1
|
Wu Z, Luo D, Zhang S, Zhang C, Zhang Y, Chen M, Li X. A systematic review of southern rice black-streaked dwarf virus in the age of omics. PEST MANAGEMENT SCIENCE 2023; 79:3397-3407. [PMID: 37291065 DOI: 10.1002/ps.7605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) is one of the most damaging rice viruses. The virus decreases rice quality and yield, and poses a serious threat to food security. From this perspective, this review performed a survey of published studies in recent years to understand the current status of SRBSDV and white-backed planthopper (WBPH, Sogatella furcifera) transmission processes in rice. Recent studies have shown that the interactions between viral virulence proteins and rice susceptibility factors shape the transmission of SRBSDV. Moreover, the transmission of SRBSDV is influenced by the interactions between viral virulence proteins and S. furcifera susceptibility factors. This review focused on the molecular mechanisms of key genes or proteins associated with SRBSDV infection in rice via the S. furcifera vector, and the host defense response mechanisms against viral infection. A sustainable control strategy using RNAi was summarized to address this pest. Finally, we also present a model for screening anti-SRBSDV inhibitors using viral proteins as targets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zilin Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dan Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shanqi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Chun Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Wang P, Liu J, Lyu Y, Huang Z, Zhang X, Sun B, Li P, Jing X, Li H, Zhang C. A Review of Vector-Borne Rice Viruses. Viruses 2022; 14:v14102258. [PMID: 36298813 PMCID: PMC9609659 DOI: 10.3390/v14102258] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the major staple foods for global consumption. A major roadblock to global rice production is persistent loss of crops caused by plant diseases, including rice blast, sheath blight, bacterial blight, and particularly various vector-borne rice viral diseases. Since the late 19th century, 19 species of rice viruses have been recorded in rice-producing areas worldwide and cause varying degrees of damage on the rice production. Among them, southern rice black-streaked dwarf virus (SRBSDV) and rice black-streaked dwarf virus (RBSDV) in Asia, rice yellow mottle virus (RYMV) in Africa, and rice stripe necrosis virus (RSNV) in America currently pose serious threats to rice yields. This review systematizes the emergence and damage of rice viral diseases, the symptomatology and transmission biology of rice viruses, the arm races between viruses and rice plants as well as their insect vectors, and the strategies for the prevention and control of rice viral diseases.
Collapse
Affiliation(s)
- Pengyue Wang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianjian Liu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agronomy, Yangtze University, Jingzhou 434025, China
| | - Yajing Lyu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Ziting Huang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoli Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingjian Sun
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengbai Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinxin Jing
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Honglian Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
3
|
Silencing the Autophagy-Related Genes ATG3 and ATG9 Promotes SRBSDV Propagation and Transmission in Sogatella furcifera. INSECTS 2022; 13:insects13040394. [PMID: 35447836 PMCID: PMC9029546 DOI: 10.3390/insects13040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
Autophagy plays diverse roles in the interaction among pathogen, vector, and host. In the plant virus and insect vector system, autophagy can be an antiviral/pro-viral factor to suppress/promote virus propagation and transmission. Here, we report the antiviral role of autophagy-related genes ATG3 and ATG9 in the white-backed planthopper (Sogatella furcifera) during the process of transmitting the southern rice black-streaked dwarf virus (SRBSDV). In this study, we annotated two autophagy-related genes, SfATG3 and SfATG9, from the female S. furcifera transcriptome. The cDNA of SfATG3 and SfATG9 comprised an open reading frame (ORF) of 999 bp and 2295 bp that encodes a protein of 332 and 764 amino acid residues, respectively. SfATG3 has two conserved domains and SfATG9 has one conserved domain. In S. furcifera females exposed to SRBSDV, expression of autophagy-related genes was significantly activated and shared similar temporal patterns to those of SRBSDV S9-1 and S10, all peaking at 4 d post viral exposure. Silencing the expression of SfATG3 and SfATG9 promoted SRBSDV propagation and transmission. This study provides evidence for the first time that S. furcifera autophagy-related genes ATG3 and ATG9 play an antiviral role to suppress SRBSDV propagation and transmission.
Collapse
|
4
|
Identification of putative binding interface of PI(3,5)P2 lipid on rice black-streaked dwarf virus (RBSDV) P10 protein. Virology 2022; 570:81-95. [DOI: 10.1016/j.virol.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/27/2022] [Indexed: 11/18/2022]
|
5
|
iTRAQ-based quantitative proteomics suggests mitophagy involvement after Rice black-streaked dwarf virus acquisition in insect vector small brown planthopper Laodelphax striatellus Fallén. J Proteomics 2021; 246:104314. [PMID: 34216810 DOI: 10.1016/j.jprot.2021.104314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023]
Abstract
Plant viruses trigger numerous responses in their insect vectors. Using iTRAQ-based quantitative proteomics analysis, early responses of the insect vector, the small brown planthopper (Laodelphax striatellus Fallén, SBPH), after acquiring Rice black-streaked dwarf virus (RBSDV) at 3 days and 5 days post first access to diseased plants (padp) were revealed. A total of 582 differentially abundant proteins (DAPs) in SBPH with a fold change >1.500 or <0.667 (p-value < 0.05) were identified. The proteomic analysis in SBPH at 3 days padp revealed 106 highly abundant proteins and 193 of low abundance, while 5 days padp revealed 214 highly abundant proteins and 182 of low abundance. Among them, 51 highly abundant proteins and 42 of low abundance were shown consistently at both 3 days and 5 days padp. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis mapping and Gene Ontology (GO) term classification suggested impairment of mitochondria in SBPH after RBSDV acquisition, and the 77 out of 582 differentially abundant SBPH proteins analyzed by the STRING program revealed the interaction network of the mitochondrial DAPs, showing an overall down-regulation of mitochondrial proteins including the electron transport chain proteins and mitochondrial ribosome proteins. The high abundance of Parkin at 5 days padp suggests that activation of mitophagy induced degradation of mitochondria occurred. Further verification of autophagy/mitophagy-related genes by reverse-transcription quantitative RT-PCR (RT-qPCR) in SBPH after RBSDV acquisition showed up-regulation of the autophagy receptors Optineurin (OPTN), Sequestosome-1 (SQSTM1, also known as p62) and Tax1-binding protein 1 (TAX1BP1) which targets ubiquitinated damaged mitochondria during mitophagy. The phosphorylation of the three autophagy receptors may be up-regulated through an increase of transcription level TRAF-associated NFκB activator (TANK)-binding kinase 1 (TBK1). As a result, an overall reduction in the abundance of mitochondrial proteins was observed and the selective autophagic degradation was up-regulated through increased transcription level of OPTN, p62/SQSTM1, TAX1BP1 and TBK1. Therefore, acquisition of RBSDV associated with up-regulated autophagy and selective mitochondrial degradation in SBPH suggest prevention of mitochondrial-mediated apoptosis and extension of the vector life span. BIOLOGICAL SIGNIFICANCE: RBSDV causes severe yield loss in rice plants. RBSDV is transmitted efficiently only through SBPH. It is important to understand how RBSDV infects SBPH in a persistent, circulative and propagative manner. However, there has been no study on the interaction between RBSDV and SBPH at the early acquisition stage using a proteomics approach. In this study, we combined iTRAQ technique and LC-MS/MS to analyze the vector proteomics at both the initial and latent infection stages after RBSDV acquisition and verified the results by RT-qPCR. Our results revealed that significantly low DAPs were involved in various pathways, including biosynthesis of secondary metabolites, ribosomes, carbon metabolism, biosynthesis of amino acids and TCA cycle. Further clustering of the DAPs revealed significant changes in SBPH mitochondria, including decreased proteins in mitochondrial ribosomes and electron transport chain complex I, II and V. On the other hand, there was a high abundance of Parkin, suggesting the occurrence of mitochondria damage and subsequent Parkin-mediated mitophagy for clearance of impaired mitochondria. Moreover, the decreased level of PMPCB in terms of gene expression and protein abundance suggested decreased PINK1 turnover, promoting Parkin/PINK1-mediated mitophagy. Further analysis on autophagy/mitophagy-related gene transcription level indicated up-regulation of OPTN, p62/SQSTM1, TAX1BP1 and TBK1, promoting selective autophagy in SBPH after RBSDV acquisition. These findings provided new insights into the effects of RBSDV on SBPH after early acquisition by selective degradation of mitochondria, especially on reprogramming of energy metabolism and decreased mitochondria biogenesis, to prevent apoptosis and prolong the life span of SBPH post virus acquisition.
Collapse
|
6
|
Zhang L, Wu N, Ren Y, Wang X. Insights Into Insect Vector Transmission and Epidemiology of Plant-Infecting Fijiviruses. Front Microbiol 2021; 12:628262. [PMID: 33717017 PMCID: PMC7943461 DOI: 10.3389/fmicb.2021.628262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Viruses in genus Fijivirus (family Reoviridae) have caused serious damage to rice, maize and sugarcane in American, Asian, European and Oceanian countries, where seven plant-infecting and two insect-specific viruses have been reported. Because the planthopper vectors are the only means of virus spread in nature, their migration and efficient transmission of these viruses among different crops or gramineous weeds in a persistent propagative manner are obligatory for virus epidemics. Understanding the mechanisms of virus transmission by these insect vectors is thus key for managing the spread of virus. This review describes current understandings of main fijiviruses and their insect vectors, transmission characteristics, effects of viruses on the behavior and physiology of vector insects, molecular transmission mechanisms. The relationships among transmission, virus epidemics and management are also discussed. To better understand fijivirus-plant disease system, research needs to focus on the complex interactions among the virus, insect vector, insect microbes, and plants.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingdang Ren
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Liu H, Zhou Y, Xu Q, Wong SM. Selection of DNA Aptamers for Subcellular Localization of RBSDV P10 Protein in the Midgut of Small Brown Planthoppers by Emulsion PCR-Based SELEX. Viruses 2020; 12:v12111239. [PMID: 33143344 PMCID: PMC7692627 DOI: 10.3390/v12111239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022] Open
Abstract
Rice black-streaked dwarf virus (RBSDV), classified under the Reoviridae, Fijivirus genus, caused an epidemic in the eastern provinces of China and other East Asian countries and resulted in severe yield loss in rice and wheat production. RBSDV is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus Fallén) in a persistent manner. In order to provide a stable and cost-effective detection probe, in this study we selected three DNA aptamers (R3, R5 and R11) by an optimized, standardized and time saving emulsion PCR-based SELEX, for the detection of RBSDV outer-shell P10 protein for in situ localization studies in the midgut of SBPH. The specificity of these three DNA aptamers was tested through detection of the P10 protein using an enzyme-linked oligonucleotide assay (ELONA) and aptamer-based dot-blot ELISA. All three DNA aptamers can be used to detect RBSDV P10 protein by immunofluorescent labeling in the midgut of RBSDV-infected SBPH. These data show that the selected aptamers can be used for the detection of RBSDV P10 protein in vitro and in vivo. This is the first report of aptamers being selected for detection of a rice virus capsid protein.
Collapse
Affiliation(s)
- Haoqiu Liu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Yijun Zhou
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Qiufang Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Correspondence: (Q.X.); (S.-M.W.); Tel.: +86-25-84390394 (Q.X.); +65-65162976 (S.-M.W.); Fax: +86-25-84390391 (Q.X.); +65-67792486 (S.-M.W.)
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
- Correspondence: (Q.X.); (S.-M.W.); Tel.: +86-25-84390394 (Q.X.); +65-65162976 (S.-M.W.); Fax: +86-25-84390391 (Q.X.); +65-67792486 (S.-M.W.)
| |
Collapse
|