1
|
Li Y, Xu X, Wu X, Li J, Chen S, Chen D, Li G, Tang Z. Cell polarization in ischemic stroke: molecular mechanisms and advances. Neural Regen Res 2025; 20:632-645. [PMID: 38886930 PMCID: PMC11433909 DOI: 10.4103/nrr.nrr-d-23-01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 06/20/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as 'cell polarization.' There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations (microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Pesti I, Légrádi Á, Farkas E. Primary microglia cell cultures in translational research: Strengths and limitations. J Biotechnol 2024; 386:10-18. [PMID: 38519034 DOI: 10.1016/j.jbiotec.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Microglia are the resident macrophages in the central nervous system, accounting for 10-15% of the cell mass in the brain. Next to their physiological role in development, monitoring neuronal function and the maintenance of homeostasis, microglia are crucial in the brain's immune defense. Brain injury and chronic neurological disorders are associated with neuroinflammation, in which microglia activation is a central element. Microglia acquire a wide spectrum of activation states in the diseased or injured brain, some of which are neurotoxic. The investigation of microglia (patho)physiology and therapeutic interventions targeting neuroinflammation is a substantial challenge. In addition to in vivo approaches, the application of in vitro model systems has gained significant ground and is essential to complement in vivo work. Primary microglia cultures have proved to be a useful tool. Microglia cultures have offered the opportunity to explore the mechanistic, molecular elements of microglia activation, the microglia secretome, and the efficacy of therapeutic treatments against neuroinflammation. As all model systems, primary microglia cultures have distinct strengths and limitations to be weighed when experiments are designed and when data are interpreted. Here, we set out to provide a succinct overview of the advantages and pitfalls of the use of microglia cultures, which instructs the refinement and further development of this technique to remain useful in the toolbox of microglia researchers. Since there is no conclusive therapy to combat neurotoxicity linked to neuroinflammation in acute brain injury or neurodegenerative disorders, these research tools remain essential to explore therapeutic opportunities.
Collapse
Affiliation(s)
- István Pesti
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u 4, Szeged 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary
| | - Ádám Légrádi
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u 4, Szeged 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary.
| |
Collapse
|
3
|
Quan H, Zhang R. Microglia dynamic response and phenotype heterogeneity in neural regeneration following hypoxic-ischemic brain injury. Front Immunol 2023; 14:1320271. [PMID: 38094292 PMCID: PMC10716326 DOI: 10.3389/fimmu.2023.1320271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Hypoxic-ischemic brain injury poses a significant threat to the neural niche within the central nervous system. In response to this pathological process, microglia, as innate immune cells in the central nervous system, undergo rapid morphological, molecular and functional changes. Here, we comprehensively review these dynamic changes in microglial response to hypoxic-ischemic brain injury under pathological conditions, including stroke, chronic intermittent hypoxia and neonatal hypoxic-ischemic brain injury. We focus on the regulation of signaling pathways under hypoxic-ischemic brain injury and further describe the process of microenvironment remodeling and neural tissue regeneration mediated by microglia after hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Hongxin Quan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Runrui Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| |
Collapse
|
4
|
Wang C, Peng L, Wang Y, Xue Y, Chen T, Ji Y, Li Y, Zhao Y, Yu S. Integrative Analysis of Single-Cell and Bulk Sequencing Data Depicting the Expression and Function of P2ry12 in Microglia Post Ischemia-Reperfusion Injury. Int J Mol Sci 2023; 24:6772. [PMID: 37047745 PMCID: PMC10095011 DOI: 10.3390/ijms24076772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
P2ry12 is a microglial marker gene. Recently, increasing evidence has demonstrated that its expression levels can vary in response to different CNS disorders and can affect microglial functions, such as polarization, plasticity, and migration. However, the expression and function of P2ry12 in microglia during ischemia-reperfusion injury (IRI) remain unclear. Here, we developed a computational method to obtain microglia-specific P2ry12 genes (MSPGs) using sequencing data associated with IRI. We evaluated the change in comprehensive expression levels of MSPGs during IRI and compared it to the expression of P2ry12 to determine similarity. Subsequently, the MSPGs were used to explore the P2ry12 functions in microglia through bioinformatics. Moreover, several animal experiments were also conducted to confirm the reliability of the results. The expression of P2ry12 was observed to decrease gradually within 24 h post injury. In response, microglia with reduced P2ry12 expression showed an increase in the expression of one receptor-encoding gene (Flt1) and three ligand-encoding genes (Nampt, Igf1, and Cxcl2). Furthermore, double-labeling immunofluorescence staining revealed that inhibition of P2ry12 blocked microglial migration towards vessels during IRI. Overall, we employ a combined computational and experimental approach to successfully explore P2ry12 expression and function in microglia during IRI.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Peng
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuan Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ying Xue
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tianyi Chen
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanyan Ji
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yishan Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yong Zhao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shanshan Yu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Targeting Persistent Neuroinflammation after Hypoxic-Ischemic Encephalopathy-Is Exendin-4 the Answer? Int J Mol Sci 2022; 23:ijms231710191. [PMID: 36077587 PMCID: PMC9456443 DOI: 10.3390/ijms231710191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy is brain injury resulting from the loss of oxygen and blood supply around the time of birth. It is associated with a high risk of death or disability. The only approved treatment is therapeutic hypothermia. Therapeutic hypothermia has consistently been shown to significantly reduce the risk of death and disability in infants with hypoxic-ischemic encephalopathy. However, approximately 29% of infants treated with therapeutic hypothermia still develop disability. Recent preclinical and clinical studies have shown that there is still persistent neuroinflammation even after treating with therapeutic hypothermia, which may contribute to the deficits seen in infants despite treatment. This suggests that potentially targeting this persistent neuroinflammation would have an additive benefit in addition to therapeutic hypothermia. A potential additive treatment is Exendin-4, which is a glucagon-like peptide 1 receptor agonist. Preclinical data from various in vitro and in vivo disease models have shown that Exendin-4 has anti-inflammatory, mitochondrial protective, anti-apoptotic, anti-oxidative and neurotrophic effects. Although preclinical studies of the effect of Exendin-4 in perinatal hypoxic-ischemic brain injury are limited, a seminal study in neonatal mice showed that Exendin-4 had promising neuroprotective effects. Further studies on Exendin-4 neuroprotection for perinatal hypoxic-ischemic brain injury, including in large animal translational models are warranted to better understand its safety, window of opportunity and effectiveness as an adjunct with therapeutic hypothermia.
Collapse
|
6
|
Bi R, Fang Z, You M, He Q, Hu B. Microglia Phenotype and Intracerebral Hemorrhage: A Balance of Yin and Yang. Front Cell Neurosci 2021; 15:765205. [PMID: 34720885 PMCID: PMC8549831 DOI: 10.3389/fncel.2021.765205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) features extremely high rates of morbidity and mortality, with no specific and effective therapy. And local inflammation caused by the over-activated immune cells seriously damages the recovery of neurological function after ICH. Fortunately, immune intervention to microglia has provided new methods and ideas for ICH treatment. Microglia, as the resident immune cells in the brain, play vital roles in both tissue damage and repair processes after ICH. The perihematomal activated microglia not only arouse acute inflammatory responses, oxidative stress, excitotoxicity, and cytotoxicity to cause neuron death, but also show another phenotype that inhibit inflammation, clear hematoma and promote tissue regeneration. The proportion of microglia phenotypes determines the progression of brain tissue damage or repair after ICH. Therefore, microglia may be a promising and imperative therapeutic target for ICH. In this review, we discuss the dual functions of microglia in the brain after an ICH from immunological perspective, elaborate on the activation mechanism of perihematomal microglia, and summarize related therapeutic drugs researches.
Collapse
Affiliation(s)
- Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Fang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Phosphorylation of Microglial IRF5 and IRF4 by IRAK4 Regulates Inflammatory Responses to Ischemia. Cells 2021; 10:cells10020276. [PMID: 33573200 PMCID: PMC7912637 DOI: 10.3390/cells10020276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Interferon Regulatory Factor (IRF) 5 and 4 play a determinant role in regulating microglial pro- and anti-inflammatory responses to cerebral ischemia. How microglial IRF5 and IRF4 signaling are activated has been elusive. We hypothesized that interleukin-1 receptor associated kinase 4 (IRAK4) phosphorylates and activates IRF5 and IRF4 in ischemic microglia. We aimed to explore the upstream signals of the two IRFs, and to determine how the IRAK4-IRF signaling regulates the expression of inflammatory mediators, and impacts neuropathology. Methods: Spontaneously Immortalized Murine (SIM)-A9 microglial cell line, primary microglia and neurons from C57BL/6 WT mice were cultured and exposed to oxygen-glucose deprivation (OGD), followed by stimulation with LPS or IL-4. An IRAK4 inhibitor (ND2158) was used to examine IRAK4′s effects on the phosphorylation of IRF5/IRF4 and the impacts on neuronal morphology by co-immunoprecipitation (Co-IP)/Western blot, ELISA, and immunofluorescence assays. Results: We confirmed that IRAK4 formed a Myddosome with MyD88/IRF5/IRF4, and phosphorylated both IRFs, which subsequently translocated into the nucleus. Inhibition of IRAK4 phosphorylation quenched microglial pro-inflammatory response primarily, and increased neuronal viability and neurite lengths after ischemia. Conclusions: IRAK4 signaling is critical for microglial inflammatory responses and a potential therapeutic target for neuroinflammatory diseases including cerebral ischemia.
Collapse
|
8
|
Rabenstein M, Vay SU, Blaschke S, Walter HL, Ladwig A, Fink GR, Rueger MA, Schroeter M. Crosstalk between stressed brain cells: direct and indirect effects of ischemia and aglycemia on microglia. J Neuroinflammation 2020; 17:33. [PMID: 31980036 PMCID: PMC6982395 DOI: 10.1186/s12974-020-1697-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In cerebral ischemia, microglia have a dichotomous role in keeping the balance between pro- and anti-inflammatory mediators to avoid deleterious chronic inflammation and to leverage repair processes. METHODS We examined functional and inflammatory markers in primary rat microglia in vitro after oxygen-glucose deprivation (OGD) or glucose deprivation (aglycemia). We then investigated the preconditioning effect of OGD or aglycemia upon a subsequent strong inflammatory stimulus, here lipopolysaccharides (LPS). Moreover, an "in vitro brain model" of neurons and glia, differentiated from primary rat neural stem cells, was exposed to OGD or aglycemia. Conditioned medium (CM) of this neuronal/glial co-culture was then used to condition microglia, followed by LPS as a "second hit." RESULTS OGD or aglycemia at sublethal doses did not significantly affect microglia function, including the expression of inflammatory markers. However, preconditioning with either OGD or aglycemia led to a decreased pro-inflammatory response to a subsequent stimulus with LPS. Interestingly, the anti-inflammatory markers IGF-1 and IL-10 were additionally reduced after such preconditioning, while expression of CD206 remained unaffected. Treatment with CM from the neuronal/glial co-culture alone did not affect the expression of inflammatory markers in microglia. In contrast, treatment with CM increased the expression of both pro- and anti-inflammatory markers in microglia upon a second hit with LPS. Interestingly, this effect could be attenuated in microglia treated with CM from neuronal/glia co-cultures preconditioned with OGD or aglycemia. CONCLUSIONS Data suggest specific and distinct microglia signatures in response to metabolic stress. While metabolic stress directly and indirectly applied to microglia did not mitigate their subsequent response to inflammation, preconditioning with metabolic stress factors such as OGD and aglycemia elicited a decreased inflammatory response to a subsequent inflammation stimulus.
Collapse
Affiliation(s)
- Monika Rabenstein
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Sabine Ulrike Vay
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Stefan Blaschke
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
- Research Centre Juelich, Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany
| | - Helene Luise Walter
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Anne Ladwig
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
- Research Centre Juelich, Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany
| | - Maria Adele Rueger
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
- Research Centre Juelich, Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany
| | - Michael Schroeter
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany.
- Research Centre Juelich, Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany.
| |
Collapse
|
9
|
Zhou KQ, Green CR, Bennet L, Gunn AJ, Davidson JO. The Role of Connexin and Pannexin Channels in Perinatal Brain Injury and Inflammation. Front Physiol 2019; 10:141. [PMID: 30873043 PMCID: PMC6400979 DOI: 10.3389/fphys.2019.00141] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
Perinatal brain injury remains a major cause of death and life-long disability. Perinatal brain injury is typically associated with hypoxia-ischemia and/or infection/inflammation. Both hypoxia-ischemia and infection trigger an inflammatory response in the brain. The inflammatory response can contribute to brain cell loss and chronic neuroinflammation leading to neurological impairments. It is now well-established that brain injury evolves over time, and shows a striking spread from injured to previously uninjured regions of the brain. There is increasing evidence that this spread is related to opening of connexin hemichannels and pannexin channels, both of which are large conductance membrane channels found in almost all cell types in the brain. Blocking connexin hemichannels within the first 3 h after hypoxia-ischemia has been shown to improve outcomes in term equivalent fetal sheep but it is important to also understand the downstream pathways linking membrane channel opening with the development of injury in order to identify new therapeutic targets. Open membrane channels release adenosine triphosphate (ATP), and other neuroactive molecules, into the extracellular space. ATP has an important physiological role, but has also been reported to act as a damage-associated molecular pattern (DAMP) signal mediated through specific purinergic receptors and so act as a primary signal 1 in the innate immune system inflammasome pathway. More crucially, extracellular ATP is a key inflammasome signal 2 activator, with purinergic receptor binding triggering the assembly of the multi-protein inflammasome complex. The inflammasome pathway and complex formation contribute to activation of inflammatory caspases, and the release of inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-18, and vascular endothelial growth factor (VEGF). We propose that the NOD-like receptor protein-3 (NLRP3) inflammasome, which has been linked to inflammatory responses in models of ischemic stroke and various inflammatory diseases, may be one mechanism by which connexin hemichannel opening especially mediates perinatal brain injury.
Collapse
Affiliation(s)
- Kelly Q Zhou
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Samy ZA, Al-Abdullah L, Turcani M, Craik J, Redzic Z. Rat astrocytes during anoxia: Secretome profile of cytokines and chemokines. Brain Behav 2018; 8:e01013. [PMID: 29863786 PMCID: PMC6043693 DOI: 10.1002/brb3.1013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/25/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The precise mechanisms of the inflammatory responses after cerebral ischemia in vivo are difficult to elucidate because of the complex nature of multiple series of interactions between cells and molecules. This study explored temporal patterns of secretion of 30 cytokines and chemokines from Sprague Dawley rat astrocytes in primary culture in order to elucidate signaling pathways that are triggered by astrocytes during anoxia. METHODS Primary cultures of rat brain astrocytes were incubated for periods of 2-24 hr in the absence of oxygen (anoxia) or under normal partial pressure of oxygen (controls). Simultaneous detection of 29 cytokines and chemokines in the samples was performed using a rat cytokine array panel, while the temporal pattern of angiopoietin-1 (Ang-1) secretion was determined separately using ELISA. Wilcoxon-Mann-Whitney test was used to compare normoxic and anoxic samples and the Hodge-Lehman estimator with exact 95% confidence intervals was computed to assess the size of differences in cytokine secretion. The obtained data were imported into the Core Analysis tool of Ingenuity Pathways Analysis software in order to relate changes in secretion of cytokines and chemokines from astrocytes during anoxia to potential molecular signal networks. RESULTS With the exception of Ang-1, concentrations of all cytokines/chemokines in samples collected after anoxia exposure were either the same, or higher, than in control groups. No clear pattern of changes could be established for groups of cytokines with similar effects (i.e., pro- or anti-inflammatory cytokines). The pattern of changes in cytokine secretion during anoxia was associated with the HIF-1α-mediated response, as well as cytokines IL-1β and cathepsin S pathways, which are related to initiation of inflammation and antigen presentation, respectively, and to ciliary neurotrophic factor. CONCLUSIONS These in vitro findings suggest that astrocytes may play a role in triggering inflammation during anoxia/ischemia of the brain.
Collapse
Affiliation(s)
- Zeinab Adel Samy
- Faculty of Medicine, Department of Physiology, Kuwait University, Kuwait, Kuwait
| | - Lulwa Al-Abdullah
- Faculty of Medicine, Department of Physiology, Kuwait University, Kuwait, Kuwait
| | - Marian Turcani
- Faculty of Medicine, Department of Physiology, Kuwait University, Kuwait, Kuwait
| | - James Craik
- Faculty of Medicine, Department of Biochemistry, Kuwait University, Kuwait, Kuwait
| | - Zoran Redzic
- Faculty of Medicine, Department of Physiology, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
11
|
Wang J, Xing H, Wan L, Jiang X, Wang C, Wu Y. Treatment targets for M2 microglia polarization in ischemic stroke. Biomed Pharmacother 2018; 105:518-525. [PMID: 29883947 DOI: 10.1016/j.biopha.2018.05.143] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
As the first line of defense in the nervous system, resident microglia are the predominant immune cells in the brain. In diseases of the central nervous system such as stroke, Alzheimer's disease, and Parkinson's disease, they often cause inflammation or phagocytosis; however, some studies have found that despite the current controversy over M1, M2 polarization could be beneficial. Ischemic stroke is the third most common cause of death in humans. Patients who survive an ischemic stroke might experience a clear decline in their quality of life, owing to conditions such as hemiplegic paralysis and aphasia. After stroke, the activated microglia become a double-edged sword, with distinct phenotypic changes to the deleterious M1 and neuroprotective M2 types. Therefore, methods for promoting the differentiation of microglia into the M2 polarized form to alleviate harmful reactions after stroke have become a topic of interest in recent years. Subsequently, the discovery of new drugs related to M2 polarization has enabled the realization of targeted therapies. In the present review, we discussed the neuroprotective effects of microglia M2 polarization and the potential mechanisms and drugs by which microglia can be transformed into the M2 polarized type after stroke.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongyi Xing
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wan
- The Children's Hospital of Soochow, Jiangsu, Hematology and Oncology, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Machado-Pereira M, Santos T, Ferreira L, Bernardino L, Ferreira R. Intravenous administration of retinoic acid-loaded polymeric nanoparticles prevents ischemic injury in the immature brain. Neurosci Lett 2018. [PMID: 29518539 DOI: 10.1016/j.neulet.2018.02.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Perinatal stroke is often difficult to diagnose and an established treatment has not yet been validated, except for symptomatic measures. Herein, we propose to test the neuroprotective potential of the intravenous injection of retinoic acid-loaded nanoparticles (RA-NP) upon ischemic injury to the immature brain. The role of RA-NP on endothelial cells and organotypic slice cultures exposed to oxygen and glucose deprivation was assessed by evaluating markers pertaining to survival, proliferation, oxidative stress (NO, ROS), neuronal damage (enolase), vascular oxidation (p47phox) and microglia activation (CD68). Data showed that RA-NP (3 μg/ml) increased endothelial proliferation and survival, and normalized NO and ROS levels. The intravenous administration of RA-NP (10 μg/g) prevented ischemic injury in the hippocampus of 2-day-old mice by inhibiting cell death and normalizing markers of neurovascular function and inflammation. In sum, systemic administration of RA-NP protected neurovascular integrity and the inflammatory milieu from ischemia in the immature brain, highlighting its therapeutic value for perinatal stroke.
Collapse
Affiliation(s)
- Marta Machado-Pereira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Tiago Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Lino Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra (IIIUC), Coimbra, Portugal
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Raquel Ferreira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal.
| |
Collapse
|
13
|
Usage of Multiparameter Flow Cytometry to Study Microglia and Macrophage Heterogeneity in the Central Nervous System During Neuroinflammation and Neurodegeneration. Methods Mol Biol 2018; 1745:167-177. [PMID: 29476469 DOI: 10.1007/978-1-4939-7680-5_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The resident macrophages of the central nervous system (CNS), also known as microglia, and blood-derived macrophages play an important role in the functional activity of the normal CNS, as well as in the development of neuroinflammation during various neurodegenerative disorders. Microglia and macrophages represent heterogeneous populations, which can modulate CNS environment and have different effects on neuronal regeneration. In this chapter, the main features of microglial and macrophage subsets and current methods for investigation of their heterogeneity will be discussed.
Collapse
|
14
|
Rybachuk O, Kopach O, Krotov V, Voitenko N, Pivneva T. Optimized Model of Cerebral Ischemia In situ for the Long-Lasting Assessment of Hippocampal Cell Death. Front Neurosci 2017; 11:388. [PMID: 28729821 PMCID: PMC5498507 DOI: 10.3389/fnins.2017.00388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/20/2017] [Indexed: 12/29/2022] Open
Abstract
Among all the brain, the hippocampus is the most susceptible region to ischemic lesion, with the highest vulnerability of CA1 pyramidal neurons to ischemic damage. This damage may cause either prompt neuronal death (within hours) or with a delayed appearance (over days), providing a window for applying potential therapies to reduce or prevent ischemic impairments. However, the time course when ischemic damage turns to neuronal death strictly depends on experimental modeling of cerebral ischemia and, up to now, studies were predominantly focused on a short time-window—from hours to up to a few days post-lesion. Using different schemes of oxygen-glucose deprivation (OGD), the conditions taking place upon cerebral ischemia, we optimized a model of mimicking ischemic conditions in organotypical hippocampal slices for the long-lasting assessment of CA1 neuronal death (at least 3 weeks). By combining morphology and electrophysiology, we show that prolonged (30-min duration) OGD results in a massive neuronal death and overwhelmed astrogliosis within a week post-OGD whereas OGD of a shorter duration (10-min) triggered programmed CA1 neuronal death with a significant delay—within 2 weeks—accompanied with drastically impaired CA1 neuron functions. Our results provide a rationale toward optimized modeling of cerebral ischemia for reliable examination of potential treatments for brain neuroprotection, neuro-regeneration, or testing neuroprotective compounds in situ.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Olga Kopach
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Volodymyr Krotov
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Nana Voitenko
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Tatyana Pivneva
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| |
Collapse
|
15
|
Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflammation 2017; 14:99. [PMID: 28476157 PMCID: PMC5418760 DOI: 10.1186/s12974-017-0871-0] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/22/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As the primary immune response cell in the central nervous system, microglia constantly monitor the microenvironment and respond rapidly to stress, infection, and injury, making them important modulators of neuroinflammatory responses. In diseases such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, and human immunodeficiency virus-induced dementia, activation of microglia precedes astrogliosis and overt neuronal loss. Although microgliosis is implicated in manganese (Mn) neurotoxicity, the role of microglia and glial crosstalk in Mn-induced neurodegeneration is poorly understood. METHODS Experiments utilized immunopurified murine microglia and astrocytes using column-free magnetic separation. The effect of Mn on microglia was investigated using gene expression analysis, Mn uptake measurements, protein production, and changes in morphology. Additionally, gene expression analysis was used to determine the effect Mn-treated microglia had on inflammatory responses in Mn-exposed astrocytes. RESULTS Immunofluorescence and flow cytometric analysis of immunopurified microglia and astrocytes indicated cultures were 97 and 90% pure, respectively. Mn treatment in microglia resulted in a dose-dependent increase in pro-inflammatory gene expression, transition to a mixed M1/M2 phenotype, and a de-ramified morphology. Conditioned media from Mn-exposed microglia (MCM) dramatically enhanced expression of mRNA for Tnf, Il-1β, Il-6, Ccl2, and Ccl5 in astrocytes, as did exposure to Mn in the presence of co-cultured microglia. MCM had increased levels of cytokines and chemokines including IL-6, TNF, CCL2, and CCL5. Pharmacological inhibition of NF-κB in microglia using Bay 11-7082 completely blocked microglial-induced astrocyte activation, whereas siRNA knockdown of Tnf in primary microglia only partially inhibited neuroinflammatory responses in astrocytes. CONCLUSIONS These results provide evidence that NF-κB signaling in microglia plays an essential role in inflammatory responses in Mn toxicity by regulating cytokines and chemokines that amplify the activation of astrocytes.
Collapse
|
16
|
Churchward MA, Tchir DR, Todd KG. Microglial Function during Glucose Deprivation: Inflammatory and Neuropsychiatric Implications. Mol Neurobiol 2017; 55:1477-1487. [PMID: 28176274 PMCID: PMC5820372 DOI: 10.1007/s12035-017-0422-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/25/2017] [Indexed: 12/23/2022]
Abstract
Inflammation is increasingly recognized as a contributor to the pathophysiology of neuropsychiatric disorders, including depression, anxiety disorders and autism, though the factors leading to contextually inappropriate or sustained inflammation in pathological conditions are yet to be elucidated. Microglia, as the key mediators of inflammation in the CNS, serve as likely candidates in initiating pathological inflammation and as an ideal point of therapeutic intervention. Glucose deprivation, as a component of the pathophysiology of ischemia or occurring transiently in diabetes, may serve to modify microglial function contributing to inflammatory injury. To this end, primary microglia were cultured from postnatal rat brain and subject to glucose deprivation in vitro. Microglia were characterized for their proliferation, phagocytic function and secretion of inflammatory factors, and tested for their capacity to respond to a potent inflammatory stimulus. In the absence of glucose, microglia remained capable of proliferation, phagocytosis and inflammatory activation and showed increased release of inflammatory factors after presentation of an inflammatory stimulus. Glucose-deprived microglia demonstrated increased phagocytic activity and decreased accumulation of lipids in lipid droplets over a 48-h timecourse, suggesting they may use scavenged lipids as a key alternate energy source during metabolic stress. In the present manuscript, we present novel findings that glucose deprivation may sensitize microglial release of inflammatory mediators and prime microglial functions for both survival and inflammatory roles, which may contribute to psychiatric comorbidities of ischemia, diabetes and/or metabolic disorder.
Collapse
Affiliation(s)
- Matthew A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, 116th St and 85th Ave NW, Edmonton, AB T6G2R3, Canada
| | - Devan R Tchir
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, 116th St and 85th Ave NW, Edmonton, AB T6G2R3, Canada
| | - Kathryn G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, 116th St and 85th Ave NW, Edmonton, AB T6G2R3, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
17
|
Lapchak PA, Zhang JH. The High Cost of Stroke and Stroke Cytoprotection Research. Transl Stroke Res 2016; 8:307-317. [PMID: 28039575 DOI: 10.1007/s12975-016-0518-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Acute ischemic stroke is inadequately treated in the USA and worldwide due to a lengthy history of neuroprotective drug failures in clinical trials. The majority of victims must endure life-long disabilities that not only affect their livelihood, but also have an enormous societal economic impact. The rapid development of a neuroprotective or cytoprotective compound would allow future stroke victims to receive a treatment to reduce disabilities and further promote recovery of function. This opinion article reviews in detail the enormous costs associated with developing a small molecule to treat stroke, as well as providing a timely overview of the cell-death time-course and relationship to the ischemic cascade. Distinct temporal patterns of cell-death of neurovascular unit components provide opportunities to intervene and optimize new cytoprotective strategies. However, adequate research funding is mandatory to allow stroke researchers to develop and test their novel therapeutic approach to treat stroke victims.
Collapse
Affiliation(s)
- Paul A Lapchak
- Director of Translational Research, Department of Neurology & Neurosurgery, Advanced Health Sciences Pavilion, Suite 8305, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA.
| | - John H Zhang
- Director, Center for Neuroscience Research, Loma Linda University School of Medicine, 11175 Campus St, Loma Linda, CA, 92350, USA
| |
Collapse
|
18
|
Anti-Inflammatory Effects of Traditional Chinese Medicines against Ischemic Injury in In Vivo Models of Cerebral Ischemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5739434. [PMID: 27703487 PMCID: PMC5040804 DOI: 10.1155/2016/5739434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Inflammation plays a crucial role in the pathophysiology of acute ischemic stroke. In the ischemic cascade, resident microglia are rapidly activated in the brain parenchyma and subsequently trigger inflammatory mediator release, which facilitates leukocyte-endothelial cell interactions in inflammation. Activated leukocytes invade the endothelial cell junctions and destroy the blood-brain barrier integrity, leading to brain edema. Toll-like receptors (TLRs) stimulation in microglia/macrophages through the activation of intercellular signaling pathways secretes various proinflammatory cytokines and enzymes and then aggravates cerebral ischemic injury. The secreted cytokines activate the proinflammatory transcription factors, which subsequently regulate cytokine expression, leading to the amplification of the inflammatory response and exacerbation of the secondary brain injury. Traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, and TCM formulations, exert neuroprotective effects against inflammatory responses by downregulating the following: ischemia-induced microglial activation, microglia/macrophage-mediated cytokine production, proinflammatory enzyme production, intercellular adhesion molecule-1, matrix metalloproteinases, TLR expression, and deleterious transcription factor activation. TCMs also aid in upregulating anti-inflammatory cytokine expression and neuroprotective transcription factor activation in the ischemic lesion in the inflammatory cascade during the acute phase of cerebral ischemia. Thus, TCMs exert potent anti-inflammatory properties in ischemic stroke and warrant further investigation.
Collapse
|
19
|
Drewes LR, Jones HC, Keep RF. Advances in brain barriers and brain fluid research and news from Fluids and Barriers of the CNS. Fluids Barriers CNS 2016; 13:1. [PMID: 26822521 PMCID: PMC4731978 DOI: 10.1186/s12987-016-0026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 11/10/2022] Open
Abstract
Research into brain barriers and brain fluids has been advancing rapidly in recent years. This editorial aims to highlight some of the advances that have improved our understanding of this complex subject. It also brings you news of developments for Fluids and Barriers of the CNS including a new affiliation between the journal and the International Society for Hydrocephalus and CSF disorders.
Collapse
Affiliation(s)
- Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
| | - Hazel C Jones
- Gagle Brook House, Chesterton, Bicester, OX26 1UF, UK.
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
20
|
Barakat R, Redzic Z. The Role of Activated Microglia and Resident Macrophages in the Neurovascular Unit during Cerebral Ischemia: Is the Jury Still Out? Med Princ Pract 2016; 25 Suppl 1:3-14. [PMID: 26303836 PMCID: PMC5588523 DOI: 10.1159/000435858] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022] Open
Abstract
Paracrine signaling in the neurovascular unit (NVU) is aimed to adjust the supply of oxygen and nutrients to metabolic demands of the brain in a feed-forward manner. Cerebral ischemia (CI) severely disrupts this homeostatic mechanism and also causes activation of microglia and resident macrophages in the brain. Contradictory data exist on the time pattern of microglial activation and polarization during CI, on molecular mechanisms that trigger them and on effects of microglia-derived cytokines on brain cells. It appears that conditions that occur during transient ischemia or in the penumbra of focal ischemia in vivo or equivalent conditions in vitro trigger polarization of resting microglia/macrophages into the M2 phenotype, which mainly exerts anti-inflammatory and protective effects in the brain, while prolonged ischemia with abundant necrosis promotes microglial polarization into the M1 phenotype. During the later stages of recovery, microglia that polarized initially into the M2 phenotype can shift into the M1 phenotype. Thus, it appears that cells with both phenotypes are present in the affected area, but their relative amount changes in time and probably depends on the proximity to the ischemic core. It was assumed that cells with the M1 phenotype exert detrimental effects on neurons and contribute to the blood-brain barrier opening. Several M1 phenotype-specific cytokines exert protective effects on astrocytes, which could be important for reactive gliosis occurring after ischemia. Thus, whether or not suppression of microglial activity after CI is beneficial for neurological outcome still remains unclear and current evidence suggests that no simple answer could be given to this question.
Collapse
Affiliation(s)
| | - Zoran Redzic
- *Dr. Zoran Redzic, Department of Physiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|