1
|
Venkataraman S, Savithri HS, Murthy MRN. Recent advances in the structure and assembly of non-enveloped spherical viruses. Virology 2025; 606:110454. [PMID: 40081202 DOI: 10.1016/j.virol.2025.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 03/15/2025]
Abstract
Non-enveloped spherical viruses (NSVs) are characterized by their highly symmetrical capsids that serve to protect and encapsulate the genomes. The stability and functionality of the capsids determine their ability for survival and proliferation in harsh environments. Over four decades of structural studies using X-ray crystallography and NMR have provided static, high-resolution snapshots of several viruses. Recently, advances in cryo-electron microscopy, together with AI-based structure predictions and traditional methods, have aided in elucidating not only the structural details of complex NSVs but also the mechanistic processes underlying their assembly. The knowledge thus generated has been instrumental in critical understanding of the conformational changes and interactions associated with the coat proteins, the genome, and the auxiliary factors that regulate the capsid dynamics. This review seeks to summarize current literature regarding the structure and assembly of the NSVs and discusses how the data has facilitated a deeper understanding of their biology and phylogeny.
Collapse
Affiliation(s)
| | | | - M R N Murthy
- Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
2
|
Adenovirus Structure: What Is New? Int J Mol Sci 2021; 22:ijms22105240. [PMID: 34063479 PMCID: PMC8156859 DOI: 10.3390/ijms22105240] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Adenoviruses are large (~950 Å) and complex non-enveloped, dsDNA icosahedral viruses. They have a pseudo-T = 25 triangulation number with at least 12 different proteins composing the virion. These include the major and minor capsid proteins, core proteins, maturation protease, terminal protein, and packaging machinery. Although adenoviruses have been studied for more than 60 years, deciphering their architecture has presented a challenge for structural biology techniques. An outstanding event was the first near-atomic resolution structure of human adenovirus type 5 (HAdV-C5), solved by cryo-electron microscopy (cryo-EM) in 2010. Discovery of new adenovirus types, together with methodological advances in structural biology techniques, in particular cryo-EM, has lately produced a considerable amount of new, high-resolution data on the organization of adenoviruses belonging to different species. In spite of these advances, the organization of the non-icosahedral core is still a great unknown. Nevertheless, alternative techniques such as atomic force microscopy (AFM) are providing interesting glimpses on the role of the core proteins in genome condensation and virion stability. Here we summarize the current knowledge on adenovirus structure, with an emphasis on high-resolution structures obtained since 2010.
Collapse
|
3
|
Pénzes JJ, Szirovicza L, Harrach B. The complete genome sequence of bearded dragon adenovirus 1 harbors three genes encoding proteins of the C-type lectin-like domain superfamily. INFECTION GENETICS AND EVOLUTION 2020; 83:104321. [PMID: 32302697 DOI: 10.1016/j.meegid.2020.104321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/28/2022]
Abstract
Bearded dragon adenovirus 1 (BDAdV-1), also known as agamid adenovirus 1, has been described worldwide as a prevalent infectious agent of the inland bearded dragon (Pogona vitticeps), the most common squamate exotic pet reptile. Previous limited sequence data of the adenoviral DNA polymerase and hexon genes indicated that BDAdV-1 is a member of genus Atadenovirus family Adenoviridae. Atadenoviruses infect ruminants, marsupials, testudine reptiles and birds, yet the genus has been shown to be of squamate reptile origin. Here, we report a screening survey along with the complete genome sequence of BDAdV-1, derived directly from the sample of a deceased juvenile dragon showing central nervous system signs prior to passing. The BDAdV-1 genome is 35,276 bp and contains 32 putative genes. Its genome organization is characteristic of the members of genus Atadenovirus, however, a divergent LH3 gene indicates structural interactions of different nature compared to other genus members such as snake adenovirus 1. We identified five novel open reading frames (ORFs), three of which encode proteins of the C-type lectin-like domain (CTLD) superfamily. ORF3 has a CTLD group II-like domain architecture displaying structural similarity with natural killer cell surface receptors and with an alphaherpesviral virulence factor gene for neurotropism, UL45. ORF4 and 6 are extremely long compared to typical adenoviral right-end genes and possibly encode members of the CTLD superfamily with novel, previously undescribed domain architectures. BDAdV-1 is the hitherto most divergent member of genus Atadenovirus providing new insights on adenoviral diversity, evolution and pathogenesis.
Collapse
Affiliation(s)
- Judit J Pénzes
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary; INRS-Institut Armand-Frappier Research Centre, Laval, Quebec, Canada.
| | - Leonóra Szirovicza
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
4
|
Needle DB, Wise AG, Gregory CR, Maes RK, Sidor IF, Ritchie BW, Agnew D. Necrotizing Ventriculitis in Fledgling Chimney Swifts ( Chaetura Pelagica) Associated With a Novel Adenovirus, Chimney Swift Adenovirus-1 (CsAdV-1). Vet Pathol 2019; 56:907-914. [PMID: 31331256 DOI: 10.1177/0300985819861717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Five chimney swift fledglings died following a progressive loss of appetite and condition while being cared for by an experienced wildlife rehabilitator. All animals had severe necrotizing and heterophilic ventriculitis, with myriad epithelial cells characterized by karyomegaly with intranuclear inclusion bodies. Transmission electron microscopy showed distention of epithelial cell nuclei and chromatin peripheralization by nonenveloped, icosahedral, 75- to 85-nm-diameter virions. Degenerate nested PCR for a highly conserved region of the adenovirus DNA polymerase gene was positive. BLAST analysis of the amplicon sequence indicated the presence of a novel adenovirus, with 74% homology to Antarctic penguin adenoviruses and 72% homology to a bat adenovirus, at low query coverages of only 65% and 63%, respectively. BLAST analysis of the predicted amino acid sequence generated the highest scores for squamate adenoviruses at 100% query coverage. Based on phylogenetic analysis of the partial amino acid sequence of the DNA polymerase, the chimney swift virus was a novel adenovirus most closely related to the Atadenovirus genus. Using a probe based on the novel viral sequence, DNA in situ hybridization identified viral nucleic acid in the nucleus. While the tentatively named chimney swift adenovirus-1 (CsAdV-1) is so far classified with the Atadenoviruses, it is relatively divergent from other members of that genus and may represent the first identified member of a new genus of Adenoviruses.
Collapse
Affiliation(s)
- David B Needle
- New Hampshire Veterinary Diagnostic Laboratory, University of New Hampshire, College of Life Sciences and Agriculture, Durham, NH, USA
| | - Annabel G Wise
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing MI, USA
| | - Christopher R Gregory
- Emerging Diseases Research Group and Infectious Diseases Laboratory, University of Georgia, Athens, GA, USA
| | - Roger K Maes
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing MI, USA
| | - Inga F Sidor
- New Hampshire Veterinary Diagnostic Laboratory, University of New Hampshire, College of Life Sciences and Agriculture, Durham, NH, USA
| | - Branson W Ritchie
- Emerging Diseases Research Group and Infectious Diseases Laboratory, University of Georgia, Athens, GA, USA
| | - Dalen Agnew
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing MI, USA
| |
Collapse
|
5
|
Miller MM, Cornish TE, Creekmore TE, Fox K, Laegreid W, McKenna J, Vasquez M, Woods LW. Whole-genome sequences of Odocoileus hemionus deer adenovirus isolates from deer, moose and elk are highly conserved and support a new species in the genus Atadenovirus. J Gen Virol 2017; 98:2320-2328. [PMID: 28809152 PMCID: PMC5656758 DOI: 10.1099/jgv.0.000880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present the first complete genome sequence of Odocoileus hemionus deer adenovirus 1 (OdAdV-1). This virus can cause sporadic haemorrhagic disease in cervids, although epizootics with high mortality have occurred in California. OdAdV-1 has been placed in the genus Atadenovirus, based on partial hexon, pVIII and fibre genes. Ten field isolates recovered from naturally infected mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginiana) and moose (Alces alces) from Wyoming, black-tailed deer (Odocoileus hemionus columbianus) from California, and Rocky Mountain elk (Cervus elaphus nelsoni) from Colorado and Washington state were sequenced. The genome lengths ranged from 30 620 to 30 699 bp, contained the predicted proteins and gene organization typical of members of genus Atadenovirus, and had a high percentage of A/T nucleotides (66.7 %). Phylogenic analysis found that the closest ancestry was with ruminant atadenoviruses, while a divergence of the hexon, polymerase and penton base proteins of more than 15 % supports classification as a new species. Genetic global comparison between the 10 isolates found an overall 99 % identity, but greater divergence was found between those recovered from moose and elk as compared to deer, and a single variable region contained most of these differences. Our findings demonstrate that OdAdV-1 is highly conserved between 10 isolates recovered from multiple related cervid species, but genotypic differences, largely localized to a variable region, define two strains. We propose that the virus type name be changed to cervid adenovirus 1, with the species name Cervid atadenovirus A. Sequence data were used to develop molecular assays for improved detection and genotyping.
Collapse
Affiliation(s)
- Myrna M. Miller
- University of Wyoming, Wyoming State Veterinary Laboratory, 1174 Snowy Range Road, Laramie, WY 82070, USA
- *Correspondence: Myrna M. Miller,
| | - Todd E. Cornish
- University of Wyoming, Wyoming State Veterinary Laboratory, 1174 Snowy Range Road, Laramie, WY 82070, USA
| | - Terry E. Creekmore
- Wyoming Game and Fish Department, Wyoming State Veterinary Laboratory, 1174 Snowy Range Road, Laramie, WY 82070, USA
| | - Karen Fox
- Colorado Division of Parks and Wildlife, Wildlife Health Program, 4330 Laporte Ave, Fort Collins, Colorado 80521, USA
| | - Will Laegreid
- University of Wyoming, Wyoming State Veterinary Laboratory, 1174 Snowy Range Road, Laramie, WY 82070, USA
| | - Jennifer McKenna
- University of Wyoming, Wyoming State Veterinary Laboratory, 1174 Snowy Range Road, Laramie, WY 82070, USA
| | - Marce Vasquez
- University of Wyoming, Wyoming State Veterinary Laboratory, 1174 Snowy Range Road, Laramie, WY 82070, USA
| | - Leslie W. Woods
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, 620 West Health Science Dr., 620 West Health Science Dr, Davis, CA 95616, USA
| |
Collapse
|
6
|
Nguyen TH, Ballmann MZ, Do HT, Truong HN, Benkő M, Harrach B, van Raaij MJ. Crystal structure of raptor adenovirus 1 fibre head and role of the beta-hairpin in siadenovirus fibre head domains. Virol J 2016; 13:106. [PMID: 27334597 PMCID: PMC4918002 DOI: 10.1186/s12985-016-0558-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Most adenoviruses recognize their host cells via an interaction of their fibre head domains with a primary receptor. The structural framework of adenovirus fibre heads is conserved between the different adenovirus genera for which crystal structures have been determined (Mastadenovirus, Aviadenovirus, Atadenovirus and Siadenovirus), but genus-specific differences have also been observed. The only known siadenovirus fibre head structure, that of turkey adenovirus 3 (TAdV-3), revealed a twisted beta-sandwich resembling the reovirus fibre head architecture more than that of other adenovirus fibre heads, plus a unique beta-hairpin embracing a neighbouring monomer. The TAdV-3 fibre head was shown to bind sialyllactose. METHODS Raptor adenovirus 1 (RAdV-1) fibre head was expressed, crystallized and its structure was solved and refined at 1.5 Å resolution. The structure could be solved by molecular replacement using the TAdV-3 fibre head structure as a search model, despite them sharing a sequence identity of only 19 %. Versions of both the RAdV-1 and TAdV-3 fibre heads with their beta-hairpin arm deleted were prepared and their stabilities were compared with the non-mutated proteins by a thermal unfolding assay. RESULTS The structure of the RAdV-1 fibre head contains the same twisted ABCJ-GHID beta-sandwich and beta-hairpin arm as the TAdV-3 fibre head. However, while the predicted electro-potential surface charge of the TAdV-3 fibre head is mainly positive, the RAdV-1 fibre head shows positively and negatively charged patches and does not appear to bind sialyllactose. Deletion of the beta-hairpin arm does not affect the structure of the raptor adenovirus 1 fibre head and only affects the stability of the RAdV-1 and TAdV-3 fibre heads slightly. CONCLUSIONS The high-resolution structure of RAdV-1 fibre head is the second known structure of a siadenovirus fibre head domain. The structure shows that the siadenovirus fibre head structure is conserved, but differences in the predicted surface charge suggest that RAdV-1 uses a different natural receptor for cell attachment than TAdV-3. Deletion of the beta-hairpin arm shows little impact on the structure and stability of the siadenovirus fibre heads.
Collapse
Affiliation(s)
- Thanh H Nguyen
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin 3, E-28049, Madrid, Spain.,Genetic Engineering Laboratory, Institute of Biotechnology (IBT-VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Mónika Z Ballmann
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Huyen T Do
- Genetic Engineering Laboratory, Institute of Biotechnology (IBT-VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hai N Truong
- Genetic Engineering Laboratory, Institute of Biotechnology (IBT-VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Mária Benkő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mark J van Raaij
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin 3, E-28049, Madrid, Spain.
| |
Collapse
|