1
|
Xu H, Zhang Z, Zhang Z, Peng J, Gao Y, Li K, Chen J, Du J, Yan S, Zhang D, Zhou X, Shi X, Liu Y. Effects of insulin-like peptide 7 in Bemisia tabaci MED on tomato chlorosis virus transmission. PEST MANAGEMENT SCIENCE 2023; 79:1508-1517. [PMID: 36533303 DOI: 10.1002/ps.7329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tomato chlorosis virus (ToCV) is a semi-persistent plant virus that is primarily transmitted by the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). It causes a serious disease that lowers tomato yield. Insulin-like peptide (ILP), an insulin homolog, regulates trehalose metabolism in a variety of insects. In a previous study, we discovered that trehalose metabolism is required for whiteflies to transmit ToCV effectively. Furthermore, transcriptome sequencing revealed that the BtILP7 gene was highly expressed in B. tabaci infected with ToCV. Therefore, the whitefly ILP7 gene may facilitate the transmission of ToCV and be an attractive target for the control of whiteflies and subsequently ToCV. RESULTS The ToCV content in B. tabaci MED was found to be correlated with BtILP7 gene expression. Subsequent RNA interference (RNAi) of the BtILP7 gene had a significant impact on B. tabaci MED's trehalose metabolism and reproductive capacity, as well as ability to transmit ToCV. CONCLUSIONS These results indicate that the BtILP7 gene was closely related to ToCV transmission by regulating trehalose metabolism and reproduction behavior, thus providing a secure and environmentally friendly management strategy for the control of whiteflies and ToCV-caused disease. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- HuiNan Xu
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - ZhanHong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jing Peng
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Gao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - KaiLong Li
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jianbin Chen
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jiao Du
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Shuo Yan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - DeYong Zhang
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - XuGuo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - XiaoBin Shi
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Liu
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
2
|
Lu DYH, Liao JY, Fajar A, Chen JB, Wei Y, Zhang ZH, Zhang Z, Zheng LM, Tan XQ, Zhou XG, Shi XB, Liu Y, Zhang DY. Co-infection of TYLCV and ToCV increases cathepsin B and promotes ToCV transmission by Bemisia tabaci MED. Front Microbiol 2023; 14:1107038. [PMID: 37007483 PMCID: PMC10061087 DOI: 10.3389/fmicb.2023.1107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Tomato disease is an important disease affecting agricultural production, and the combined infection of tomato chlorosis virus (ToCV) and tomato yellow leaf curl virus (TYLCV) has gradually expanded in recent years, but no effective control method has been developed to date. Both viruses are transmitted by Bemisia tabaci Mediteranean (MED). Previously, we found that after B. tabaci MED was fed on ToCV-and TYLCV-infected plants, the transmission efficiency of ToCV was significantly higher than that on plants infected only with ToCV. Therefore, we hypothesize that co-infection could enhance the transmission rates of the virus. In this study, transcriptome sequencing was performed to compare the changes of related transcription factors in B. tabaci MED co-infected with ToCV and TYLCV and infected only with ToCV. Hence, transmission experiments were carried out using B. tabaci MED to clarify the role of cathepsin in virus transmission. The gene expression level and enzyme activity of cathepsin B (Cath B) in B. tabaci MED co-infected with ToCV and TYLCV increased compared with those under ToCV infection alone. After the decrease in cathepsin activity in B. tabaci MED or cathepsin B was silenced, its ability to acquire and transmit ToCV was significantly reduced. We verified the hypothesis that the relative expression of cathepsin B was reduced, which helped reduce ToCV transmission by B. tabaci MED. Therefore, it was speculated that cathepsin has profound research significance in the control of B. tabaci MED and the spread of viral diseases.
Collapse
Affiliation(s)
- Ding-Yi-Hui Lu
- Subcollege of Longping, College of Biology, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Jin-Yu Liao
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Anugerah Fajar
- Department of Entomology, University of Kentucky, Lexington, KY, United States
- Research Center for Biomaterials, Indonesia Institute of Sciences, Cibinong, Indonesia
| | - Jian-Bin Chen
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Yan Wei
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Zhan-Hong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Li-Min Zheng
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xin-Qiu Tan
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Xiao-Bin Shi
- Subcollege of Longping, College of Biology, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
- *Correspondence: Xiao-Bin Shi, ; Yong Liu, ; De-Yong Zhang,
| | - Yong Liu
- Subcollege of Longping, College of Biology, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
- *Correspondence: Xiao-Bin Shi, ; Yong Liu, ; De-Yong Zhang,
| | - De-Yong Zhang
- Subcollege of Longping, College of Biology, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
- *Correspondence: Xiao-Bin Shi, ; Yong Liu, ; De-Yong Zhang,
| |
Collapse
|
3
|
Lu D, Yue H, Huang L, Zhang D, Zhang Z, Zhang Z, Zhang Y, Li F, Yan F, Zhou X, Shi X, Liu Y. Suppression of Bta11975, an α-glucosidase, by RNA interference reduces transmission of tomato chlorosis virus by Bemisia tabaci. PEST MANAGEMENT SCIENCE 2021; 77:5294-5303. [PMID: 34310017 DOI: 10.1002/ps.6572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Tomato chlorosis virus (ToCV) is mainly vectored by Bemisia tabaci in China, which has a worldwide distribution, and greatly reduces the yields of tomato and other vegetables. At present, control of ToCV has been focused mainly by the use of insecticides to control whitefly populations. Transcriptome sequencing showed high expression of the B. tabaci Bta11975 gene, an α-glucosidase (AGLU) during ToCV acquisition by whitefly Mediterranean (MED) species. To investigate the role of Bta11975 gene in ToCV acquisition and transmission by B. tabaci MED, we used RNA interference (RNAi) to reduce the expression of the Bta11975 gene. RESULTS The relative expression of the Bta11975 gene was correlated with the ToCV content in B. tabaci. The AGLU is highly expressed in primary salivary gland and gut. After the Bta11975 gene was silenced, the gene expression of B. tabaci was reduced and B. tabaci mortality was increased. Besides, ToCV acquisition by B. tabaci at 48 and 72 h AAP was reduced, and ToCV transmission was significantly reduced by 25 or 50 of B. tabaci. CONCLUSIONS These results indicate that suppression of expression of the Bta11975 gene in B. tabaci MED by RNAi can reduce acquisition and transmission of ToCV by B. tabaci MED.
Collapse
Affiliation(s)
- DingYiHui Lu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Hao Yue
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - LiPing Huang
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - DeYong Zhang
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - ZhanHong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Fei Yan
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - XuGuo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - XiaoBin Shi
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Liu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
4
|
Tan H, Zhang H, Wu C, Wang C, Li Q. Pesticides in surface waters of tropical river basins draining areas with rice-vegetable rotations in Hainan, China: Occurrence, relation to environmental factors, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117100. [PMID: 33865099 DOI: 10.1016/j.envpol.2021.117100] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Pesticides are heavily applied in rice-vegetable rotations in tropical China, yet publicly available information on the contamination and risk of currently used pesticides (CUPs) and legacy pesticides (LPs) in surface waters of river basins draining these areas is very limited. Therefore, in two tropical river basins (Nandu River and Wanquan River basins) dominated by rice-vegetable rotations in Hainan, China, pesticides were analyzed in 256 surface water samples in wet and dry seasons. Forty-one pesticides were detected, and total concentrations ranged from not detectable to 24.2 μg/L. Carbendazim and imidacloprid were the two most prevalent CUPs, detected in 59.8% and 17.7%, respectively, of surface water samples at concentrations above 0.1 μg/L. Chlorpyrifos was the main LP, detected in 9.0% of samples at a concentration above 0.05 μg/L. The fungicides difenoconazole and emamectin benzoate, the herbicide butachlor, and the insecticide acetamiprid occurred in ≥12.5% samples at concentrations above 0.1 μg/L. Surface waters typically (85.2%) contained 5 to 15 residues, with an average of nine. Seasonally, the concentrations of the 41 pesticides were in the order January > July > November > September. Spatially, the composition of the main CUPs (not LPs) was significantly different depending on position in the drainage, which also changed with seasons. Crop and pest types and wet and dry seasons were the key factors controlling the spatiotemporal distribution of CUPs and LPs in surface waters. On the basis of evaluations of the exposures to individual pesticides and the dominant combinations with ≥8 pesticides, multiple pesticides were likely a significant risk to aquatic organisms, although noncarcinogenic and carcinogenic risks to humans were low. This study provides valuable data to better understand pesticide occurrence and ecological risks in river basins draining areas with rice-vegetable rotation systems in tropical China.
Collapse
Affiliation(s)
- Huadong Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou, 571737, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou, 571737, China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou, 571737, China
| | - Huijie Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; School of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyuan Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou, 571737, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou, 571737, China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou, 571737, China.
| | - Chuanmi Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou, 571737, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou, 571737, China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou, 571737, China
| |
Collapse
|
5
|
Natsuhara D, Takishita K, Tanaka K, Kage A, Suzuki R, Mizukami Y, Saka N, Nagai M, Shibata T. A Microfluidic Diagnostic Device Capable of Autonomous Sample Mixing and Dispensing for the Simultaneous Genetic Detection of Multiple Plant Viruses. MICROMACHINES 2020; 11:mi11060540. [PMID: 32466570 PMCID: PMC7344993 DOI: 10.3390/mi11060540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023]
Abstract
As an efficient approach to risk management in agriculture, the elimination of losses due to plant diseases and insect pests is one of the most important and urgent technological challenges for improving the crop yield. Therefore, we have developed a polydimethylsiloxane (PDMS)-based microfluidic device for the multiplex genetic diagnosis of plant diseases and pests. It offers unique features, such as rapid detection, portability, simplicity, and the low-cost genetic diagnosis of a wide variety of plant viruses. In this study, to realize such a diagnostic device, we developed a method for the autonomous dispensing of fluid into a microchamber array, which was integrated with a set of three passive stop valves with different burst pressures (referred to as phaseguides) to facilitate precise fluid handling. Additionally, we estimated the mixing efficiencies of several types of passive mixers (referred to as chaotic mixers), which were integrated into a microchannel, through experimental and computational analyses. We first demonstrated the ability of the fabricated diagnostic devices to detect DNA-based plant viruses from an infected tomato crop based on the loop-mediated isothermal amplification (LAMP) method. Moreover, we demonstrated the simultaneous detection of RNA-based plant viruses, which can infect cucurbits, by using the reverse transcription LAMP (RT-LAMP) method. The multiplex RT-LAMP assays revealed that multiple RNA viruses extracted from diseased cucumber leaves were successfully detected within 60 min, without any cross-contamination between reaction microchambers, on our diagnostic device.
Collapse
Affiliation(s)
- Daigo Natsuhara
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
- Correspondence: (D.N.); (T.S.)
| | - Keisuke Takishita
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
| | - Kisuke Tanaka
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
| | - Azusa Kage
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
| | - Ryoji Suzuki
- Agro-Environmental Division, Aichi Agricultural Research Center, Nagakute, Aichi 480-1193, Japan; (R.S.); (Y.M.); (N.S.)
| | - Yuko Mizukami
- Agro-Environmental Division, Aichi Agricultural Research Center, Nagakute, Aichi 480-1193, Japan; (R.S.); (Y.M.); (N.S.)
| | - Norikuni Saka
- Agro-Environmental Division, Aichi Agricultural Research Center, Nagakute, Aichi 480-1193, Japan; (R.S.); (Y.M.); (N.S.)
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
| | - Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
- Correspondence: (D.N.); (T.S.)
| |
Collapse
|
6
|
Tang X, Shi X, Zhang D, Li F, Yan F, Zhang Y, Liu Y, Zhou X. Correction to: Detection and epidemic dynamic of ToCV and CCYV with Bemisia tabaci and weed in Hainan of China. Virol J 2019; 16:14. [PMID: 30700315 PMCID: PMC6352319 DOI: 10.1186/s12985-019-1121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 11/10/2022] Open
|
7
|
Fiallo‐Olivé E, Navas‐Castillo J. Tomato chlorosis virus, an emergent plant virus still expanding its geographical and host ranges. MOLECULAR PLANT PATHOLOGY 2019; 20:1307-1320. [PMID: 31267719 PMCID: PMC6715620 DOI: 10.1111/mpp.12847] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
UNLABELLED Tomato chlorosis virus (ToCV) causes an important disease that primarily affects tomato, although it has been found infecting other economically important vegetable crops and a wide range of wild plants. First described in Florida (USA) and associated with a 'yellow leaf disorder' in the mid-1990s, ToCV has been found in 35 countries and territories to date, constituting a paradigmatic example of an emergent plant pathogen. ToCV is transmitted semipersistently by whiteflies (Hemiptera: Aleyrodidae) belonging to the genera Bemisia and Trialeurodes. Whitefly transmission is highly efficient and cases of 100% infection are frequently observed in the field. To date, no resistant or tolerant tomato plants are commercially available and the control of the disease relies primarily on the control of the insect vector. TAXONOMY Tomato chlorosis virus is one of the 14 accepted species in the genus Crinivirus, one of the four genera in the family Closteroviridae of plant viruses. VIRION AND GENOME PROPERTIES The genome of ToCV is composed of two molecules of single-stranded positive-sense RNA, named RNA1 and RNA2, separately encapsidated in long, flexuous, rod-like virions. As has been shown for other closterovirids, ToCV virions are believed to have a bipolar structure. RNA1 contains four open reading frames (ORFs) encoding proteins associated with virus replication and suppression of gene silencing, whereas RNA2 contains nine ORFs encoding proteins putatively involved in encapsidation, cell-to-cell movement, gene silencing suppression and whitefly transmission. HOST RANGE In addition to tomato, ToCV has been found to infect 84 dicot plant species belonging to 25 botanical families, including economically important crops. TRANSMISSION Like all species within the genus Crinivirus, ToCV is semipersistently transmitted by whiteflies, being one of only two criniviruses transmitted by members of the genera Bemisia and Trialeurodes. DISEASE SYMPTOMS Tomato 'yellow leaf disorder' syndrome includes interveinal yellowing and thickening of leaves. Symptoms first develop on lower leaves and then advance towards the upper part of the plant. Bronzing and necrosis of the older leaves are accompanied by a decline in vigour and reduction in fruit yield. In other hosts the most common symptoms include interveinal chlorosis and mild yellowing on older leaves. CONTROL Control of the disease caused by ToCV is based on the use of healthy seedlings for transplanting, limiting accessibility of alternate host plants that can serve as virus reservoirs and the spraying of insecticides for vector control. Although several wild tomato species have been shown to contain genotypes resistant to ToCV, there are no commercially available resistant or tolerant tomato varieties to date.
Collapse
Affiliation(s)
- Elvira Fiallo‐Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas – Universidad de Málaga (IHSM‐CSIC‐UMA)Avenida Dr. Wienberg s/n29750Algarrobo‐Costa, MálagaSpain
| | - Jesús Navas‐Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas – Universidad de Málaga (IHSM‐CSIC‐UMA)Avenida Dr. Wienberg s/n29750Algarrobo‐Costa, MálagaSpain
| |
Collapse
|