1
|
Hassanpour P, Sadeghsoltani F, Saghebasl S, Boroumand S, Khanicheragh P, Tafti SHA, Rahbarghazi R, Rahmati M. Mitochondrial transplantation for cardioprotection and induction of angiogenesis in ischemic heart disease. Stem Cell Res Ther 2025; 16:54. [PMID: 39920826 PMCID: PMC11806797 DOI: 10.1186/s13287-025-04193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
To date, the regenerative potential of mitochondrial transplantation (MT) has been extensively investigated under several pathologies. Among various cardiovascular diseases, ischemic heart disease (IHD), the most prevalent pathological condition in human medicine, is induced by coronary artery narrowing, or occlusion, leading to bulk necrotic changes and fibrosis within the myocardium. Data associated with the pro-angiogenic activity of mitochondria have not been completely elucidated in terms of cardiac tissue regeneration. Here, we aimed to highlight the recent studies and advantages related to the application of mitochondrial mass in the ischemic myocardium. How and by which mechanisms, mitochondria can reduce aberrant myocardial tissue remodeling via different pathways such as angiogenesis and de novo blood formation was discussed in detail. We hope that data from the current review article help us understand the molecular and cellular mechanisms by which transplanted mitochondria exert their regenerative properties in the ischemic myocardium.
Collapse
Affiliation(s)
- Parisa Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | | | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safieh Boroumand
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Khanicheragh
- Student Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran.
| | - Mohammad Rahmati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.
| |
Collapse
|
2
|
Vachirarojpisan T, Srivichit B, Vaseenon S, Powcharoen W, Imerb N. Therapeutic roles of coenzyme Q10 in peripheral nerve injury-induced neurosensory disturbances: Mechanistic insights from injury to recovery. Nutr Res 2024; 129:55-67. [PMID: 39217889 DOI: 10.1016/j.nutres.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Peripheral nerve injuries (PNIs) are prevalent conditions mainly resulting from systemic causes, including autoimmune diseases and diabetes mellitus, or local causes, for example, chemical injury and perioperative nerve injury, which can cause a varying level of neurosensory disturbances (NSDs). Coenzyme Q10 (CoQ10) is an essential regulator of mitochondrial respiration and oxidative metabolism. Here, we review the pathophysiology of NSDs caused by PNIs, the current understanding of CoQ10's bioactivities, and its potential therapeutic roles in nerve regeneration, based on evidence from experimental and clinical studies involving CoQ10 supplementation. In summary, CoQ10 supplementation shows promise as a neuroprotective agent, potentially enhancing treatment efficacy for NSDs by reducing oxidative stress and inflammation. Future studies should focus on well-designed clinical trials with large sample sizes, using CoQ10 formulations with proven bioavailability and varying treatment duration, to further elucidate its neuroprotective effects and to optimize nerve regeneration in PNIs-induced NSDs.
Collapse
Affiliation(s)
- Thanyaphorn Vachirarojpisan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Bhumrapee Srivichit
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Savitri Vaseenon
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Warit Powcharoen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Napatsorn Imerb
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
3
|
Aggarwal R, Qi SS, So SW, Swingen C, Reyes CP, Rose R, Wright C, Hocum Stone LL, Nixon JP, McFalls EO, Butterick TA, Kelly RF. Persistent diastolic dysfunction in chronically ischemic hearts following coronary artery bypass graft. J Thorac Cardiovasc Surg 2023; 165:e269-e279. [PMID: 36154976 PMCID: PMC10100582 DOI: 10.1016/j.jtcvs.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE A porcine model was used to study diastolic dysfunction in hibernating myocardium (HM) and recovery with coronary artery bypass surgery (CABG). METHODS HM was induced in Yorkshire-Landrace juvenile swine (n = 30) by placing a c-constrictor on left anterior descending artery causing chronic myocardial ischemia without infarction. At 12 weeks, animals developed the HM phenotype and were either killed humanely (HIB group; n = 11) or revascularized with CABG and allowed 4 weeks of recovery (HIB+CABG group; n = 19). Control pigs were matched for weight, age, and sex to the HIB group. Before the animals were killed humanely, cardiac magnetic resonance imaging (MRI) was done at rest and during a low-dose dobutamine infusion. Tissue was obtained for histologic and proinflammatory biomarker analyses. RESULTS Diastolic peak filling rate was lower in HIB compared with control (5.4 ± 0.7 vs 6.7 ± 1.4 respectively, P = .002), with near recovery with CABG (6.3 ± 0.8, P = .06). Cardiac MRI confirmed preserved global systolic function in all groups. Histology confirmed there was no transmural infarction but showed interstitial fibrosis in the endomysium in both the HIB and HIB+CABG groups compared with normal myocardium. Alpha-smooth muscle actin stain identified increased myofibroblasts in HM that were less apparent post-CABG. Cytokine and proteomic studies in HM showed decreased peroxisome proliferator-activator receptor gamma coactivator 1-alpha (PGC1-α) expression but increased expression of granulocyte-macrophage colony-stimulating factor and nuclear factor kappa-light-chain enhancer of activated B cells (NFκB). Following CABG, PGC1-α and NFκB expression returned to control whereas granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-α, and interferon gamma remained increased. CONCLUSIONS In porcine model of HM, increased NFκB expression, enhanced myofibroblasts, and collagen deposition along with decreased PGC1-α expression were observed, all of which tended toward normal with CABG. Estimates of impaired relaxation with MRI within HM during increased workload persisted despite CABG, suggesting a need for adjuvant therapies during revascularization.
Collapse
Affiliation(s)
- Rishav Aggarwal
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn
| | - Steven S Qi
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn
| | - Simon W So
- Research Service, Minneapolis Veterans Affairs Health Care System, Minneapolis, Minn; Department of Neuroscience, University of Minnesota, Minneapolis, Minn; Center for Veterans Research and Education, Division of Cardiology and Cardiothoracic Surgery, Minneapolis, Minn
| | - Cory Swingen
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn
| | - Christina P Reyes
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn
| | - Rebecca Rose
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn
| | - Christin Wright
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn
| | - Laura L Hocum Stone
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn
| | - Joshua P Nixon
- Research Service, Minneapolis Veterans Affairs Health Care System, Minneapolis, Minn
| | - Edward O McFalls
- Division of Cardiology, Richmond VA Medical Center, Richmond, Va
| | - Tammy A Butterick
- Department of Neuroscience, University of Minnesota, Minneapolis, Minn; Center for Veterans Research and Education, Division of Cardiology and Cardiothoracic Surgery, Minneapolis, Minn
| | - Rosemary F Kelly
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn.
| |
Collapse
|
4
|
Marcheggiani F, Orlando P, Silvestri S, Cirilli I, Riva A, Petrangolini G, Orsini F, Tiano L. CoQ 10Phytosomes Improve Cellular Ubiquinone Uptake in Skeletal Muscle Cells: An Ex Vivo Study Using CoQ 10-Enriched Low-Density Lipoproteins Obtained in a Randomized Crossover Study. Antioxidants (Basel) 2023; 12:antiox12040964. [PMID: 37107339 PMCID: PMC10135710 DOI: 10.3390/antiox12040964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Coenzyme Q10 (CoQ10) bioavailability in vivo is limited due to its lipophilic nature. Moreover, a large body of evidence in the literature shows that muscle CoQ10 uptake is limited. In order to address cell specific differences in CoQ uptake, we compared cellular CoQ10 content in cultured human dermal fibroblasts and murine skeletal muscle cells that were incubated with lipoproteins from healthy volunteers and enriched with different formulations of CoQ10 following oral supplementation. Using a crossover design, eight volunteers were randomized to supplement 100 mg/daily CoQ10 for two weeks, delivered both in phytosome form (UBQ) as a lecithin formulation and in CoQ10 crystalline form. After supplementation, plasma was collected for CoQ10 determination. In the same samples, low density lipoproteins (LDL) were extracted and normalized for CoQ10 content, and 0.5 µg/mL in the medium were incubated with the two cell lines for 24 h. The results show that while both formulations were substantially equivalent in terms of plasma bioavailability in vivo, UBQ-enriched lipoproteins showed a higher bioavailability compared with crystalline CoQ10-enriched ones both in human dermal fibroblasts (+103%) and in murine skeletal myoblasts (+48%). Our data suggest that phytosome carriers might provide a specific advantage in delivering CoQ10 to skin and muscle tissues.
Collapse
Affiliation(s)
- Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
5
|
Aggarwal R, Potel KN, Shao A, So SW, Swingen C, Reyes CP, Rose R, Wright C, Hocum Stone LL, McFalls EO, Butterick TA, Kelly RF. An Adjuvant Stem Cell Patch with Coronary Artery Bypass Graft Surgery Improves Diastolic Recovery in Porcine Hibernating Myocardium. Int J Mol Sci 2023; 24:ijms24065475. [PMID: 36982547 PMCID: PMC10049498 DOI: 10.3390/ijms24065475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Diastolic dysfunction persists despite coronary artery bypass graft surgery (CABG) in patients with hibernating myocardium (HIB). We studied whether the adjunctive use of a mesenchymal stem cells (MSCs) patch during CABG improves diastolic function by reducing inflammation and fibrosis. HIB was induced in juvenile swine by placing a constrictor on the left anterior descending (LAD) artery, causing myocardial ischemia without infarction. At 12 weeks, CABG was performed using the left-internal-mammary-artery (LIMA)-to-LAD graft with or without placement of an epicardial vicryl patch embedded with MSCs, followed by four weeks of recovery. The animals underwent cardiac magnetic resonance imaging (MRI) prior to sacrifice, and tissue from septal and LAD regions were collected to assess for fibrosis and analyze mitochondrial and nuclear isolates. During low-dose dobutamine infusion, diastolic function was significantly reduced in HIB compared to the control, with significant improvement after CABG + MSC treatment. In HIB, we observed increased inflammation and fibrosis without transmural scarring, along with decreased peroxisome proliferator-activated receptor-gamma coactivator (PGC1α), which could be a possible mechanism underlying diastolic dysfunction. Improvement in PGC1α and diastolic function was noted with revascularization and MSCs, along with decreased inflammatory signaling and fibrosis. These findings suggest that adjuvant cell-based therapy during CABG may recover diastolic function by reducing oxidant stress–inflammatory signaling and myofibroblast presence in the myocardial tissue.
Collapse
Affiliation(s)
- Rishav Aggarwal
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
| | - Koray N. Potel
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK;
| | - Annie Shao
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
| | - Simon W. So
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (S.W.S.); (T.A.B.)
- Department of Research, Center for Veterans Research and Education, Minneapolis, MN 55417, USA
| | - Cory Swingen
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
| | - Christina P. Reyes
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
| | - Rebecca Rose
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
| | - Christin Wright
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
| | - Laura L. Hocum Stone
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
| | - Edward O. McFalls
- Division of Cardiology, Richmond VA Medical Center, Richmond, VA 23249, USA;
| | - Tammy A. Butterick
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (S.W.S.); (T.A.B.)
- Department of Research, Center for Veterans Research and Education, Minneapolis, MN 55417, USA
| | - Rosemary F. Kelly
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
- Correspondence: ; Tel.: +1-612-625-3902
| |
Collapse
|
6
|
Aggarwal R, Potel KN, McFalls EO, Butterick TA, Kelly RF. Novel Therapeutic Approaches Enhance PGC1-alpha to Reduce Oxidant Stress-Inflammatory Signaling and Improve Functional Recovery in Hibernating Myocardium. Antioxidants (Basel) 2022; 11:2155. [PMID: 36358527 PMCID: PMC9686496 DOI: 10.3390/antiox11112155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 09/02/2023] Open
Abstract
Ischemic heart disease affects millions of people around the world. Current treatment options, including coronary artery bypass grafting, do not result in full functional recovery, highlighting the need for novel adjunctive therapeutic approaches. Hibernation describes the myocardial response to prolonged ischemia and involves a set of complex cytoprotective metabolic and functional adaptations. PGC1-alpha, a key regulator of mitochondrial energy metabolism and inhibitor of oxidant-stress-inflammatory signaling, is known to be downregulated in hibernating myocardium. PGC1-alpha is a critical component of cellular stress responses and links cellular metabolism with inflammation in the ischemic heart. While beneficial in the acute setting, a chronic state of hibernation can be associated with self-perpetuating oxidant stress-inflammatory signaling which leads to tissue injury. It is likely that incomplete functional recovery following revascularization of chronically ischemic myocardium is due to persistence of metabolic changes as well as prooxidant and proinflammatory signaling. Enhancement of PGC1-alpha signaling has been proposed as a possible way to improve functional recovery in patients with ischemic heart disease. Adjunctive mesenchymal stem cell therapy has been shown to induce PGC1-alpha signaling in hibernating myocardium and could help improve clinical outcomes for patients undergoing bypass surgery.
Collapse
Affiliation(s)
- Rishav Aggarwal
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Koray N. Potel
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Edward O. McFalls
- Division of Cardiology, Richmond VA Medical Center, Richmond, VA 23249-4915, USA
| | - Tammy A. Butterick
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Research, Center for Veterans Research and Education, Minneapolis, MN 55417, USA
| | - Rosemary F. Kelly
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Targetable Pathways for Alleviating Mitochondrial Dysfunction in Neurodegeneration of Metabolic and Non-Metabolic Diseases. Int J Mol Sci 2021; 22:ijms222111444. [PMID: 34768878 PMCID: PMC8583882 DOI: 10.3390/ijms222111444] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
Many neurodegenerative and inherited metabolic diseases frequently compromise nervous system function, and mitochondrial dysfunction and oxidative stress have been implicated as key events leading to neurodegeneration. Mitochondria are essential for neuronal function; however, these organelles are major sources of endogenous reactive oxygen species and are vulnerable targets for oxidative stress-induced damage. The brain is very susceptible to oxidative damage due to its high metabolic demand and low antioxidant defence systems, therefore minimal imbalances in the redox state can result in an oxidative environment that favours tissue damage and activates neuroinflammatory processes. Mitochondrial-associated molecular pathways are often compromised in the pathophysiology of neurodegeneration, including the parkin/PINK1, Nrf2, PGC1α, and PPARγ pathways. Impairments to these signalling pathways consequently effect the removal of dysfunctional mitochondria, which has been suggested as contributing to the development of neurodegeneration. Mitochondrial dysfunction prevention has become an attractive therapeutic target, and there are several molecular pathways that can be pharmacologically targeted to remove damaged mitochondria by inducing mitochondrial biogenesis or mitophagy, as well as increasing the antioxidant capacity of the brain, in order to alleviate mitochondrial dysfunction and prevent the development and progression of neurodegeneration in these disorders. Compounds such as natural polyphenolic compounds, bioactive quinones, and Nrf2 activators have been reported in the literature as novel therapeutic candidates capable of targeting defective mitochondrial pathways in order to improve mitochondrial function and reduce the severity of neurodegeneration in these disorders.
Collapse
|
8
|
Rabanal-Ruiz Y, Llanos-González E, Alcain FJ. The Use of Coenzyme Q10 in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10050755. [PMID: 34068578 PMCID: PMC8151454 DOI: 10.3390/antiox10050755] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
CoQ10 is an endogenous antioxidant produced in all cells that plays an essential role in energy metabolism and antioxidant protection. CoQ10 distribution is not uniform among different organs, and the highest concentration is observed in the heart, though its levels decrease with age. Advanced age is the major risk factor for cardiovascular disease and endothelial dysfunction triggered by oxidative stress that impairs mitochondrial bioenergetic and reduces NO bioavailability, thus affecting vasodilatation. The rationale of the use of CoQ10 in cardiovascular diseases is that the loss of contractile function due to an energy depletion status in the mitochondria and reduced levels of NO for vasodilatation has been associated with low endogenous CoQ10 levels. Clinical evidence shows that CoQ10 supplementation for prolonged periods is safe, well-tolerated and significantly increases the concentration of CoQ10 in plasma up to 3–5 µg/mL. CoQ10 supplementation reduces oxidative stress and mortality from cardiovascular causes and improves clinical outcome in patients undergoing coronary artery bypass graft surgery, prevents the accumulation of oxLDL in arteries, decreases vascular stiffness and hypertension, improves endothelial dysfunction by reducing the source of ROS in the vascular system and increases the NO levels for vasodilation.
Collapse
Affiliation(s)
- Yoana Rabanal-Ruiz
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Emilio Llanos-González
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Francisco Javier Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence:
| |
Collapse
|
9
|
Preventing Myocardial Injury Following Non-Cardiac Surgery: A Potential Role for Preoperative Antioxidant Therapy with Ubiquinone. Antioxidants (Basel) 2021; 10:antiox10020276. [PMID: 33579045 PMCID: PMC7916807 DOI: 10.3390/antiox10020276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Over 240 million non-cardiac operations occur each year and are associated with a 15-20% incidence of adverse perioperative cardiovascular events. Unfortunately, preoperative therapies that have been useful for chronic ischemic heart diseases, such as coronary artery revascularization, antiplatelet agents, and beta-blockers have failed to improve outcomes. In a pre-clinical swine model of ischemic heart disease, we showed that daily administration of ubiquinone (coenzyme Q10, CoQ10) enhances the antioxidant status of mitochondria within chronically ischemic heart tissue, potentially via a PGC1α-dependent mechanism. In a randomized controlled trial, among high-risk patients undergoing elective vascular surgery, we showed that NT Pro-BNP levels are an important means of risk-stratification during the perioperative period and can be lowered with administration of CoQ10 (400 mg/day) for 3 days prior to surgery. The review provides background information for the role of oxidant stress and inflammation during high-risk operations and the potential novel application of ubiquinone as a preoperative antioxidant therapy that might reduce perioperative adverse cardiovascular outcomes.
Collapse
|