1
|
Pourcher V, Boudot de La Motte M, Touat M, Deschamps R, Dehais C, Houillier C, Domont F, Bonnin S, Le Stang MB, Rodriguez C, Eloit M, Peytavin G, Maillart E. Lack of efficacy of sofosbuvir in Human Pegivirus associated neurological disorders. Rev Neurol (Paris) 2025; 181:363-364. [PMID: 40021379 DOI: 10.1016/j.neurol.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Affiliation(s)
- V Pourcher
- Infectious Diseases Department, Pierre-Louis Institute of Epidemiology and Public Health (iPLESP), Inserm U1136, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France.
| | | | - M Touat
- Neurology 2 - Mazarin, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - R Deschamps
- Neurologie, hôpital Fondation Adolphe-de-Rothschild, Paris, France
| | - C Dehais
- Neurology 2 - Mazarin, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - C Houillier
- Neurology 2 - Mazarin, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - F Domont
- Internal Medecine, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - S Bonnin
- Ophtalmologie, hôpital Fondation Adolphe-de-Rothschild, Paris, France
| | - M-B Le Stang
- Service des maladies du rein et du métabolisme, transplantation et immunologie clinique, hôpital universitaire Necker - AP-HP.Centre - université Paris Cité, Paris, France
| | - C Rodriguez
- Service de virologie, Henri-Mondor Hospital, Créteil, France
| | - M Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - G Peytavin
- Service de pharmacologie, IAME, Inserm UMR 1137, université Paris Cité, Paris, France
| | - E Maillart
- Neurology Department, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| |
Collapse
|
2
|
Sharma K, Murthy MK. A review of historical landmarks and pioneering technologies for the diagnosis of Hepatitis C Virus (HCV). Eur J Clin Microbiol Infect Dis 2025:10.1007/s10096-025-05110-y. [PMID: 40119224 DOI: 10.1007/s10096-025-05110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/17/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Since the progress of hepatitis C Virus (HCV) infection to chronic liver disease and finally cirrhosis and hepatocellular carcinoma, HCV infection has become a worldwide challenge to public health. RESULTS The progression from liver biopsy and antibody based test to the current time in the advancements in HCV diagnostic method is reviewed in this analysis with detailed discussion of enzyme immunoassay (EIAs), nucleic acid tests (NATs) and genotyping in enhancing accuracy of HCV detection. Next generation sequencing (NGS) and point of care testing (POCT) provided fast and economical diagnostic solutions. However, as promising diagnostic tools, Artificial Intelligence (AI) as well as Machine Learning (ML) can only be used in well-resourced environments, whereas Rapid Diagnostic Tests (RDTs) are advantageous for low and middle income countries. CONCLUSION This review discusses some of the future challenges that face lowering of diagnostic costs in low resource settings and promoting early detection, some of which can be addressed by microfluidic platforms. Research in this area is far from over, and past and ongoing research has tremendous potential to access new technology for a myriad of purposes in the course of HCV control and global HCV elimination.
Collapse
Affiliation(s)
- Kajal Sharma
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Fahnøe U, Madsen LW, Christensen PB, Sølund CS, Mollerup S, Pinholt M, Weis N, Øvrehus A, Bukh J. Effect of direct-acting antivirals on the titers of human pegivirus 1 during treatment of chronic hepatitis C patients. Microbiol Spectr 2024; 12:e0064124. [PMID: 39051781 PMCID: PMC11370240 DOI: 10.1128/spectrum.00641-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Coinfections with human pegivirus 1 (HPgV-1) are common in chronic hepatitis C virus (HCV) patients. However, little is known about whether HPgV-1 is affected by direct-acting antivirals during HCV treatment. Metagenomic analysis and reverse transcriptase-quantitative PCR (RT-qPCR) were performed on RNA from the plasma of 88 selected chronic HCV patients undergoing medical treatment. Twenty (23%) of these HCV patients had HPgV-1 coinfections and were followed by RT-qPCR during treatment and follow-up to investigate HPgV-1 RNA titers. Recovered sequences could be assembled to complete HPgV-1 genomes, and most formed a genotype 2 subclade. All HPgV-1 viral genomic regions were under negative purifying selection. Glecaprevir/pibrentasvir treatment in five patients did not consistently lower the genome titers of HPgV-1. In contrast, a one log10 drop of HPgV-1 titers at week 2 was observed in 10 patients during treatment with sofosbuvir-containing regimens, sustained to the end of treatment (EOT) and in two cases decreasing to below the detection limit of the assay. For the five patients treated with ledipasvir/sofosbuvir with the inclusion of pegylated interferon, titers decreased to below the detection limit at week 2 and remained undetectable to EOT. Subsequently, the HPgV-1 titer rebounded to pretreatment levels for all patients. In conclusion, we found that HCV treatment regimens that included the polymerase inhibitor sofosbuvir resulted in decreases in HPgV-1 titers, and the addition of pegylated interferon increased the effect on patients with coinfections. This points to the high specificity of protease and NS5A inhibitors toward HCV and the more broad-spectrum activity of sofosbuvir and especially pegylated interferon. IMPORTANCE Human pegivirus 1 coinfections are common in hepatitis C virus (HCV) patients, persisting for years. However, little is known about how pegivirus coinfections are affected by treatment with pangenotypic direct-acting antivirals (DAAs) against HCV. We identified human pegivirus by metagenomic analysis of chronic HCV patients undergoing protease, NS5A, and polymerase inhibitor treatment, in some patients with the addition of pegylated interferon, and followed viral kinetics of both viruses to investigate treatment effects. Only during HCV DAA treatment regimens that included the more broad-spectrum drug sofosbuvir could we detect a consistent decline in pegivirus titers that, however, rebounded to pretreatment levels after treatment cessation. The addition of pegylated interferon gave the highest effect with pegivirus titers decreasing to below the assay detection limit, but without clearance. These results reveal the limited effect of frontline HCV drugs on the closest related human virus, but sofosbuvir appeared to have the potential to be repurposed for other viral diseases.
Collapse
Affiliation(s)
- Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Wulff Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Institute for Regional Health Research, University of Southern Denmark, Research Unit for Internal Medicine Kolding Hospital, Kolding, Denmark
| | - Peer Brehm Christensen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Christina Søhoel Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Sarah Mollerup
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Hvidovre, Denmark
| | - Anne Øvrehus
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Garand M, Huang SSY, Goessling LS, Santillan DA, Santillan MK, Brar A, Wylie TN, Wylie KM, Eghtesady P. A Case of Persistent Human Pegivirus Infection in Two Separate Pregnancies of a Woman. Microorganisms 2022; 10:1925. [PMID: 36296201 PMCID: PMC9610878 DOI: 10.3390/microorganisms10101925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 05/26/2024] Open
Abstract
Human pegivirus (HPgV) is best known for persistent, presumably non-pathogenic, infection and a propensity to co-infect with human immunodeficiency virus or hepatitis C virus. However, unique attributes, such as the increased risk of malignancy or immune modulation, have been recently recognized for HPgV. We have identified a unique case of a woman with high levels HPgV infection in two pregnancies, which occurred 4 years apart and without evidence of human immunodeficiency virus or hepatitis C virus infection. The second pregnancy was complicated by congenital heart disease. A high level of HPgV infection was detected in the maternal blood from different trimesters by RT-PCR and identified as HPgV type 1 genotype 2 in both pregnancies. In the second pregnancy, the decidua and intervillous tissue of the placenta were positive for HPgV by PCR but not the chorion or cord blood (from both pregnancies), suggesting no vertical transmission despite high levels of viremia. The HPgV genome sequence was remarkably conserved over the 4 years. Using VirScan, sera antibodies for HPgV were detected in the first trimester of both pregnancies. We observed the same anti-HPgV antibodies against the non-structural NS5 protein in both pregnancies, suggesting a similar non-E2 protein humoral immune response over time. To the best of our knowledge, this is the first report of persistent HPgV infection involving placental tissues with no clear indication of vertical transmission. Our results reveal a more elaborate viral-host interaction than previously reported, expand our knowledge about tropism, and opens avenues for exploring the replication sites of this virus.
Collapse
Affiliation(s)
- Mathieu Garand
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susie S. Y. Huang
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lisa S. Goessling
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donna A. Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Mark K. Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Anoop Brar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Todd N. Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristine M. Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pirooz Eghtesady
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Shaker EK, Al-Jebouri MM, Al-Mayah QS, Al-Matubsi HY. Phylogenetic analysis of human pegivirus from anti-hepatitis C virus IgG- positive patients. INFECTION GENETICS AND EVOLUTION 2021; 96:105099. [PMID: 34601095 DOI: 10.1016/j.meegid.2021.105099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022]
Abstract
Human pegivirus type 1 (HPgV-1) is a non-pathogenic RNA virus in the Flaviviridae family that usually occurs as a co-infection with hepatitis B virus (HBV) or hepatitis C virus (HCV), though some evidence suggests it may play a role in certain cancers. The present study aimed to determine the prevalence of HPgV-1 infection in Iraqi anti-HCV IgG-positive patients, the risk factors associated with this infection, and the genotype of local isolates of this virus. A total of 88 anti-HCV IgG-positive patients participated in this cross-sectional study. Viral RAN was extracted from whole blood samples, and cDNA was produced using reverse transcriptase-polymerase chain reaction (RT-PCR). Two pairs of primers were used in nested PCR to amplify the virus genome's 5'-untranslated region (5'UTR). For direct sequencing, fourteen PCR products from the second round of PCR were chosen at random. A homology search was performed using the basic local alignment search tool (BLAST) program to identify the resultant sequencing. The phylogenetic tree of the local isolates and 31 reference isolates was constructed using MEGA X software to estimate the virus's genetic diversity and relatedness. Out of 88 patients included in this study, 27(30.68%) of patients were found to be positive for HPgV-1 RNA. The nucleotide homology between the 14 local isolates and the reference isolates. was found to be 87-97%. Phylogenetic analysis results in a tree with four main parts, which are distributed as follows: 10 local isolates are genotype 2; 2 are genotype 1; 1 is genotype 5, and 1 is genotype 6. We conclude that when compared to other countries, the infection rate of Iraqi anti-HCV IgG-positive patients with HPgV-1 is relatively high (30.68%). The most common HPgV-1 genotype in Iraq is genotype 2.
Collapse
Affiliation(s)
- Ekremah K Shaker
- Medical Laboratory Technique, Al-Rasheed University College, Iraq
| | | | - Qasim S Al-Mayah
- Medical Research Unit, College of Medicine, Al-Nahrain University, Iraq
| | - Hisham Y Al-Matubsi
- Department of Pharmacology and Medical Sciences, University of Petra, Amman, Jordan.
| |
Collapse
|