1
|
Macha NO, Komarasamy TV, Harun S, Adnan NAA, Hassan SS, Balasubramaniam VRMT. Cross Talk between MicroRNAs and Dengue Virus. Am J Trop Med Hyg 2024; 110:856-867. [PMID: 38579704 PMCID: PMC11066346 DOI: 10.4269/ajtmh.23-0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/19/2023] [Indexed: 04/07/2024] Open
Abstract
Dengue fever (DF) is an endemic infectious tropical disease and is rapidly becoming a global problem. Dengue fever is caused by one of the four dengue virus (DENV) serotypes and is spread by the female Aedes mosquito. Clinical manifestations of DF may range from asymptomatic to life-threatening severe illness with conditions of hemorrhagic fever and shock. Early and precise diagnosis is vital to avoid mortality from DF. A different approach is required to combat DF because of the challenges with the vaccines currently available, which are nonspecific; each is capable of causing cross-reaction and disease-enhancing antibody responses against the residual serotypes. MicroRNAs (miRNAs) are known to be implicated in DENV infection and are postulated to be involved in most of the host responses. Thus, they might be a suitable target for new strategies against the disease. The involvement of miRNAs in cellular activities and pathways during viral infections has been explored under numerous conditions. Interestingly, miRNAs have also been shown to be involved in viral replication. In this review, we summarize the role of known miRNAs, specifically the role of miRNA Let-7c (miR-Let-7c), miR-133a, miR-30e, and miR-146a, in the regulation of DENV replication and their possible effects on the initial immune reaction.
Collapse
Affiliation(s)
- Nur Omar Macha
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology Malaysia, National University of Malaysia, Selangor, Malaysia
| | - Nur Amelia Azreen Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Sharifah Syed Hassan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
2
|
Paquette SJ, Simon AY, XIII A, Kobinger GP, Shahhosseini N. Medically Significant Vector-Borne Viral Diseases in Iran. Microorganisms 2023; 11:3006. [PMID: 38138150 PMCID: PMC10745727 DOI: 10.3390/microorganisms11123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Vector-borne viral diseases (VBVDs) continue to pose a considerable public health risk to animals and humans globally. Vectors have integral roles in autochthonous circulation and dissemination of VBVDs worldwide. The interplay of agricultural activities, population expansion, urbanization, host/pathogen evolution, and climate change, all contribute to the continual flux in shaping the epidemiology of VBVDs. In recent decades, VBVDs, once endemic to particular countries, have expanded into new regions such as Iran and its neighbors, increasing the risk of outbreaks and other public health concerns. Both Iran and its neighboring countries are known to host a number of VBVDs that are endemic to these countries or newly circulating. The proximity of Iran to countries hosting regional diseases, along with increased global socioeconomic activities, e.g., international trade and travel, potentially increases the risk for introduction of new VBVDs into Iran. In this review, we examined the epidemiology of numerous VBVDs circulating in Iran, such as Chikungunya virus, Dengue virus, Sindbis virus, West Nile virus, Crimean-Congo hemorrhagic fever virus, Sandfly-borne phleboviruses, and Hantavirus, in relation to their vectors, specifically mosquitoes, ticks, sandflies, and rodents. In addition, we discussed the interplay of factors, e.g., urbanization and climate change on VBVD dissemination patterns and the consequent public health risks in Iran, highlighting the importance of a One Health approach to further surveil and to evolve mitigation strategies.
Collapse
Affiliation(s)
- Sarah-Jo Paquette
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - Ayo Yila Simon
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Ara XIII
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.X.); (G.P.K.)
| | - Gary P. Kobinger
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.X.); (G.P.K.)
| | - Nariman Shahhosseini
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| |
Collapse
|
3
|
Tian F, He J, Shang S, Chen Z, Tang Y, Lu M, Huang C, Guo X, Tong Y. Survey of mosquito species and mosquito-borne viruses in residential areas along the Sino-Vietnam border in Yunnan Province in China. Front Microbiol 2023; 14:1105786. [PMID: 36910188 PMCID: PMC9996012 DOI: 10.3389/fmicb.2023.1105786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Mosquitoes are capable of carrying complex pathogens, and their feeding habits on the mammalian blood can easily mediate the spread of viruses. Surveillance of mosquito-based arbovirus enables the early prevention and control of mosquito-borne arboviral diseases. The climate and geography of Yunnan Province in China are ideal for mosquitoes. Yunnan shares borders with several other countries; therefore, there exists a high risk of international transmission of mosquito-mediated infectious diseases. Previous studies have focused more on the Sino-Laos and Sino-Myanmar borders. Therefore, we focused on the neighborhoods of Malipo and Funing counties in Wenshan Prefecture, Yunnan Province, China, which are located along the Sino-Vietnam border, to investigate the species of mosquitoes and mosquito-borne viruses in the residential areas of this region. This study collected 10,800 mosquitoes from 29 species of 8 genera and grouped to isolate mosquito-borne viruses. In total, 62 isolates were isolated and classified into 11 viral categories. We demonstrated a new distribution of mosquito-borne viruses among mosquitoes in border areas, including Tembusu and Getah viruses, which can cause animal outbreaks. In addition, Dak Nong and Sarawak viruses originating from Vietnam and Malaysia, respectively, were identified for the first time in China, highlighting the complexity of mosquito-borne viruses in the Sino-Vietnam border region. The awareness of the importance of viral surveillance and prevention measures in border areas should be further encouraged to prevent future outbreaks of potentially infectious diseases.
Collapse
Affiliation(s)
- Fengjuan Tian
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jimin He
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shanlin Shang
- Malipo County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Zhongyan Chen
- Malipo County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Yumei Tang
- Funing County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Man Lu
- Funing County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Changzhi Huang
- Funing County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Xiaofang Guo
- Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan Institute of Parasitic Diseases Control, Puer, Yunnan, China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
4
|
Mutagenic Analysis of the HIV Restriction Factor Shiftless. Viruses 2022; 14:v14071454. [PMID: 35891432 PMCID: PMC9324250 DOI: 10.3390/v14071454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
The interferon-induced host cell protein shiftless (SFL) was reported to inhibit human immunodeficiency virus (HIV) infection by blocking the –1 programmed ribosomal frameshifting (–1PRF) required for expression of the Gag-Pol polyprotein. However, it is not clear how SFL inhibits –1PRF. To address this question, we focused on a 36 amino acids comprising region (termed required for antiviral activity (RAA)) that is essential for suppression of –1PRF and HIV infection and is missing from SFL short (SFLS), a splice variant of SFL with unknown function. Here, we confirm that SFL, but not SFLS, inhibits HIV –1PRF and show that inhibition is cell-type-independent. Mutagenic and biochemical analyses demonstrated that the RAA region is required for SFL self-interactions and confirmed that it is necessary for ribosome association and binding to the HIV RNA. Analysis of SFL mutants with six consecutive amino-acids-comprising deletions in the RAA region suggests effects on binding to the HIV RNA, complete inhibition of –1PRF, inhibition of Gag-Pol expression, and antiviral activity. In contrast, these amino acids did not affect SFL expression and were partially dispensable for SFL self-interactions and binding to the ribosome. Collectively, our results support the notion that SFL binds to the ribosome and the HIV RNA in order to block –1PRF and HIV infection, and suggest that the multimerization of SFL may be functionally important.
Collapse
|
5
|
Zhu X, Chen W, Ma C, Wang X, Sun J, Nie J, Shi J, Hu Y. Whole genome analysis identifies intra-serotype recombinants and positive selection sites of dengue virus in mainland China from 2015 to 2020. Virus Res 2022; 311:198705. [PMID: 35121087 DOI: 10.1016/j.virusres.2022.198705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Immune selection pressure can drive the virus to mutate, so as to achieve immune escape and epidemic of the virus. Thus, surveillance of recombinants and positively selected mutants of the dengue virus (DENV) are vital for preventing and controlling the dengue fever outbreak. However, little is known about recombinants and positively selected mutants of circulating DENV strains in mainland China. In this study, those variants with recombination and adaptive evolutionary sites of circulating DENV strains were identified during 2015-2020. Phylogenetic analysis showed that the DENV-2 was the dominant epidemic serotype, and the dengue epidemic in China was closely related to the imported virus from Southeast Asian countries. Recombination analysis based on 291 complete genomes of naturally circulating DENV identified 10 new intra-serotype recombinant variants. Two or three recombination regions in a single dengue isolate were also observed. The breakpoints of recombinants were distributed in different regions of the genome. In particular, two recombinant strains (strain DENV-4/China/YN/15DGR394 (2015) and XLLM10666) with extremely large exchange fragments were detected. This large-scale gene fragment exchange (eight genomic regions) of strain DENV-4/China/YN/15DGR394 (2015) with substitutions at both the 5' and 3' ends of the genome, had never been described before. Moreover, selection pressure analyses revealed seven positive selection sites located in regions encoding the NS1, NS3 and NS5 proteins. Overall, this study is the first to report ten specific intra-serotype recombinants and seven positive selection sites of Chinese epidemic strains of DENV, which highlight their significance for DENV surveillance and effective control.
Collapse
Affiliation(s)
- Xiaoli Zhu
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China; Kunming Medical University, Kunming, Yunnan, China; Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wanxin Chen
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Chunli Ma
- Kunming Medical University, Kunming, Yunnan, China
| | - Xin Wang
- Kunming Medical University, Kunming, Yunnan, China
| | - Jing Sun
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jianyun Nie
- Kunming Medical University, Kunming, Yunnan, China; Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiandong Shi
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Yunzhang Hu
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| |
Collapse
|
6
|
Lan Q, Shu Y, Li L, Shan X, Ma D, Li T, Wang X, Pan Y, Chen J, Zhang J, Liu P, Sun Q. Molecular characterization of structural protein genes of dengue virus serotype 1 epidemic in Yunnan, Southwest China, in 2018. Arch Virol 2021; 166:863-870. [PMID: 33495898 PMCID: PMC7831630 DOI: 10.1007/s00705-020-04942-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/12/2020] [Indexed: 01/02/2023]
Abstract
A dengue virus serotype 1 (DENV-1) epidemic occurred from October to December 2018 in Xishuangbanna, Yunnan, Southwest China, neighboring Myanmar, Laos, and Vietnam. In this study, we investigated the molecular characteristics, evolution, and potential source of DENV from Xishuangbanna. The C (capsid), prM (premembrane), and E (envelope) genes of DENV isolated from 87 serum samples obtained from local patients were amplified and sequenced, and the sequences were evaluated by identification of mutations, phylogenetic and homologous recombination analysis, and secondary structure prediction. Phylogenetic analysis showed that all of the epidemic DENV strains from Xishuangbanna could be grouped in a branch with DENV-1 isolates, and were most similar to the Fujian 2005 (China, DQ193572) and Singapore 2016 (MF314188) strains. When compared with DENV-1SS (the standard strain), there were 31 non-synonymous mutations, but no obvious homologous recombination signal was found. Secondary structure prediction showed that some changes had occurred in a helical region in proteins of the MN123849 and MN123854 strains, but there were few changes in the disordered region. This study reveals the molecular characteristics of the structural genes of the Xishuangbanna epidemic strains in 2018 and provides a reference for molecular epidemiology, infection, and pathogenicity research and vaccine development.
Collapse
Affiliation(s)
- Qingping Lan
- Institute of Medical Biology, Chinese academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Yun Shu
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Linhao Li
- Institute of Medical Biology, Chinese academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China.,Kunming Medical University, Kunming, People's Republic of China
| | - Xiyun Shan
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Dehong Ma
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Tingting Li
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Yue Pan
- Institute of Medical Biology, Chinese academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Junying Chen
- Institute of Medical Biology, Chinese academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Juan Zhang
- Institute of Medical Biology, Chinese academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China.,Kunming Medical University, Kunming, People's Republic of China
| | - Pinghua Liu
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China.
| | - Qiangming Sun
- Institute of Medical Biology, Chinese academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China. .,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China.
| |
Collapse
|
7
|
Kar M, Nisheetha A, Kumar A, Jagtap S, Shinde J, Singla M, M S, Pandit A, Chandele A, Kabra SK, Krishna S, Roy R, Lodha R, Pattabiraman C, Medigeshi GR. Isolation and molecular characterization of dengue virus clinical isolates from pediatric patients in New Delhi. Int J Infect Dis 2018; 84S:S25-S33. [PMID: 30528666 DOI: 10.1016/j.ijid.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE To characterize the in vitro replication fitness, viral diversity, and phylogeny of dengue viruses (DENV) isolated from Indian patients. METHODS DENV was isolated from whole blood collected from patients by passaging in cell culture. Passage 3 viruses were used for growth kinetics in C6/36 mosquito cells. Parallel efforts also focused on the isolation of DENV RNA from plasma samples of the same patients, which were processed for next-generation sequencing. RESULTS It was possible to isolate 64 clinical isolates of DENV, mostly DENV-2. Twenty-five of these were further used for growth curve analysis in vitro, which showed a wide range of replication kinetics. The highest viral titers were associated with isolates from patients with dengue with warning signs and severe dengue cases. Full genome sequences of 21 DENV isolates were obtained. Genome analysis mapped the circulating DENV-2 strains to the Cosmopolitan genotype. CONCLUSIONS The replication kinetics of isolates from patients with mild or severe infection did not differ significantly, but the viral titers varied by two orders of magnitude between the isolates, suggesting differences in replication fitness among the circulating DENV-2.
Collapse
Affiliation(s)
- Meenakshi Kar
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amul Nisheetha
- National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Anuj Kumar
- National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Jitendra Shinde
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Mohit Singla
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Saranya M
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Awadhesh Pandit
- National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, ICGEB Campus, New Delhi, India
| | - Sushil K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sudhir Krishna
- National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India; Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India; Center for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|