1
|
Wang S, Eckstein KN, Okamoto RJ, McGarry MDJ, Johnson CL, Bayly PV. Force and energy transmission at the brain-skull interface of the minipig in vivo and post-mortem. J Mech Behav Biomed Mater 2025; 161:106775. [PMID: 39515226 DOI: 10.1016/j.jmbbm.2024.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
The brain-skull interface plays an important role in the mechano-pathology of traumatic brain injury (TBI). A comprehensive understanding of the mechanical behavior of the brain-skull interface in vivo is significant for understanding the mechanisms of TBI and creating accurate computational models. Here we investigate the force and energy transmission at the minipig brain-skull interface by non-invasive methods in the live (in vivo) and dead animal (in situ). Displacement fields in the brain and skull were measured in four female minipigs by magnetic resonance elastography (MRE), and the relative displacements between the brain and skull were estimated. Surface maps of deviatoric stress, the apparent mechanical properties of the brain-skull interface, and the net energy flux were generated for each animal when alive and at specific times post-mortem. After death, these maps reveal increases in relative motion between brain and skull, brain surface stress, stiffness of brain-skull interface, and net energy flux from skull to brain. These results illustrate the ability to study both skull and brain mechanics by MRE; the observed post-mortem decrease in the protective capability of the brain-skull interface emphasizes the importance of measuring its behavior in vivo.
Collapse
Affiliation(s)
- Shuaihu Wang
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | - Kevin N Eckstein
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | - Ruth J Okamoto
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | | | | | - Philip V Bayly
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States; Washington University in St. Louis, Biomedical Engineering, United States.
| |
Collapse
|
2
|
Fowler MJ, Riley CO, Tomasson E, Mehta S, Grande-Allen J, Ballester L, Sandberg DI, Janssen CF, Sirianni RW. Engineering subarachnoid trabeculae with electrospun poly(caprolactone) (PCL) scaffolds to study leptomeningeal metastasis in medulloblastoma. BIOMATERIALS ADVANCES 2023; 155:213646. [PMID: 37918168 DOI: 10.1016/j.bioadv.2023.213646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Leptomeningeal metastasis (LM) occurs when cancer cells infiltrate the subarachnoid space (SAS) and metastasize to the fibrous structures that surround the brain and spinal cord. These structures include the leptomeninges (i.e., the pia mater and arachnoid mater), as well as subarachnoid trabeculae, which are collagen-rich fibers that provide mechanical structure for the SAS, support resident cells, and mediate flow of cerebrospinal fluid (CSF). Although there is a strong expectation that the presence of fibers within the SAS influences LM to be a major driver of tumor progression and lethality, exactly how trabecular architecture relates to the process of metastasis in cancer is poorly understood. This lack of understanding is likely due in part to the difficulty of accessing and manipulating this tissue compartment in vivo. Here, we utilized electrospun polycaprolactone (PCL) to produce structures bearing remarkable morphological similarity to native SAS fiber architecture. First, we profiled the native architecture of leptomeningeal and trabecular fibers collected from rhesus macaque monkeys, evaluating both qualitative and quantitative differences in fiber ultrastructure for various regions of the CNS. We then varied electrospinning parameters to produce a small library of PCL scaffolds possessing distinct architectures mimicking the range of fiber properties observed in vivo. For proof of concept, we studied the metastasis-related behaviors of human pediatric medulloblastoma cells cultured in different fiber microenvironments. These studies demonstrated that a more open, porous fiber structure facilitates DAOY cell spread across and infiltration into the meningeal mimic. Our results present a new tissue engineered model of the subarachnoid space and affirm the expectation that fiber architecture plays an important role in mediating metastasis-related behaviors in an in vitro model of pediatric medulloblastoma.
Collapse
Affiliation(s)
- Martha J Fowler
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America; Department of Biomedical Engineering, Rice University, Houston, TX, United States of America
| | - Colin O Riley
- Department of Neurological Surgery, UMass Chan Medical School, Worcester, MA, United States of America
| | - Erik Tomasson
- Department of Biomedical Engineering, Rice University, Houston, TX, United States of America
| | - Shail Mehta
- Department of Biomedical Engineering, Rice University, Houston, TX, United States of America
| | - Jane Grande-Allen
- Department of Biomedical Engineering, Rice University, Houston, TX, United States of America
| | - Leomar Ballester
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, United States of America; Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, United States of America
| | - David I Sandberg
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America; Department of Pediatric Surgery, McGovern Medical School/UTHealth and Children's Memorial Hermann Hospital, United States of America
| | | | - Rachael W Sirianni
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America; Department of Biomedical Engineering, Rice University, Houston, TX, United States of America; Department of Neurological Surgery, UMass Chan Medical School, Worcester, MA, United States of America.
| |
Collapse
|
3
|
Santorella E, Balsbaugh JL, Ge S, Saboori P, Baker D, Pachter JS. Proteomic interrogation of the meninges reveals the molecular identities of structural components and regional distinctions along the CNS axis. Fluids Barriers CNS 2023; 20:74. [PMID: 37858244 PMCID: PMC10588166 DOI: 10.1186/s12987-023-00473-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
The meninges surround the brain and spinal cord, affording physical protection while also serving as a niche of neuroimmune activity. Though possessing stromal qualities, its complex cellular and extracellular makeup has yet to be elaborated, and it remains unclear whether the meninges vary along the neuroaxis. Hence, studies were carried-out to elucidate the protein composition and structural organization of brain and spinal cord meninges in normal, adult Biozzi ABH mice. First, shotgun, bottom-up proteomics was carried-out. Prominent proteins at both brain and spinal levels included Type II collagen and Type II keratins, representing extracellular matrix (ECM) and cytoskeletal categories, respectively. While the vast majority of total proteins detected was shared between both meningeal locales, more were uniquely detected in brain than in spine. This pattern was also seen when total proteins were subdivided by cellular compartment, except in the case of the ECM category where brain and spinal meninges each had near equal number of unique proteins, and Type V and type III collagen registered exclusively in the spine. Quantitative analysis revealed differential expression of several collagens and cytoskeletal proteins between brain and spinal meninges. High-resolution immunofluorescence and immunogold-scanning electronmicroscopy on sections from whole brain and spinal cord - still encased within bone -identified major proteins detected by proteomics, and highlighted their association with cellular and extracellular elements of variously shaped arachnoid trabeculae. Western blotting aligned with the proteomic and immunohistological analyses, reinforcing differential appearance of proteins in brain vs spinal meninges. Results could reflect regional distinctions in meninges that govern protective and/or neuroimmune functions.
Collapse
Affiliation(s)
- Elise Santorella
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Jeremy L Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT, 06269, USA
| | - Shujun Ge
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Parisa Saboori
- Department of Mechanical Engineering, Manhattan College, Bronx, NY, 10071, USA
| | - David Baker
- Blizard Institute, Queen Mary University of London, London, England
| | - Joel S Pachter
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
4
|
Murakami Y, Masaki M, Miyazaki S, Oketani R, Hayashi Y, Yanagisawa M, Honjoh S, Kano H. Spectroscopic second and third harmonic generation microscopy using a femtosecond laser source in the third near-infrared (NIR-III) optical window. BIOMEDICAL OPTICS EXPRESS 2022; 13:694-708. [PMID: 35284173 PMCID: PMC8884214 DOI: 10.1364/boe.446273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
In this study, second harmonic generation (SHG) and third harmonic generation (THG) spectroscopic imaging were performed on biological samples using a femtosecond laser source in the third near-infrared (NIR) optical window (NIR-III). Using a visible-NIR spectrometer, the SHG and THG signals were simultaneously detected and were extracted using spectral analysis. Visualization of biological samples such as cultured cells (HEK293 T), mouse brain slices, and the nematode Caenorhabditis elegans was performed in a label-free manner. In particular, in an SHG image of an entire coronal brain section (8 × 6 mm2), we observed mesh-like and filamentous structures in the arachnoid mater and wall of the cerebral ventricle, probably corresponding to the collagen fibers, cilia, and rootlet. Moreover, the THG images clearly depicted the densely packed axons in the white matter and cell nuclei at the cortex of the mouse brain slice sample and lipid-rich granules such as lipid droplets inside the nematode. The observations and conclusions drawn from this technique confirm that it can be utilized for various biological applications, including in vivo label-free imaging of living animals.
Collapse
Affiliation(s)
- Yusuke Murakami
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Minori Masaki
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinichi Miyazaki
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryosuke Oketani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hayashi
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 603-8363, Japan
| | - Masashi Yanagisawa
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Sakiko Honjoh
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hideaki Kano
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|