisted walking (RAW) trials on a treadmill, at 2.8 km/h, in a randomized, within-subject design. Ground reaction forces (GRFs) provided information regarding the individual gait patterns, while brain activity was examined by measuring cerebral hemodynamic changes in brain regions associated with the cortical locomotor network, including the sensorimotor cortex (SMC), premotor cortex (PMC) and supplementary motor area (SMA), using functional near-infrared spectroscopy (fNIRS). RESULTS A statistically significant increase in brain activity was observed in the SMC compared with the PMC and SMA (p < 0.05), and a classical double bump in the vertical GRF was observed during both UAW and RAW throughout the stance phase. However, intraindividual gait variability increased significantly with RA and was correlated with increased brain activity in the SMC (p = 0.05; r = 0.57). CONCLUSIONS On the one hand, robotic guidance could generate sensory feedback that promotes active participation, leading to increased gait variability and somatosensory brain activity. On the other hand, changes in brain activity and biomechanical gait characteristics may also be due to the sensory feedback of the robot, which disrupts the cortical network of automated walking in healthy individuals. More comprehensive neurophysiological studies both in laboratory and in clinical settings are necessary to investigate the entire brain network associated with RAW.
Collapse
Affiliation(s)
- Alisa Berger
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Albert Schweitzer Straße 22, 55128 Mainz, Germany
| | - Fabian Horst
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Fabian Steinberg
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Albert Schweitzer Straße 22, 55128 Mainz, Germany
- School of Kinesiology, Louisiana State University, Baton Rouge, USA
| | - Fabian Thomas
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Albert Schweitzer Straße 22, 55128 Mainz, Germany
| | | | - Wolfgang I. Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Doppelmayr
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Albert Schweitzer Straße 22, 55128 Mainz, Germany
- Centre for Cognitive Neuroscience, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|