1
|
Subbotina AO, Martemyanov VV, Belousova IA. Atypical pathogenesis of DsCPV-1 in candidate for mass production Manduca sexta (Lepidoptera: Sphingidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2025:toaf047. [PMID: 40181772 DOI: 10.1093/jee/toaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 04/05/2025]
Abstract
Recently obtained cypovirus strain DsCPV-1 shows potential as a biological insecticide, with its alternative host Manduca sexta (L.) being a promising producer. We confirmed DsCPV-1 replication in M. sexta by quantitative PCR, validating DsCPV-1's suitability as a biological producer. At the terminal infection stage, we revealed many nonoccluded DsCPV-1 virions by transmission electron microscopy, indicating virus replication with reduced or without polyhedron formation in this alternative host.
Collapse
Affiliation(s)
- Anna O Subbotina
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Sirius University of Science and Technology, Sochi, Russia
| | | | - Irina A Belousova
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| |
Collapse
|
2
|
Belevitch O, Yurchenko Y, Kharlamova D, Shatalova E, Agrikolyanskaya N, Subbotina A, Ignatieva A, Tokarev Y, Martemyanov V. Ecological safety of insecticide based on entomopathogenic virus DsCPV-1 for nontarget invertebrates. Sci Rep 2024; 14:29093. [PMID: 39582042 PMCID: PMC11586429 DOI: 10.1038/s41598-024-78471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
For the first time under laboratory conditions, the virulence of a unique cypovirus strain, DsCPV-1, which has broad host specificity, was tested on nontarget aquatic organisms (natural species: Gammarus lacustris, Anopheles messeae, Coenagrion lunulatum, Cloeon robusta, Chironomus sp., Ilyocoris cimicoides, and Plea minutissima; laboratory species: Aedes aegypti and Daphnia magna), a terrestrial pollinator species (Apis mellifera), and an entomophage (Podisus maculiventris). The probability of this virus's accumulation in the bodies of invertebrates and of its transmission along a trophic chain was evaluated by two approaches: bioassays and a molecular diagnostic analysis. In the bioassays, there was no significant increase in mortality among all the tested aquatic and terrestrial nontarget species exposed to DsCPV-1 as compared with control groups (no virus). When we fed Podisus maculiventris with caterpillars having active DsCPV-1 infection (i.e., with the virus replicating in the host) no viral replication was observed in bug. No replication was also observed in mosquitos as well as in bee after viral treatment. Thus, the results show that the DsCPV-1 virus has excellent environmental safety toward many invertebrate species and can be recommended for the control of lepidopteran pests in forestry and agriculture as insecticide with light effect on environment.
Collapse
Affiliation(s)
- Olga Belevitch
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, Novosibirsk, 630091, Russia.
| | - Yuri Yurchenko
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, Novosibirsk, 630091, Russia
| | - Daria Kharlamova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, Novosibirsk, 630091, Russia
| | - Elena Shatalova
- Siberian Federal Scientific Centre of Agrobiotechnologies of the Russian Academy of Sciences (SFSCA RAS), Krasnoobsk, 630501, Russia
| | - Natalia Agrikolyanskaya
- Siberian Federal Scientific Centre of Agrobiotechnologies of the Russian Academy of Sciences (SFSCA RAS), Krasnoobsk, 630501, Russia
| | - Anna Subbotina
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, Novosibirsk, 630091, Russia
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk, 630090, Russia
| | - Anastasia Ignatieva
- All-Russian Institute of Plant Protection, Podbelskogo 3, St. Petersburg, 196608, Russia
| | - Yuri Tokarev
- All-Russian Institute of Plant Protection, Podbelskogo 3, St. Petersburg, 196608, Russia
| | - Vyacheslav Martemyanov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, Novosibirsk, 630091, Russia.
| |
Collapse
|
3
|
Martemyanov VV, Akhanaev YB, Belousova IA, Pavlusin SV, Yakimova ME, Kharlamova DD, Ageev AA, Golovina AN, Astapenko SA, Kolosov AV, Ananko GG, Taranov OS, Shvalov AN, Bodnev SA, Ershov NI, Grushevaya IV, Timofeyev MA, Tokarev YS. A New Cypovirus-1 Strain as a Promising Agent for Lepidopteran Pest Control. Microbiol Spectr 2023; 11:e0385522. [PMID: 37154690 PMCID: PMC10269911 DOI: 10.1128/spectrum.03855-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Now more than ever researchers provide more and more evidence that it is necessary to develop an ecologically friendly approach to pest control. This is reflected in a sharp increase in the value of the biological insecticide market in recent decades. In our study, we found a virus strain belonging to the genus Cypovirus (Reoviridae); the strain was isolated from Dendrolimus sibiricus, possessing attractive features as a candidate for mass production of biological agents for lepidopteran-pest control. We describe the morphological, molecular, and ecological features of the new Cypovirus strain. This strain was found to be highly virulent to D. sibiricus (the half-lethal dose is 25 occlusion bodies per second-instar larva) and to have a relatively wide host range (infecting representatives of five families of Lepidoptera: Erebidae, Sphingidae, Pieridae, Noctuidae, and Lasiocampidae). The virus strain showed a strong interaction with a nontoxic adjuvant (optical brightener), which decreased the lethal dose for both main and alternative hosts, decreased lethal time, and may expand the host range. Moreover, we demonstrated that the insecticidal features were preserved after passaging through the most economically suitable host. By providing strong arguments for the possible use of this strain in pest control, we call on virologists, pest control specialists, and molecular biologists to give more attention to the Cypovirus genus, which may lead to new insights in the field of pest control research and may provide significant advantages to compare with baculoviruses and Bacillus thuringiensis products which are nowadays main source of bioinsecticides. IMPORTANCE In this article, we describe a newly discovered cypovirus strain that displays features ideally suited for the development of a modern biological insecticide: high potency, relatively broad host range, true regulating effect, flexible production (possibility to choose host species for production), interaction with enhancing adjuvants, and ecologically friendly. Based on an alignment of CPV genomes, we suggest that the enhanced host range of this new strain is the sequence of evolutionary events that occurred after coinfections involving different CPV species within the same host. These findings suggest that we need to positively reconsider CPVs as prospective agents as biocontrol products.
Collapse
Affiliation(s)
- Vyacheslav V. Martemyanov
- Laboratory of Ecological Physiology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
| | - Yuriy B. Akhanaev
- Laboratory of Ecological Physiology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Irina A. Belousova
- Laboratory of Ecological Physiology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Sergey V. Pavlusin
- Laboratory of Ecological Physiology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Biological Institute, National Research Tomsk State University, Tomsk, Russia
| | - Maria E. Yakimova
- Laboratory of Ecological Physiology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Department of Information Biology, Novosibirsk State University, Novosibirsk, Russia
| | - Daria D. Kharlamova
- Laboratory of Ecological Physiology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
| | - Alexander A. Ageev
- Center of Forest Pyrology, Development of Forest Ecosystem Conservation, Forest Protection and Regeneration Technologies, branch of All-Russia Research Institute of Silviculture and Mechanization of Forestry, Krasnoyarsk, Russia
| | - Anna N. Golovina
- Center of Forest Pyrology, Development of Forest Ecosystem Conservation, Forest Protection and Regeneration Technologies, branch of All-Russia Research Institute of Silviculture and Mechanization of Forestry, Krasnoyarsk, Russia
| | - Sergey A. Astapenko
- Center of Forest Pyrology, Development of Forest Ecosystem Conservation, Forest Protection and Regeneration Technologies, branch of All-Russia Research Institute of Silviculture and Mechanization of Forestry, Krasnoyarsk, Russia
| | - Alexey V. Kolosov
- FBRI State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, Russia
| | - Grigory G. Ananko
- FBRI State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, Russia
| | - Oleg S. Taranov
- FBRI State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, Russia
| | - Alexander N. Shvalov
- FBRI State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, Russia
| | - Sergey A. Bodnev
- FBRI State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, Russia
| | | | - Inna V. Grushevaya
- All-Russian Institute of Plant Protection, Pushkin – St. Petersburg, Russia
| | | | - Yuri S. Tokarev
- All-Russian Institute of Plant Protection, Pushkin – St. Petersburg, Russia
| |
Collapse
|
4
|
Zhang Z, Zhao Z, Lin S, Wu W, Tang W, Dong Y, Shen M, Wu P, Guo X. Identification of long noncoding RNAs in silkworm larvae infected with Bombyx mori cypovirus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:1-12. [PMID: 33619747 DOI: 10.1002/arch.21777] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Bombyx mori cypovirus (BmCPV) is one of the most important pathogens causing severe disease to silkworm. Emerging evidence indicates that long noncoding RNAs (lncRNAs) play importantly regulatory roles in virus infection and host immune response. To better understand the interaction between silkworm, Bombyx mori and BmCPV, we performed a comparative transcriptome analysis on lncRNAs and mRNAs between the virus-infected and noninfected silkworm larvae midgut at two time points postinoculation. A total of 16,753 genes and 1845 candidate lncRNAs were identified, among which 356 messenger RNA (mRNAs) and 41 lncRNAs were differentially expressed (DE). Target gene prediction revealed that most of DEmRNAs (123) were coexpressed with 28 DElncRNAs, suggesting that the expression of mRNA is mainly affected through trans- regulation by BmCPV-induced lncRNAs, and a regulatory network of DElncRNAs and DEmRNAs was then constructed. According to the network, many genes involved in apoptosis, autophagy, and antiviral response, such as ATG3, PDCD6, IBP2, and MFB1, could be targeted by different DElncRNAs, implying the essential roles of these genes and lncRNAs in BmCPV infection. In all, our studies revealed for the first time the alteration of lncRNA expression in BmCPV-infected larvae and its potential influence on BmCPV replication, providing a new perspective for host-cypovirus interaction studies.
Collapse
Affiliation(s)
- Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Ze Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Wanming Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Weiming Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Youfu Dong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|