1
|
Shentu W, Kong Q, Zhang Y, Li W, Chen Q, Yan S, Wang J, Lai Q, Xu Q, Qiao S. Functional abnormalities of the glymphatic system in cognitive disorders. Neural Regen Res 2025; 20:3430-3447. [PMID: 39820293 PMCID: PMC11974647 DOI: 10.4103/nrr.nrr-d-24-01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 01/19/2025] Open
Abstract
Various pathological mechanisms represent distinct therapeutic targets for cognitive disorders, but a balance between clearance and production is essential for maintaining the stability of the brain's internal environment. Thus, the glymphatic system may represent a common pathway by which to address cognitive disorders. Using the established model of the glymphatic system as our foundation, this review disentangles and analyzes the components of its clearance mechanism, including the initial inflow of cerebrospinal fluid, the mixing of cerebrospinal fluid with interstitial fluid, and the outflow of the mixed fluid and the clearance. Each section summarizes evidence from experimental animal models and human studies, highlighting the normal physiological properties of key structures alongside their pathological manifestations in cognitive disorders. The same pathologic manifestations of different cognitive disorders appearing in the glymphatic system and the same upstream influences are main points of interest of this review. We conclude this article by discussing new findings and outlining the limitations identified in current research progress.
Collapse
Affiliation(s)
- Wuyue Shentu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qi Kong
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Yier Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Wenyao Li
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qiulu Chen
- Department of Neurology, Zhejiang Medical & Health Group Hangzhou Hospital, Hangzhou, Zhejiang Province, China
| | - Sicheng Yan
- Department of Neurology, Liuzhou People’s Hospital, Liuzhou, Guangxi Zhuang Autonomous Region, China
| | - Junjun Wang
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Qilun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Qi Xu
- Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Atasoy B, Yaman Kula A, Balsak S, Polat YB, Donmez Z, Akcay A, Peker AA, Toluk O, Alkan A. Role of diffusion tensor imaging in the evaluation of white matter integrity in idiopathic intracranial hypertension. Headache 2024; 64:1076-1087. [PMID: 39257070 DOI: 10.1111/head.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVES To determine whether idiopathic intracranial hypertension (IIH) may affect white matter integrity and optic pathways by using diffusion tensor imaging (DTI) and to correlate the DTI metrics with intracranial pressure (ICP). METHODS This study is a retrospective case-control study. A total of 42 patients who underwent lumbar puncture and those with elevated ICP, meeting the diagnostic criteria for IIH, were included in the study. All patients had supportive magnetic resonance imaging findings for the diagnosis of IIH. The headache control group comprised 36 patients who presented to the Neurology Department with infrequent episodic tension-type headache, had a normal neurologic examination, and had clinical and radiological findings suggestive of normal ICP. For each patient with IIH, clinical findings and ophthalmological measurements were recorded. The apparent diffusion coefficient (ADC), fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) values were calculated using a region of interest-based method in different white matter tracts and optic pathways and compared. RESULTS A total of 42 patients diagnosed with IIH (three males, 39 females), with a mean (standard deviation [SD] age of 38.1 (8.9) years), and 36 headache controls (10 males, 26 females, mean [SD] age; 38.1 [9.4] years) were included in the study. The mean (SD) body mass index (BMI) of the patients with IIH was 25.2 (1.9) kg/m2, and the mean (SD) BMI of the headache controls was 23.3 (1.5) kg/m2 (p < 0.001). Decreased FA values and increased RD values in the cingulum were detected in patients with IIH compared to the headache controls (p = 0.003, Cohen's d = 0.681; p = 0.002 Cohen's d = -0.710). Decreased AD values in the left and right superior cerebellar peduncle and increased ADC values in the middle cerebellar peduncle were detected in patients with IIH compared to the headache controls (p < 0.001, Cohen's d = 0.961; p = 0.009, Cohen's d = 0.607; p = 0.015, Cohen's d = -0.564). Increased ADC and RD values and decreased FA values in optic nerve were detected in patients with IIH (p = 0.010, Cohen's d = -0.603; p = 0.004, Cohen's d = -0.676; p = 0.015 Cohen's d = 0.568). A positive correlation was found between the cerebrospinal fluid pressure and ADC values of the left and right superior and left inferior longitudinal fasciculus, genu of the corpus callosum, and right optic radiation (r = 0.43, p = 0.005; r = 0.31, p = 0.044; r = 0.39, p = 0.010; r = 0.35, p = 0.024; r = 0,41, p = 0.007). There was a positive correlation between the retinal nerve fiber layer thickness and the ADC values of the optic nerve (r = 0.32, p = 0.039). CONCLUSIONS Intracranial hypertension can be associated with deteriorated DTI values, which might be interpreted as a sign of impaired white matter microstructural integrity in many brain regions beyond the periventricular white matter. Pressure-induced edema and axonal degeneration may be the potential underlying mechanisms of this microstructural damage.
Collapse
Affiliation(s)
- Bahar Atasoy
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Asli Yaman Kula
- Department of Neurology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Serdar Balsak
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Yagmur Basak Polat
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Zeynep Donmez
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Ahmet Akcay
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | | | - Ozlem Toluk
- Department of Biostatistics and Medical Informatics, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Alpay Alkan
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| |
Collapse
|
3
|
Abdul Hamid H, Hambali A, Okon U, Che Mohd Nassir CMN, Mehat MZ, Norazit A, Mustapha M. Is cerebral small vessel disease a central nervous system interstitial fluidopathy? IBRO Neurosci Rep 2024; 16:98-105. [PMID: 39007087 PMCID: PMC11240297 DOI: 10.1016/j.ibneur.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 07/16/2024] Open
Abstract
A typical anatomical congregate and functionally distinct multicellular cerebrovascular dynamic confer diverse blood-brain barrier (BBB) and microstructural permeabilities to conserve the health of brain parenchymal and its microenvironment. This equanimity presupposes the glymphatic system that governs the flow and clearance of metabolic waste and interstitial fluids (ISF) through venous circulation. Following the introduction of glymphatic system concept, various studies have been carried out on cerebrospinal fluid (CSF) and ISF dynamics. These studies reported that the onset of multiple diseases can be attributed to impairment in the glymphatic system, which is newly referred as central nervous system (CNS) interstitial fluidopathy. One such condition includes cerebral small vessel disease (CSVD) with poorly understood pathomechanisms. CSVD is an umbrella term to describe a chronic progressive disorder affecting the brain microvasculature (or microcirculation) involving small penetrating vessels that supply cerebral white and deep gray matter. This review article proposes CSVD as a form of "CNS interstitial fluidopathy". Linking CNS interstitial fluidopathy with CSVD will open a better insight pertaining to the perivascular space fluid dynamics in CSVD pathophysiology. This may lead to the development of treatment and therapeutic strategies to ameliorate the pathology and adverse effect of CSVD.
Collapse
Affiliation(s)
- Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Aqilah Hambali
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Udemeobong Okon
- Department of Physiology, Faculty of Basic Medical Science, University of Calabar, Etagbor, PMB 1115 Calabar, Nigeria
| | - Che Mohd Nasril Che Mohd Nassir
- Department of Anatomy and Physiology, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Anwar Norazit
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
4
|
Fang J, Wang L, Zhang D, Liang Y, Li S, Tian J, He Q, Jin J, Zhu W. Integrative analysis of transcriptome and metabolome provide new insights into mechanisms of Capilliposide A against cisplatin-induced nephrotoxicity. J Pharm Biomed Anal 2024; 238:115814. [PMID: 37976990 DOI: 10.1016/j.jpba.2023.115814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Cisplatin (CDDP) has been widely used for chemotherapy against tumours. However,the nephrotoxicity has limited its clinical use. Here, we reported a novel compound, Capilliposide A (CPS-A), to exhibit therapeutic effects on CDDP-induced acute kidney injury (AKI) and explored its potential mechanisms via transcriptome and metabolome. MATERIALS AND METHODS HK-2 cells were treated with CPS-A, after which cell viability, apoptosis and inflammation were investigated. A mouse model of AKI was constructed by single injection of CDDP in vivo. The renal function and morphology and mitochondrial function were assessed by pathological section and transmission electron microscope (TEM). Transcriptomics and metabolomics are used to explore possible mechanisms which was later verified in vitro. RESULTS CPS-A administration improved the survival rates of HK-2 cells with a significant decrease in the expression of KIM-1, NGAL, IL-6, IL-8 and IL-1β. In vivo results also suggested that CPS-A attenuates CDDP-induced kidney injury by reducing serum creatinine (Cr) and blood urea nitrogen (BUN) levels. Furthermore, TEM also showed the improvement of mitochondrial ultrastructure both in vivo and vitro. Transcriptomics analysis of the mice's renal cortex indicated the expression of ATF4 and CHOP were upregulated, which was further validated by qPCR and Western blotting in vitro. Integrative analysis of transcriptome and metabolome indicated that L-Leucine enriched in Valine, leucine and isoleucine degradation might be potential targets. CONCLUSIONS CPS-A can effectively regulate endogenous metabolites associated with amino acid metabolism and ameliorate apoptosis and oxidative stress in CDDP-induced AKI by reducing endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Jiaxi Fang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China; Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China; Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Luping Wang
- College of Biomedicial Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Di Zhang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Yan Liang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Shouxin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Jingkui Tian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China.
| | - Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China.
| | - Wei Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China.
| |
Collapse
|
5
|
Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Interstitial Fluidopathy of the Central Nervous System: An Umbrella Term for Disorders with Impaired Neurofluid Dynamics. Magn Reson Med Sci 2024; 23:1-13. [PMID: 36436975 PMCID: PMC10838724 DOI: 10.2463/mrms.rev.2022-0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2024] Open
Abstract
Interest in interstitial fluid dynamics has increased since the proposal of the glymphatic system hypothesis. Abnormal dynamics of the interstitial fluid have been pointed out to be an important factor in various pathological statuses. In this article, we propose the concept of central nervous system interstitial fluidopathy as a disease or condition in which abnormal interstitial fluid dynamics is one of the important factors for the development of a pathological condition. We discuss the aspects of interstitial fluidopathy in various diseases, including Alzheimer's disease, Parkinson's disease, normal pressure hydrocephalus, and cerebral small vessel disease. We also discuss a method called "diffusion tensor image analysis along the perivascular space" using MR diffusion images, which is used to evaluate the degree of interstitial fluidopathy or the activity of the glymphatic system.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Jazaeri SZ, Taghizadeh G, Babaei JF, Goudarzi S, Saadatmand P, Joghataei MT, Khanahmadi Z. Aquaporin 4 beyond a water channel; participation in motor, sensory, cognitive and psychological performances, a comprehensive review. Physiol Behav 2023; 271:114353. [PMID: 37714320 DOI: 10.1016/j.physbeh.2023.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
Aquaporin 4 (AQP4) is a protein highly expressed in the central nervous system (CNS) and peripheral nervous system (PNS) as well as various other organs, whose different sites of action indicate its importance in various functions. AQP4 has a variety of essential roles beyond water homeostasis. In this article, we have for the first time summarized different roles of AQP4 in motor and sensory functions, besides cognitive and psychological performances, and most importantly, possible physiological mechanisms by which AQP4 can exert its effects. Furthermore, we demonstrated that AQP4 participates in pathology of different neurological disorders, various effects depending on the disease type. Since neurological diseases involve a spectrum of dysfunctions and due to the difficulty of obtaining a treatment that can simultaneously affect these deficits, it is therefore suggested that future studies consider the role of this protein in different functional impairments related to neurological disorders simultaneously or separately by targeting AQP4 expression and/or polarity modulation.
Collapse
Affiliation(s)
- Seyede Zohreh Jazaeri
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Goudarzi
- Experimental Medicine Research Center, Tehran University of medical Sciences, Tehran, Iran
| | - Pegah Saadatmand
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Innovation in Medical Education, Faculty of Medicine, Ottawa University, Ottawa, Canada.
| | - Zohreh Khanahmadi
- Department of Occupational Therapy, School of Rehabilitation Services, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Gędek A, Koziorowski D, Szlufik S. Assessment of factors influencing glymphatic activity and implications for clinical medicine. Front Neurol 2023; 14:1232304. [PMID: 37767530 PMCID: PMC10520725 DOI: 10.3389/fneur.2023.1232304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The glymphatic system is a highly specialized fluid transport system in the central nervous system. It enables the exchange of the intercellular fluid of the brain, regulation of the movement of this fluid, clearance of unnecessary metabolic products, and, potentially, brain immunity. In this review, based on the latest scientific reports, we present the mechanism of action and function of the glymphatic system and look at the role of factors influencing its activity. Sleep habits, eating patterns, coexisting stress or hypertension, and physical activity can significantly affect glymphatic activity. Modifying them can help to change lives for the better. In the next section of the review, we discuss the connection between the glymphatic system and neurological disorders. Its association with many disease entities suggests that it plays a major role in the physiology of the whole brain, linking many pathophysiological pathways of individual diseases.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Praski Hospital, Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Trigo D, Vitória JJ, da Cruz e Silva OAB. Novel therapeutic strategies targeting mitochondria as a gateway in neurodegeneration. Neural Regen Res 2022; 18:991-995. [PMID: 36254979 PMCID: PMC9827793 DOI: 10.4103/1673-5374.355750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In recent years, multiple disciplines have focused on mitochondrial biology and contributed to understanding its relevance towards adult-onset neurodegenerative disorders. These are complex dynamic organelles that have a variety of functions in ensuring cellular health and homeostasis. The plethora of mitochondrial functionalities confers them an intrinsic susceptibility to internal and external stressors (such as mutation accumulation or environmental toxins), particularly so in long-lived postmitotic cells such as neurons. Thus, it is reasonable to postulate an involvement of mitochondria in aging-associated neurological disorders, notably neurodegenerative pathologies including Alzheimer's disease and Parkinson's disease. On the other hand, biological effects resulting from neurodegeneration can in turn affect mitochondrial health and function, promoting a feedback loop further contributing to the progression of neuronal dysfunction and cellular death. This review examines state-of-the-art knowledge, focus on current research exploring mitochondrial health as a contributing factor to neuroregeneration, and the development of therapeutic approaches aimed at restoring mitochondrial homeostasis in a pathological setting.
Collapse
Affiliation(s)
- Diogo Trigo
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal,Correspondence to: Diogo Trigo, .
| | - José João Vitória
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Odete A. B. da Cruz e Silva
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
Yang Y, Wang C, Chen R, Wang Y, Tan C, Liu J, Zhang Q, Xiao G. Novel therapeutic modulators of astrocytes for hydrocephalus. Front Mol Neurosci 2022; 15:932955. [PMID: 36226316 PMCID: PMC9549203 DOI: 10.3389/fnmol.2022.932955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrocephalus is mainly characterized by excessive production or impaired absorption of cerebrospinal fluid that causes ventricular dilation and intracranial hypertension. Astrocytes are the key response cells to inflammation in the central nervous system. In hydrocephalus, astrocytes are activated and show dual characteristics depending on the period of development of the disease. They can suppress the disease in the early stage and may aggravate it in the late stage. More evidence suggests that therapeutics targeting astrocytes may be promising for hydrocephalus. In this review, based on previous studies, we summarize different forms of hydrocephalus-induced astrocyte reactivity and the corresponding function of these responses in hydrocephalus. We also discuss the therapeutic effects of astrocyte regulation on hydrocephalus in experimental studies.
Collapse
Affiliation(s)
- Yijian Yang
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chuansen Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Chen
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuchang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changwu Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qinghua Zhang
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Qinghua Zhang,
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Gelei Xiao,
| |
Collapse
|
10
|
Zhao Z, He J, Chen Y, Wang Y, Wang C, Tan C, Liao J, Xiao G. The pathogenesis of idiopathic normal pressure hydrocephalus based on the understanding of AQP1 and AQP4. Front Mol Neurosci 2022; 15:952036. [PMID: 36204139 PMCID: PMC9530743 DOI: 10.3389/fnmol.2022.952036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a neurological disorder without a recognized cause. Aquaporins (AQPs) are transmembrane channels that carry water through cell membranes and are critical for cerebrospinal fluid circulation and cerebral water balance. The function of AQPs in developing and maintaining hydrocephalus should be studied in greater detail as a possible diagnostic and therapeutic tool. Recent research indicates that patients with iNPH exhibited high levels of aquaporin 1 and low levels of aquaporin 4 expression, suggesting that these AQPs are essential in iNPH pathogenesis. To determine the source of iNPH and diagnose and treat it, it is necessary to examine and appreciate their function in the genesis and maintenance of hydrocephalus. The expression, function, and regulation of AQPs in iNPH are reviewed in this article, in order to provide fresh targets and suggestions for future research.
Collapse
Affiliation(s)
- Zitong Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yibing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuchang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chuansen Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changwu Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Gelei Xiao
| |
Collapse
|
11
|
Eide PK. Cellular changes at the glia-neuro-vascular interface in definite idiopathic normal pressure hydrocephalus. Front Cell Neurosci 2022; 16:981399. [PMID: 36119130 PMCID: PMC9478415 DOI: 10.3389/fncel.2022.981399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a subtype of dementia with overlap toward Alzheimer's disease. Both diseases show deposition of the toxic metabolites amyloid-β and tau in brain. A unique feature with iNPH is that a subset of patients may improve clinically following cerebrospinal fluid (CSF) diversion (shunt) surgery. The patients responding clinically to shunting are denoted Definite iNPH, otherwise iNPH is diagnosed as Possible iNPH or Probable iNPH, high-lightening that the clinical phenotype and underlying pathophysiology remain debated. Given the role of CSF disturbance in iNPH, the water channel aquaporin-4 (AQP4) has been suggested a crucial role in iNPH. Altered expression of AQP4 at the astrocytic endfeet facing the capillaries could affect glymphatic function, i.e., the perivascular transport of fluids and solutes, including soluble amyloid-β and tau. This present study asked how altered perivascular expression of AQP4 in subjects with definite iNPH is accompanied with cellular changes at the glia-neuro-vascular interface. For this purpose, information was retrieved from a database established by the author, including prospectively collected management data, physiological data and information from brain biopsy specimens examined with light and electron microscopy. Individuals with definite iNPH were included together with control subjects who matched the definite iNPH cohort closest in gender and age. Patients with definite iNPH presented with abnormally elevated pulsatile intracranial pressure measured overnight. Cortical brain biopsies showed reduced expression of AQP4 at astrocytic endfeet both perivascular and toward neuropil. This was accompanied with reduced expression of the anchor molecule dystrophin (Dp71) at astrocytic perivascular endfeet, evidence of altered cellular metabolic activity in astrocytic endfoot processes (reduced number of normal and increased number of pathological mitochondria), and evidence of reactive changes in astrocytes (astrogliosis). Moreover, the definite iNPH subjects demonstrated in cerebral cortex changes in capillaries (reduced thickness of the basement membrane between astrocytic endfeet and endothelial cells and pericytes, and evidence of impaired blood-brain-barrier integrity). Abnormal changes in neurons were indicated by reduced post-synaptic density length, and reduced number of normal mitochondria in pre-synaptic terminals. In summary, definite iNPH is characterized by profound cellular changes at the glia-neurovascular interface, which probably reflect the underlying pathophysiology.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Per Kristian Eide
| |
Collapse
|
12
|
Eide PK, Hansson HA. A New Perspective on the Pathophysiology of Idiopathic Intracranial Hypertension: Role of the Glia-Neuro-Vascular Interface. Front Mol Neurosci 2022; 15:900057. [PMID: 35903170 PMCID: PMC9315230 DOI: 10.3389/fnmol.2022.900057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Idiopathic intracranial hypertension (IIH) is a neurological disease characterized by symptoms and signs of increased intracranial pressure (ICP) of unknown cause. Most attention has been given to the role of cerebrospinal fluid (CSF) disturbance and intracranial venous hypertension caused by sinus vein stenosis. We previously proposed that key pathophysiological processes take place within the brain at the glia-neuro-vascular interface. However, the relative importance of the proposed mechanisms in IIH disease remains unknown. Modern treatment regimens aim to reduce intracranial CSF and venous pressures, but a substantial proportion of patients experience lasting complaints. In 2010, the first author established a database for the prospective collection of information from individuals being assessed for IIH. The database incorporates clinical, imaging, physiological, and biological data, and information about treatment/outcome. This study retrieved information from the database, asking the following research questions: In IIH subjects responding to shunt surgery, what is the occurrence of signs of CSF disturbance, sinus vein stenosis, intracranial hypertension, and microscopic evidence of structural abnormalities at the glia-neuro-vascular interface? Secondarily, do semi-quantitative measures of abnormal ultrastructure at the glia-neurovascular differ between subjects with definite IIH and non-IIH (reference) subjects? The study included 13 patients with IIH who fulfilled the diagnostic criteria and who improved following shunt surgery, i.e., patients with definite IIH. Comparisons were done regarding magnetic resonance imaging (MRI) findings, pulsatile and static ICP scores, and immune-histochemistry microscopy. Among these 13 IIH subjects, 6/13 (46%) of patients presented with magnetic resonance imaging (MRI) signs of CSF disturbance (empty sella and/or distended perioptic subarachnoid spaces), 0/13 (0%) of patients with IIH had MRI signs of sinus vein stenosis, 13/13 (100%) of patients with IIH presented with abnormal preoperative pulsatile ICP [overnight mean ICP wave amplitude (MWA) above thresholds], 3/13 (23%) patients showed abnormal static ICP (overnight mean ICP above threshold), and 12/13 (92%) of patients with IIH showed abnormal structural changes at the glia-neuro-vascular interface. Comparisons of semi-quantitative structural variables between IIH and aged- and gender-matched reference (REF) subjects showed IIH abnormalities in glial cells, neurons, and capillaries. The present data suggest a key role of disease processes affecting the glia-neuro-vascular interface.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Per Kristian Eide
| | - Hans-Arne Hansson
- Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
13
|
Eide PK, Lashkarivand A, Hagen-Kersten ÅA, Gjertsen Ø, Nedregaard B, Sletteberg R, Løvland G, Vatnehol SAS, Pripp AH, Valnes LM, Ringstad G. Intrathecal Contrast-Enhanced Magnetic Resonance Imaging of Cerebrospinal Fluid Dynamics and Glymphatic Enhancement in Idiopathic Normal Pressure Hydrocephalus. Front Neurol 2022; 13:857328. [PMID: 35463139 PMCID: PMC9019061 DOI: 10.3389/fneur.2022.857328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/10/2022] [Indexed: 01/09/2023] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a neurodegenerative disease, characterized by cerebrospinal fluid (CSF) flow disturbance. Today, the only available treatment is CSF diversion surgery (shunt surgery). While traditional imaging biomarkers typically assess CSF space anatomy, recently introduced imaging biomarkers of CSF dynamics and glymphatic enhancement, provide imaging of CSF dynamics and thereby more specifically reveal elements of the underlying pathophysiology. The biomarkers address CSF ventricular reflux grade as well as glymphatic enhancement and derive from intrathecal contrast-enhanced MRI. However, the contrast agent serving as CSF tracer is administered off-label. In medicine, the introduction of new diagnostic or therapeutic methods must consider the balance between risk and benefit. To this end, we performed a prospective observational study of 95 patients with iNPH, comparing different intrathecal doses of the MRI contrast agent gadobutrol (0.10, 0.25, and 0.50 mmol, respectively), aiming at the lowest reasonable dose needed to retrieve diagnostic information about the novel MRI biomarkers. The present observations disclosed a dose-dependent enrichment of subarachnoid CSF spaces (cisterna magna, vertex, and velum interpositum) with dose-dependent ventricular reflux of tracer in iNPH, as well as dose-dependent glymphatic tracer enrichment. The association between tracer enrichment in CSF and parenchymal compartments were as well dose-related. Intrathecal gadobutrol in a dose of 0.25 mmol, but not 0.10 mmol, was at 1.5T MRI considered sufficient for imaging altered CSF dynamics and glymphatic enhancement in iNPH, even though 3T MRI provided better sensitivity. Tracer enrichment in CSF at the vertex and within the cerebral cortex and subcortical white matter was deemed too low for maintaining diagnostic information from a dose of 0.10 mmol. We conclude that reducing the intrathecal dose of gadobutrol from 0.50 to 0.25 mmol gadobutrol improves the safety margin while maintaining the necessary diagnostic information about disturbed CSF homeostasis and glymphatic failure in iNPH.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Øivind Gjertsen
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Bård Nedregaard
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ruth Sletteberg
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Grethe Løvland
- The Intervention Centre, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Svein Are Sirirud Vatnehol
- The Intervention Centre, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Optometry Radiography and Lighting Design, Faculty of Health and Social Sciences, University of South Eastern Norway, Drammen, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway.,Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Lars Magnus Valnes
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| |
Collapse
|
14
|
Wang Y, Huang C, Guo Q, Chu H. Aquaporin-4 and Cognitive Disorders. Aging Dis 2022; 13:61-72. [PMID: 35111362 PMCID: PMC8782559 DOI: 10.14336/ad.2021.0731] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
Aquaporin-4 (AQP4) is the most abundantly expressed aquaporin in the central nervous system (CNS) and is an integral part of the glymphatic system that cannot be ignored. The CNS has the glymphatic system instead of the conventional lymphatic system. The glymphatic system plays an essential role in the pathophysiological processes of many cognitive disorders. AQP4 shows noteworthy changes in various cognitive disorders and is part of the pathogenesis of these diseases. For this reason, AQP4 has attracted attention as a potential and promising target for regulating and even reversing cognitive dysfunction. This review will summarize the role of AQP4 in the pathophysiological processes of several cognitive disorders as reported in recent studies.
Collapse
Affiliation(s)
- Yifan Wang
- 1Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chuyi Huang
- 2Health Management Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai China
| | - Qihao Guo
- 1Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Heling Chu
- 1Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
15
|
Streptococcal meningitis reveals the presence of residual streptococci and down-regulated aquaporin 4 in the brain. Arch Microbiol 2021; 203:6329-6335. [PMID: 34562144 DOI: 10.1007/s00203-021-02583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
The pathology of streptococcal meningitis is poorly understood, even though streptococcal infection induces meningitis. The aim of this study was to clarify the relationship between streptococcal meningitis and aquaporin 4 (AQP4) in the mouse brain. After Streptococcus suis infection, the streptococcal number was calculated, and AQP4 mRNA expression in the brain was quantified at 2 and 7 days after infection. At 7-day post-infection, mice with neurological symptoms showed significantly higher S. suis levels in the brain than mice without neurological symptoms. AQP4 expression was significantly decreased in mice with neurological symptoms than in mice without neurological symptoms. Image analysis demonstrated that S. suis progressed to invade the white matter. Pathological analysis revealed that infected mouse brains had higher inflammation and neurological damage scores than uninfected mouse brains. Therefore, mice with neurological symptoms caused by streptococcal meningitis had high S. suis levels in the brain and reduced AQP4 expression.
Collapse
|
16
|
Abstract
Optic nerve health is essential for proper function of the visual system. However, the pathophysiology of certain neurodegenerative disease processes affecting the optic nerve, such as glaucoma, is not fully understood. Recently, it was hypothesized that a lack of proper clearance of neurotoxins contributes to neurodegenerative diseases. The ability to clear metabolic waste is essential for tissue homeostasis in mammals, including humans. While the brain lacks the traditional lymphatic drainage system identified in other anatomical regions, there is growing evidence of a glymphatic system in the central nervous system, which structurally includes the optic nerve. Named to acknowledge the supportive role of astroglial cells, this perivascular fluid drainage system is essential to remove toxic metabolites from the central nervous system. Herein, we review existing literature describing the physiology and dysfunction of the glymphatic system specifically as it relates to the optic nerve. We summarize key imaging studies demonstrating the existence of a glymphatic system in the optic nerves of wild-type rodents, aquaporin 4-null rodents, and humans; glymphatic imaging studies in diseases where the optic nerve is impaired; and current evidence regarding pharmacological and lifestyle interventions that may help promote glymphatic function to improve optic nerve health. We conclude by highlighting future research directions that could be applied to improve imaging detection and guide therapeutic interventions for diseases affecting the optic nerve.
Collapse
Affiliation(s)
- Anisha Kasi
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Crystal Liu
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Muneeb A Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Kevin C Chan
- Department of Ophthalmology; Department of Radiology; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health; Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
| |
Collapse
|
17
|
Ludwig HC, Bock HC, Gärtner J, Schiller S, Frahm J, Dreha-Kulaczewski S. Hydrocephalus Revisited: New Insights into Dynamics of Neurofluids on Macro- and Microscales. Neuropediatrics 2021; 52:233-241. [PMID: 34192788 DOI: 10.1055/s-0041-1731981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New experimental and clinical findings question the historic view of hydrocephalus and its 100-year-old classification. In particular, real-time magnetic resonance imaging (MRI) evaluation of cerebrospinal fluid (CSF) flow and detailed insights into brain water regulation on the molecular scale indicate the existence of at least three main mechanisms that determine the dynamics of neurofluids: (1) inspiration is a major driving force; (2) adequate filling of brain ventricles by balanced CSF upsurge is sensed by cilia; and (3) the perivascular glial network connects the ependymal surface to the pericapillary Virchow-Robin spaces. Hitherto, these aspects have not been considered a common physiologic framework, improving knowledge and therapy for severe disorders of normal-pressure and posthemorrhagic hydrocephalus, spontaneous intracranial hypotension, and spaceflight disease.
Collapse
Affiliation(s)
- Hans C Ludwig
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Hans C Bock
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jutta Gärtner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Stina Schiller
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Frahm
- Biomedical NMR, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Ludwig HC, Dreha-Kulaczewski S, Bock HC. Neurofluids-Deep inspiration, cilia and preloading of the astrocytic network. J Neurosci Res 2021; 99:2804-2821. [PMID: 34323313 DOI: 10.1002/jnr.24935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023]
Abstract
With the advent of real-time MRI, the motion and passage of cerebrospinal fluid can be visualized without gating and exclusion of low-frequency waves. This imaging modality gives insights into low-volume, rapidly oscillating cardiac-driven movement as well as sustained, high-volume, slowly oscillating inspiration-driven movement. Inspiration means a spontaneous or artificial increase in the intrathoracic dimensions independent of body position. Alterations in thoracic diameter enable the thoracic and spinal epidural venous compartments to be emptied and filled, producing an upward surge of cerebrospinal fluid inside the spine during inspiration; this surge counterbalances the downward pooling of venous blood toward the heart. Real-time MRI, as a macroscale in vivo observation method, could expand our knowledge of neurofluid dynamics, including how astrocytic fluid preloading is adjusted and how brain buoyancy and turgor are maintained in different postures and zero gravity. Along with these macroscale findings, new microscale insights into aquaporin-mediated fluid transfer, its sensing by cilia, and its tuning by nitric oxide will be reviewed. By incorporating clinical knowledge spanning several disciplines, certain disorders-congenital hydrocephalus with Chiari malformation, idiopathic intracranial hypertension, and adult idiopathic hydrocephalus-are interpreted and reviewed according to current concepts, from the basics of the interrelated systems to their pathology.
Collapse
Affiliation(s)
- Hans C Ludwig
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Hans C Bock
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Lv T, Zhao B, Hu Q, Zhang X. The Glymphatic System: A Novel Therapeutic Target for Stroke Treatment. Front Aging Neurosci 2021; 13:689098. [PMID: 34305569 PMCID: PMC8297504 DOI: 10.3389/fnagi.2021.689098] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
The glymphatic system (GS) is a novel defined brain-wide perivascular transit network between cerebrospinal fluid (CSF) and interstitial solutes that facilitates the clearance of brain metabolic wastes. The complicated network of the GS consists of the periarterial CSF influx pathway, astrocytes-mediated convective transport of fluid and solutes supported by AQP4 water channels, and perivenous efflux pathway. Recent researches indicate that the GS dysfunction is associated with various neurological disorders, including traumatic brain injury, hydrocephalus, epilepsy, migraine, and Alzheimer’s disease (AD). Meanwhile, the GS also plays a pivotal role in the pathophysiological process of stroke, including brain edema, blood–brain barrier (BBB) disruption, immune cell infiltration, neuroinflammation, and neuronal apoptosis. In this review, we illustrated the key anatomical structures of the GS, the relationship between the GS and the meningeal lymphatic system, the interaction between the GS and the BBB, and the crosstalk between astrocytes and other GS cellular components. In addition, we contributed to the current knowledge about the role of the GS in the pathology of stroke and the role of AQP4 in stroke. We further discussed the potential use of the GS in early risk assessment, diagnostics, prognostics, and therapeutics of stroke.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Eide PK, Hasan‐Olive MM, Hansson H, Enger R. Increased occurrence of pathological mitochondria in astrocytic perivascular endfoot processes and neurons of idiopathic intracranial hypertension. J Neurosci Res 2021; 99:467-480. [PMID: 33105056 PMCID: PMC7821105 DOI: 10.1002/jnr.24743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Idiopathic intracranial hypertension (IIH) primarily affects fertile, overweight women, and presents with the symptoms of raised intracranial pressure. The etiology is unknown but has been thought to relate to cerebrospinal fluid disturbance or cerebral venous stenosis. We have previously found evidence that IIH is also a disease of the brain parenchyma, evidenced by alterations at the neurogliovascular interface, including astrogliosis, pathological changes in the basement membrane and pericytes, and alterations of perivascular aquaporin-4. The aim of this present electron microscopic study was to examine whether mitochondria phenotype was changed in IIH, particularly focusing on perivascular astrocytic endfeet and neurons (soma and pre- and postsynaptic terminals). Cortical brain biopsies of nine reference individuals and eight IIH patients were analyzed for subcellular distribution and phenotypical features of mitochondria using transmission electron microscopy. We found significantly increased prevalence of pathological mitochondria and reduced number of normal mitochondria in astrocytic endfeet of IIH patients. The degree of astrogliosis correlated negatively with the number of normal mitochondria in astrocytic endfoot processes. Moreover, we found significantly increased number of pathological mitochondria in pre- and postsynaptic neuronal terminals, as well as significantly shortened distance between mitochondria and endoplasmic reticulum contacts. Finally, the length of postsynaptic density, a marker of synaptic strength, was on average reduced in IIH. The present data provide evidence of pathological mitochondria in perivascular astrocytes endfeet and neurons of IIH patients, highlighting that impaired metabolism at the neurogliovascular interface may be a facet of IIH.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of NeurosurgeryOslo University Hospital ‐ RikshospitaletOsloNorway
- Institute of Clinical MedicineFaculty of MedicineUniversity of OsloOsloNorway
| | - Md Mahdi Hasan‐Olive
- Department of NeurosurgeryOslo University Hospital ‐ RikshospitaletOsloNorway
- Institute of Clinical MedicineFaculty of MedicineUniversity of OsloOsloNorway
| | | | - Rune Enger
- GliaLab and Letten CentreDivision of Anatomy and Division of PhysiologyDepartment of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Department of NeurologyOslo University Hospital ‐ RikshospitaletOsloNorway
| |
Collapse
|
21
|
Tan C, Wang X, Wang Y, Wang C, Tang Z, Zhang Z, Liu J, Xiao G. The Pathogenesis Based on the Glymphatic System, Diagnosis, and Treatment of Idiopathic Normal Pressure Hydrocephalus. Clin Interv Aging 2021; 16:139-153. [PMID: 33488070 PMCID: PMC7815082 DOI: 10.2147/cia.s290709] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/01/2021] [Indexed: 12/16/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a rare neurological disorder with no clear prevalence factors and is a significant danger to the elderly. The intracranial glymphatic system is the internal environment that maintains brain survival and metabolism, and thus fluid exchange changes in the glymphatic system under various pathological conditions can provide important insights into the pathogenesis and differential diagnosis of many neurodegenerative diseases such as iNPH. iNPH can be diagnosed using a combination of clinical symptoms, imaging findings and history, and cerebrospinal fluid biomarkers due to the glymphatic system disorder. However, only few researchers have linked the two. Shunt surgery can improve the glymphatic system disorders in iNPH patients, and the surgical approach is determined using a combination of clinical diagnosis and trials. Therefore, we have composed this review to provide a future opportunity for elucidating the pathogenesis of iNPH based on the glymphatic system, and link the glymphatic system to the diagnosis and treatment of iNPH. The review will provide new insights into the medical research of iNPH.
Collapse
Affiliation(s)
- Changwu Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xiaoqiang Wang
- Pediatric Neurological Disease Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Yuchang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Chuansen Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Zhi Tang
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
22
|
Taoka T, Naganawa S. Imaging for central nervous system (CNS) interstitial fluidopathy: disorders with impaired interstitial fluid dynamics. Jpn J Radiol 2021; 39:1-14. [PMID: 32653987 PMCID: PMC7813706 DOI: 10.1007/s11604-020-01017-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
After the introduction of the glymphatic system hypothesis, an increasing number of studies on cerebrospinal fluid and interstitial fluid dynamics within the brain have been investigated and reported. A series of diseases are known which develop due to abnormality of the glymphatic system including Alzheimer's disease, traumatic brain injury, stroke, or other disorders. These diseases or disorders share the characteristics of the glymphatic system dysfunction or other mechanisms related to the interstitial fluid dynamics. In this review article, we propose "Central Nervous System (CNS) Interstitial Fluidopathy" as a new concept encompassing diseases whose pathologies are majorly associated with abnormal interstitial fluid dynamics. Categorizing these diseases or disorders as "CNS interstitial fluidopathies," will promote the understanding of their mechanisms and the development of potential imaging methods for the evaluation of the disease as well as clinical methods for disease treatment or prevention. In other words, having a viewpoint of the dynamics of interstitial fluid appears relevant for understanding CNS diseases or disorders, and it would be possible to develop novel common treatment methods or medications for "CNS interstitial fluidopathies."
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan. .,Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
23
|
Eide PK, Pripp AH, Ringstad G. Magnetic resonance imaging biomarkers of cerebrospinal fluid tracer dynamics in idiopathic normal pressure hydrocephalus. Brain Commun 2020; 2:fcaa187. [PMID: 33381757 PMCID: PMC7753057 DOI: 10.1093/braincomms/fcaa187] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Disturbed clearance of toxic metabolites from the brain via cerebrospinal fluid is emerging as an important mechanism behind dementia and neurodegeneration. To this end, magnetic resonance imaging work-up of dementia diseases is largely focused on anatomical derangements of the brain. This study explores magnetic resonance imaging biomarkers of cerebrospinal fluid tracer dynamics in patients with the dementia subtype idiopathic normal pressure hydrocephalus and a cohort of reference subjects. All study participants underwent multi-phase magnetic resonance imaging up to 48 h after intrathecal administration of the contrast agent gadobutrol (0.5 ml, 1 mmol/ml), serving as cerebrospinal fluid tracer. Imaging biomarkers of cerebrospinal fluid tracer dynamics (i.e. ventricular reflux grades 0–4 and clearance) were compared with anatomical magnetic resonance imaging biomarkers of cerebrospinal fluid space anatomy (Evans’ index, callosal angle and disproportional enlargement of subarachnoid spaces hydrocephalus) and neurodegeneration (Schelten’s medial temporal atrophy scores, Fazeka’s scores and entorhinal cortex thickness). The imaging scores were also related to a pulsatile intracranial pressure score indicative of intracranial compliance. In shunt-responsive idiopathic normal pressure hydrocephalus, the imaging biomarkers demonstrated significantly altered cerebrospinal fluid tracer dynamics (ventricular reflux grades 3–4 and reduced clearance of tracer), deranged cerebrospinal fluid space anatomy and pronounced neurodegeneration. The altered MRI biomarkers were accompanied by pressure indices of impaired intracranial compliance. In conclusion, we present novel magnetic resonance imaging biomarkers characterizing idiopathic normal pressure hydrocephalus pathophysiology, namely measures of cerebrospinal fluid molecular redistribution and clearance, which add information to traditional imaging scores of cerebrospinal fluid space anatomy and neurodegeneration.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Are H Pripp
- Oslo Centre of Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital- Rikshospitalet, Oslo, Norway
| |
Collapse
|
24
|
de Laurentis C, Cristaldi P, Arighi A, Cavandoli C, Trezza A, Sganzerla EP, Giussani CG, Di Cristofori A. Role of aquaporins in hydrocephalus: what do we know and where do we stand? A systematic review. J Neurol 2020; 268:4078-4094. [PMID: 32747978 DOI: 10.1007/s00415-020-10122-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Glymphatic fluid circulation may be considered the lymphatic system of the brain and the main role of such system seems to be played by aquaporins (AQPs), a family of proteins which regulates water exchange, in particular AQP4 and 1. Alterations of glymphatic fluid circulation through AQPs variations are now emerging as central elements in the pathophysiology of different brain conditions, like hydrocephalus. This systematic review provides an insight about the role of AQPs in hydrocephalus establishment and compensation, investigating their possible role as diagnostic tools or therapeutic targets. METHODS PubMed database was screened searching for the relevant existing literature in English language published until February 29th 2020, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement. RESULTS A total of 40 articles met the inclusion criteria for our systematic analysis. AQP4 resulted the most studied water channel, followed by AQP1. The changes in cerebrospinal fluid (CSF), brain parenchyma and choroid plexus (CP) in different hydrocephalus type were analyzed. Moreover, important pharmacological interactions regarding AQP and molecules or conditions were discussed. A very interesting result is the general consensus on increase of AQP4 in hydrocephalic patients, unless in patients suffering from idiopathic normal pressure hydrocephalus, where AQP4 shows a tendency in reduction. CONCLUSION AQP seem to play a central role in the pathophysiology of hydrocephalus and in its compensation mechanisms. Further studies are required to definitively establish their precise roles and their quantitative changes to allow their utilization as diagnostic tools or therapeutic targets.
Collapse
Affiliation(s)
- Camilla de Laurentis
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Department of Surgery and Medicine, Università degli Studi Milano-Bicocca, Milan, MI, Italy
| | - Paola Cristaldi
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Department of Surgery and Medicine, Università degli Studi Milano-Bicocca, Milan, MI, Italy
| | - Andrea Arighi
- Unit of Neurology - UOSD Malattie Neurodegenerative, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, MI, Italy.,Dino Ferrari Center - Università degli Studi di Milano, Milan, MI, Italy
| | - Clarissa Cavandoli
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Università degli Studi di Milano, Milan, MI, Italy
| | - Andrea Trezza
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy
| | - Erik P Sganzerla
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Department of Surgery and Medicine, Università degli Studi Milano-Bicocca, Milan, MI, Italy
| | - Carlo G Giussani
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Department of Surgery and Medicine, Università degli Studi Milano-Bicocca, Milan, MI, Italy
| | - Andrea Di Cristofori
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.
| |
Collapse
|
25
|
Dynamic Changes of Beclin-1 in the Hippocampus of Male Mice with Vascular Dementia at Different Time Points. J Mol Neurosci 2020; 70:1611-1618. [DOI: 10.1007/s12031-020-01591-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022]
|
26
|
Evensen KB, Eide PK. Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement. Fluids Barriers CNS 2020; 17:34. [PMID: 32375853 PMCID: PMC7201553 DOI: 10.1186/s12987-020-00195-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/19/2020] [Indexed: 12/20/2022] Open
Abstract
Sixty years have passed since neurosurgeon Nils Lundberg presented his thesis about intracranial pressure (ICP) monitoring, which represents a milestone for its clinical introduction. Monitoring of ICP has since become a clinical routine worldwide, and today represents a cornerstone in surveillance of patients with acute brain injury or disease, and a diagnostic of individuals with chronic neurological disease. There is, however, controversy regarding indications, clinical usefulness and the clinical role of the various ICP scores. In this paper, we critically review limitations and weaknesses with the current ICP measurement approaches for invasive, less invasive and non-invasive ICP monitoring. While risk related to the invasiveness of ICP monitoring is extensively covered in the literature, we highlight other limitations in current ICP measurement technologies, including limited ICP source signal quality control, shifts and drifts in zero pressure reference level, affecting mean ICP scores and mean ICP-derived indices. Control of the quality of the ICP source signal is particularly important for non-invasive and less invasive ICP measurements. We conclude that we need more focus on mitigation of the current limitations of today's ICP modalities if we are to improve the clinical utility of ICP monitoring.
Collapse
Affiliation(s)
- Karen Brastad Evensen
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
27
|
Keep RF, Jones HC, Drewes LR. This was the year that was: brain barriers and brain fluid research in 2019. Fluids Barriers CNS 2020; 17:20. [PMID: 32138786 PMCID: PMC7059280 DOI: 10.1186/s12987-020-00181-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This editorial highlights advances in brain barrier and brain fluid research published in 2019, as well as addressing current controversies and pressing needs. Topics include recent advances related to: the cerebral endothelium and the neurovascular unit; the choroid plexus, arachnoid membrane; cerebrospinal fluid and the glymphatic hypothesis; the impact of disease states on brain barriers and brain fluids; drug delivery to the brain; and translation of preclinical data to the clinic. This editorial also mourns the loss of two important figures in the field, Malcolm B. Segal and Edward G. Stopa.
Collapse
Affiliation(s)
- Richard F. Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| | | | - Lester R. Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN 55812 USA
| |
Collapse
|