1
|
Hu Y, Zhang Y, He J, Rao H, Zhang D, Shen Z, Zhou C. ANO1: central role and clinical significance in non-neoplastic and neoplastic diseases. Front Immunol 2025; 16:1570333. [PMID: 40356890 PMCID: PMC12067801 DOI: 10.3389/fimmu.2025.1570333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/20/2025] [Indexed: 05/15/2025] Open
Abstract
Anoctamin 1 (ANO1), also known as TMEM16A, is a multifunctional protein that serves as a calcium-activated chloride channel (CaCC). It is ubiquitously expressed across various tissues, including epithelial cells, smooth muscle cells, and neurons, where it is integral to physiological processes such as epithelial secretion, smooth muscle contraction, neural conduction, and cell proliferation and migration. Dysregulation of ANO1 has been linked to the pathogenesis of numerous diseases. Extensive research has established its involvement in non-neoplastic conditions such as asthma, hypertension, and gastrointestinal (GI) dysfunction. Moreover, ANO1 has garnered significant attention for its role in the development and progression of cancers, including head and neck cancer, breast cancer, and lung cancer, where its overexpression correlates with increased tumor growth, metastasis, and poor prognosis. Additionally, ANO1 regulates multiple signaling pathways, including the epidermal growth factor receptor (EGFR) pathway, the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway, among others. These pathways are pivotal in regulating cell proliferation, migration, and invasion. Given its central role in these processes, ANO1 has emerged as a promising diagnostic biomarker and therapeutic target. Recent advancements in ANO1 research have highlighted its potential in disease diagnosis and treatment. Strategies targeting ANO1, such as small molecule modulators or gene-silencing techniques, have shown preclinical promise in both non-neoplastic and neoplastic diseases. This review explores the latest findings in ANO1 research, focusing on its mechanistic involvement in disease progression, its regulation, and its therapeutic potential. Modulating ANO1 activity may offer novel therapeutic strategies for effectively treating ANO1-associated diseases.
Collapse
Affiliation(s)
- Yanghao Hu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yifei Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jiali He
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Huihuang Rao
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Duomi Zhang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Chung MC, Su LJ, Chen CL, Wu LC. Revealing the antimicrobial potential of traditional Chinese medicine through text mining and molecular computation. Brief Bioinform 2024; 26:bbaf077. [PMID: 40007160 PMCID: PMC11859959 DOI: 10.1093/bib/bbaf077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/26/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Traditional Chinese Medicine (TCM), with its extensive knowledge base documented in ancient texts, offers a unique resource for contemporary drug discovery, particularly in combatting microbial infections. The success of antimalarial drugs like artemisinin and artesunate, derived from the TCM herb Artemisia annua L., exemplifies the potential of TCM-derived small molecules. This rich repository of natural products and intricate molecular structures could reveal novel compounds with unexplored mechanisms of action. Our study employs a multifaceted approach that combines text mining, detailed textual analysis, and modern antibacterial molecular prediction methodologies to unlock the potential of ancient TCM remedies. We use external knowledge maps, which include databases of known bioactive compounds and their targets, to identify promising TCM candidates. This approach leverages both historical texts and contemporary scientific data to explore the therapeutic potential of TCM. We discovered that herb patterns DiYu→ZeXie and Kushen→ShengJiang potentially combat both Grams-positive and Grams-negative bacteria. We utilized the AntiBac-Pred online tool to identify and analyze the chemical components of herbs, integrating data from ancient texts and TCMDB@Taiwan external knowledge graph. The DiYu→ZeXie groups showed antimicrobial potential against resistant Staphylococcus simulans, while the Kushen→ShengJiang groups exhibited dual antimicrobial effects against Bacillus subtilis. Exploring TCM's extensive repository offers numerous opportunities for discovering therapeutically active compounds. Our synergistic approach, which combines ancient wisdom with modern science, holds significant promise for enhancing our ability to combat infectious diseases. This method could pave the way for a new era of personalized medicine, addressing the urgent need for innovative treatments against multidrug-resistant bacteria and viruses.
Collapse
Affiliation(s)
- Meng-Chi Chung
- Department of Biomedical Science and Engineering, National Central University (NCU), Jhong-Li City, Taiwan, (ROC)
| | - Li-Jen Su
- Department of Biomedical Science and Engineering, National Central University (NCU), Jhong-Li City, Taiwan, (ROC)
- Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, NCU, Taoyuan, Taiwan, (ROC)
- Core Facilities for High Throughput Experimental Analysis, Department of Biomedical Sciences and Engineering, NCU, Taoyuan, Taiwan, (ROC)
- IIHMED Reproductive Center, Taipei, Taiwan, (ROC)
- Tian Medicine Phamaceutical Company Ltd., Taipei, Taiwan, (ROC)
| | - Chien-Lin Chen
- IIHMED Reproductive Center, Taipei, Taiwan, (ROC)
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan, (ROC)
- Department of Health Promotion and Health Education, National Taiwan Normal University, Taipei, Taiwan (ROC)
| | - Li-Ching Wu
- Department of Biomedical Science and Engineering, National Central University (NCU), Jhong-Li City, Taiwan, (ROC)
- Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, NCU, Taoyuan, Taiwan, (ROC)
| |
Collapse
|
3
|
Kim H, Shim WS, Oh U. Anoctamin 1, a multi-modal player in pain and itch. Cell Calcium 2024; 123:102924. [PMID: 38964236 DOI: 10.1016/j.ceca.2024.102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Anoctamin 1 (ANO1/TMEM16A) encodes a Ca2+-activated Cl- channel. Among ANO1's many physiological functions, it plays a significant role in mediating nociception and itch. ANO1 is activated by intracellular Ca2+ and depolarization. Additionally, ANO1 is activated by heat above 44 °C, suggesting heat as another activation stimulus. ANO1 is highly expressed in nociceptors, indicating a role in nociception. Conditional Ano1 ablation in dorsal root ganglion (DRG) neurons results in a reduction in acute thermal pain, as well as thermal and mechanical allodynia or hyperalgesia evoked by inflammation or nerve injury. Pharmacological interventions also lead to a reduction in nocifensive behaviors. ANO1 is functionally linked to the bradykinin receptor and TRPV1. Bradykinin stimulates ANO1 via IP3-mediated Ca2+ release from intracellular stores, whereas TRPV1 stimulates ANO1 via a combination of Ca2+ influx and release. Nerve injury causes upregulation of ANO1 expression in DRG neurons, which is blocked by ANO1 antagonists. Due to its role in nociception, strong and specific ANO1 antagonists have been developed. ANO1 is also expressed in pruritoceptors, mediating Mas-related G protein-coupled receptors (Mrgprs)-dependent itch. The activation of ANO1 leads to chloride efflux and depolarization due to high intracellular chloride concentrations, causing pain and itch. Thus, ANO1 could be a potential target for the development of new drugs treating pain and itch.
Collapse
Affiliation(s)
- Hyungsup Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Wang J, Owji AP, Kittredge A, Clark Z, Zhang Y, Yang T. GAD65 tunes the functions of Best1 as a GABA receptor and a neurotransmitter conducting channel. Nat Commun 2024; 15:8051. [PMID: 39277606 PMCID: PMC11401937 DOI: 10.1038/s41467-024-52039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
Bestrophin-1 (Best1) is an anion channel genetically linked to vision-threatening retinal degenerative channelopathies. Here, we identify interactions between Best1 and both isoforms of glutamic acid decarboxylases (GAD65 and GAD67), elucidate the distinctive influences of GAD65 and GAD67 on Best1's permeability to various anions/neurotransmitters, discover the functionality of Best1 as a γ-Aminobutyric acid (GABA) type A receptor, and solve the structure of GABA-bound Best1. GAD65 and GAD67 both promote Best1-mediated Cl- currents, but only GAD65 drastically enhances the permeability of Best1 to glutamate and GABA, for which GAD67 has no effect. GABA binds to Best1 on an extracellular site and stimulates Best1-mediated Cl- currents at the nano-molar concentration level. The physiological role of GAD65 as a cell type-specific binding partner and facilitator of Best1 is demonstrated in retinal pigment epithelial cells. Together, our results reveal critical regulators of Best1 and inform a network of membrane transport metabolons formed between bestrophin channels and glutamate metabolic enzymes.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Aaron P Owji
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Alec Kittredge
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Zada Clark
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Yu Zhang
- Department of Ophthalmology, Columbia University, New York, NY, USA.
| | - Tingting Yang
- Department of Ophthalmology, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Joo J, Kim KJ, Lim J, Choi SY, Koh W, Lee CJ. Generation of Astrocyte-specific BEST1 Conditional Knockout Mouse with Reduced Tonic GABA Inhibition in the Brain. Exp Neurobiol 2024; 33:180-192. [PMID: 39266474 PMCID: PMC11411089 DOI: 10.5607/en24019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024] Open
Abstract
Bestrophin-1 (BEST1) is a Ca2+-activated anion channel known for its role in astrocytes. Best1 is permeable to gliotransmitters, including GABA, to contribute to tonic GABA inhibition and modulate synaptic transmission in neighboring neurons. Despite the crucial functions of astrocytic BEST1, there is an absence of genetically engineered cell-type specific conditional mouse models addressing these roles. In this study, we developed an astrocyte-specific BEST1 conditional knock-out (BEST1 aKO) mouse line. Using the embryonic stem cell (ES cell) targeting method, we developed Best1 floxed mice (C57BL/6JCya-Best1em1flox/Cya), which have exon 3, 4, 5, and 6 of Best1 flanked by two loxP sites. By crossing with hGFAP-CreERT2 mice, we generated Best1 floxed/hGFAP-CreERT2 mice, which allowed for the tamoxifen-inducible deletion of Best1 under the human GFAP promoter. We characterized its features across various brain regions, including the striatum, hippocampal dentate gyrus (HpDG), and Parafascicular thalamic nucleus (Pf). Compared to the Cre-negative control, we observed significantly reduced BEST1 protein expression in immunohistochemistry (IHC) and tonic GABA inhibition in patch clamp recordings. The reduction in tonic GABA inhibition was 66.7% in the striatum, 46.4% in the HpDG, and 49.6% in the Pf. Our findings demonstrate that the BEST1 channel in astrocytes significantly contributes to tonic inhibition in the local brain areas. These mice will be valuable for future studies not only on tonic GABA release but also on tonic release of gliotransmitters mediated by astrocytic BEST1.
Collapse
Affiliation(s)
- Jinhyeong Joo
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
- IBS School, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Ki Jung Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
- IBS School, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Sun Yeong Choi
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
- IBS School, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
6
|
Calvillo-Montoya DL, Martínez-Magaña CJ, Oviedo N, Murbartián J. The Estrogen Receptor Alpha Regulates the Sex-dependent Expression and Pronociceptive Role of Bestrophin-1 in Neuropathic Rats. THE JOURNAL OF PAIN 2024; 25:104513. [PMID: 38521145 DOI: 10.1016/j.jpain.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Bestrophin-1, a calcium-activated chloride channel (CaCC), is involved in neuropathic pain; however, it is unclear whether it has a dimorphic role in female and male neuropathic rats. This study investigated if 17β-estradiol and estrogen receptor alpha (ERα) activation regulate bestrophin-1 activity and expression in neuropathic rats. Neuropathic pain was induced by L5-spinal nerve transection (SNT). Intrathecal administration of CaCCinh-A01 (.1-1 µg), a CaCC blocker, reversed tactile allodynia induced by SNT in female but not male rats. In contrast, T16Ainh-A01, a selective anoctamin-1 blocker, had an equal antiallodynic effect in both sexes. SNT increased bestrophin-1 protein expression in injured L5 dorsal root ganglia (DRG) in female rats but decreased bestrophin-1 protein in L5 DRG in male rats. Ovariectomy prevented the antiallodynic effect of CaCCinh-A01, but 17β-estradiol replacement restored it. The effect of CaCCinh-A01 was prevented by intrathecal administration of MPP, a selective ERα antagonist, in rats with and without prior hormonal manipulation. In female rats with neuropathy, ovariectomy prevented the increase in bestrophin-1 and ERα protein expression, while 17β-estradiol replacement allowed for an increase in both proteins in L5 DRG. Furthermore, ERα antagonism (with MPP) prevented the increase in bestrophin-1 and ERα protein expression. Finally, ERα activation with PPT, an ERα selective activator, induced the antiallodynic effect of CaCCinh-A01 in neuropathic male rats and prevented the reduction in bestrophin-1 protein expression in L5 DRG. In summary, data suggest ERα activation is necessary for bestrophin-1's pronociceptive action to maintain neuropathic pain in female rats. PERSPECTIVE: The mechanisms involved in neuropathic pain differ between male and female animals. Our data suggest that ERα is necessary for expression and function of bestrophin-1 in neuropathic female but not male rats. Data support the idea that a therapeutic approach to relieving neuropathic pain must be based on patient's gender.
Collapse
Affiliation(s)
| | | | - Norma Oviedo
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional, La Raza, IMSS, Mexico City, Mexico
| | - Janet Murbartián
- Department of Pharmacobiologý, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
7
|
Martínez-Magaña CJ, Muñoz-Castillo PA, Murbartián J. Spinal bestrophin-1 and anoctamin-1 channels have a pronociceptive role in the tactile allodynia induced by REM sleep deprivation in rats. Brain Res 2024; 1834:148915. [PMID: 38582414 DOI: 10.1016/j.brainres.2024.148915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Bestrophin-1 and anoctamin-1 are members of the calcium-activated chloride channels (CaCCs) family and are involved in inflammatory and neuropathic pain. However, their role in pain hypersensitivity induced by REM sleep deprivation (REMSD) has not been studied. This study aimed to determine if anoctamin-1 and bestrophin-1 are involved in the pain hypersensitivity induced by REMSD. We used the multiple-platform method to induce REMSD. REM sleep deprivation for 48 h induced tactile allodynia and a transient increase in corticosterone concentration at the beginning of the protocol (12 h) in female and male rats. REMSD enhanced c-Fos and α2δ-1 protein expression but did not change activating transcription factor 3 (ATF3) and KCC2 expression in dorsal root ganglia and dorsal spinal cord. Intrathecal injection of CaCCinh-A01, a non-selective bestrophin-1 blocker, and T16Ainh-A01, a specific anoctamin-1 blocker, reverted REMSD-induced tactile allodynia. However, T16Ainh-A01 had a higher antiallodynic effect in male than female rats. In addition, REMSD increased bestrophin-1 protein expression in DRG but not in DSC in male and female rats. In marked contrast, REMSD decreased anoctamin-1 protein expression in DSC but not in DRG, only in female rats. Bestrophin-1 and anoctamin-1 promote pain and maintain tactile allodynia induced by REM sleep deprivation in both male and female rats, but their expression patterns differ between the sexes.
Collapse
Affiliation(s)
| | | | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, Sede sur, Mexico City, Mexico.
| |
Collapse
|
8
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
9
|
Wang Y, Liang W, Wang T, Zhang C, Yang Y, Cong C, Wang X, Wang S, Wang D, Huo D, Wang H, Su X, Tan X, Feng H. Researches of calcium-activated chloride channel ANO1 intervening amyotrophic lateral sclerosis progression by activating EGFR and CaMKII signaling. Brain Res Bull 2023; 204:110792. [PMID: 37858681 DOI: 10.1016/j.brainresbull.2023.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND ANO1 is closely correlated with the activation of EGFR and CaMKII, while EGFR and CaMKII show low activation in amyotrophic lateral sclerosis (ALS) models. Therefore, we designed experiments to verify that ANO1 may play a protective role on motor neurons in ALS by activating EGFR and CaMKII. METHODS The expression changes of ANO1, EGFR, CaMKII, pEGFR, and pCaMKII, cell survival status, and apoptosis were studied by western blot, real-time quantitative PCR, immunofluorescence, immunohistochemistry, CCK-8, and flow cytometry. The role of ANO1 in the ALS model by activating EGFR and CaMKII was studied by applying corresponding activators, inhibitors, gene silencing, and overexpression. RESULTS In hSOD1G93A transgenic animals and cell lines, low expression of ANO1 and low activation of EGFR and CaMKII were identified. ANO1 expression decreased gradually with the progression of ALS. Overexpression of ANO1 in the hSOD1G93A cell line and primary neurons of hSOD1G93A transgenic mice increased cell viability and decreased cell apoptosis. After the application of ANO1 inhibitor CaCC-inhA01 in hSOD1G93A cell line and primary neurons of hSOD1G93A transgenic mice, EGFR activator EGF and CaMKII activator Carbachol, increased cell viability and reduced cell apoptosis. After ANO1 was overexpressed in the hSOD1G93A cell line and primary neurons of hSOD1G93A transgenic mice, EGFR inhibitor AEE788 and CaMKII inhibitor KN93 decreased cell viability and increased cell apoptosis. CONCLUSIONS Our results suggest that ANO1 plays an important role in the survival of ALS motor neurons. ANO1 can increase cell activity and reduce apoptosis by activating EGFR and CaMKII signals.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Weiwei Liang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Tianhang Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Chunting Zhang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Yueqing Yang
- Department of Neurology, The Second Clinical College of Harbin Medical University, Harbin, China
| | - Chaohua Cong
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Xudong Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Shuyu Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Di Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Di Huo
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Hongyong Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Xiaoli Su
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Xingli Tan
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Honglin Feng
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China.
| |
Collapse
|
10
|
Nickerson AJ, Rajendran VM. Dietary Na + depletion up-regulates NKCC1 expression and enhances electrogenic Cl - secretion in rat proximal colon. Cell Mol Life Sci 2023; 80:209. [PMID: 37458846 PMCID: PMC11073443 DOI: 10.1007/s00018-023-04857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
The corticosteroid hormone, aldosterone, markedly enhances K+ secretion throughout the colon, a mechanism critical to its role in maintaining overall K+ balance. Previous studies demonstrated that basolateral NKCC1 was up-regulated by aldosterone in the distal colon specifically to support K+ secretion-which is distinct from the more well-established role of NKCC1 in supporting luminal Cl- secretion. However, considerable segmental variability exists between proximal and distal colonic ion transport processes, especially concerning their regulation by aldosterone. Furthermore, delineating such region-specific effects has important implications for the management of various gastrointestinal pathologies. Experiments were therefore designed to determine whether aldosterone similarly up-regulates NKCC1 in the proximal colon to support K+ secretion. Using dietary Na+ depletion as a model of secondary hyperaldosteronism in rats, we found that proximal colon NKCC1 expression was indeed enhanced in Na+-depleted (i.e., hyperaldosteronemic) rats. Surprisingly, electrogenic K+ secretion was not detectable by short-circuit current (ISC) measurements in response to either basolateral bumetanide (NKCC1 inhibitor) or luminal Ba2+ (non-selective K+ channel blocker), despite enhanced K+ secretion in Na+-depleted rats, as measured by 86Rb+ fluxes. Expression of BK and IK channels was also found to be unaltered by dietary Na+ depletion. However, bumetanide-sensitive basal and agonist-stimulated Cl- secretion (ISC) were significantly enhanced by Na+ depletion, as was CFTR Cl- channel expression. These data suggest that NKCC1-dependent secretory pathways are differentially regulated by aldosterone in proximal and distal colon. Development of therapeutic strategies in treating pathologies related to aberrant colonic K+/Cl- transport-such as pseudo-obstruction or ulcerative colitis-may benefit from these findings.
Collapse
Affiliation(s)
- Andrew J Nickerson
- Departments of Physiology, Pharmacology and Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Departments of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA
- University of Pittsburgh, S929 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, USA
| | - Vazhaikkurichi M Rajendran
- Departments of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA.
- Department of Medicine, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
11
|
Wang Z, Choi K. Pharmacological modulation of chloride channels as a therapeutic strategy for neurological disorders. Front Physiol 2023; 14:1122444. [PMID: 36935741 PMCID: PMC10017882 DOI: 10.3389/fphys.2023.1122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Chloride homeostasis is critical in the physiological functions of the central nervous system (CNS). Its concentration is precisely regulated by multiple ion-transporting proteins such as chloride channels and transporters that are widely distributed in the brain cells, including neurons and glia. Unlike ion transporters, chloride channels provide rapid responses to efficiently regulate ion flux. Some of chloride channels are also permeable to selected organic anions such as glutamate and γ-aminobutyric acid, suggesting neuroexcitatory and neuroinhibitory functions while gating. Dysregulated chloride channels are implicated in neurological disorders, e.g., ischemia and neuroinflammation. Modulation of chloride homeostasis through chloride channels has been suggested as a potential therapeutic approach for neurological disorders. The drug design for CNS diseases is challenging because it requires the therapeutics to traverse the blood-brain-barrier. Small molecules are a well-established modality with better cell permeability due to their lower molecular weight and flexibility for structure optimization compared to biologics. In this article, we describe the important roles of chloride homeostasis in each type of brain cells and introduce selected chloride channels identified in the CNS. We then discuss the contribution of their dysregulations towards the pathogenesis of neurological disorders, emphasizing the potential of targeting chloride channels as a therapeutic strategy for CNS disease treatment. Along with this literature survey, we summarize the small molecules that modulate chloride channels and propose the potential strategy of optimizing existing drugs to brain-penetrants to support future CNS drug discovery.
Collapse
|
12
|
García G, Martínez-Magaña CJ, Oviedo N, Granados-Soto V, Murbartián J. Bestrophin-1 Participates in Neuropathic Pain Induced by Spinal Nerve Transection but not Spinal Nerve Ligation. THE JOURNAL OF PAIN 2022; 24:689-705. [PMID: 36521670 DOI: 10.1016/j.jpain.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Previous studies have reported that L5/L6 spinal nerve ligation (SNL), but not L5 spinal nerve transection (SNT), enhances anoctamin-1 in injured and uninjured dorsal root ganglia (DRG) of rats suggesting some differences in function of the type of nerve injury. The role of bestrophin-1 in these conditions is unknown. The aim of this study was to investigate the role of bestrophin-1 in rats subjected to L5 SNT and L5/L6 SNL. SNT up-regulated bestrophin-1 protein expression in injured L5 and uninjured L4 DRG at day 7, whereas it enhanced GAP43 mainly in injured, but also in uninjured DRG. In contrast, SNL enhanced GAP43 at day 1 and 7, while bestrophin-1 expression increased only at day 1 after nerve injury. Accordingly, intrathecal injection of the bestrophin-1 blocker CaCCinh-A01 (1-10 µg) reverted SNT- or SNL-induced tactile allodynia in a concentration-dependent manner. Intrathecal injection of CaCCinh-A01 (10 µg) prevented SNT-induced upregulation of bestrophin-1 and GAP43 at day 7. In contrast, CaCCinh-A01 did not affect SNL-induced up-regulation of GAP43 nor bestrophin-1. Bestrophin-1 was mainly expressed in small- and medium-size neurons in naïve rats, while SNT increased bestrophin-1 immunoreactivity in CGRP+, but not in IB4+ neuronal cells in DRG. Intrathecal injection of bestrophin-1 plasmid (pCMVBest) induced tactile allodynia and increased bestrophin-1 expression in DRG and spinal cord in naïve rats. CaCCinh-A01 reversed bestrophin-1 overexpression-induced tactile allodynia and restored bestrophin-1 expression. Our data suggest that bestrophin-1 plays a relevant role in neuropathic pain induced by SNT, but not by SNL. PERSPECTIVE: SNT, but not SNL, up-regulates bestrophin-1 and GAP43 protein expression in injured L5 and uninjured L4 DRG. SNT increases bestrophin-1 immunoreactivity in CGRP+ neurons in DRG. Bestrophin-1 overexpression induces allodynia. CaCCinh-A01 reduces allodynia and restores bestrophin-1 expression. Our data suggest bestrophin-1 is differentially regulated depending on the neuropathic pain model.
Collapse
Affiliation(s)
| | | | - Norma Oviedo
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional, La Raza, IMSS. Mexico City, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, Mexico City, Mexico.
| |
Collapse
|
13
|
Wang Y, Hu X, Huang H, Jin Z, Gao J, Guo Y, Zhong Y, Li Z, Zong X, Wang K, Zhang L, Liu Z. Optimization of 4-arylthiophene-3-carboxylic acid derivatives as inhibitors of ANO1: Lead optimization studies toward their analgesic efficacy for inflammatory pain. Eur J Med Chem 2022; 237:114413. [DOI: 10.1016/j.ejmech.2022.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
|
14
|
Chen Q, Kong L, Xu Z, Cao N, Tang X, Gao R, Zhang J, Deng S, Tan C, Zhang M, Wang Y, Zhang L, Ma K, Li L, Si J. The Role of TMEM16A/ERK/NK-1 Signaling in Dorsal Root Ganglia Neurons in the Development of Neuropathic Pain Induced by Spared Nerve Injury (SNI). Mol Neurobiol 2021; 58:5772-5789. [PMID: 34406600 PMCID: PMC8599235 DOI: 10.1007/s12035-021-02520-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests that transmembrane protein 16A (TMEM16A) in nociceptive neurons is an important molecular component contributing to peripheral pain transduction. The present study aimed to evaluate the role and mechanism of TMEM16A in chronic nociceptive responses elicited by spared nerve injury (SNI). In this study, SNI was used to induce neuropathic pain. Drugs were administered intrathecally. The expression and cellular localization of TMEM16A, the ERK pathway, and NK-1 in the dorsal root ganglion (DRG) were detected by western blot and immunofluorescence. Behavioral tests were used to evaluate the role of TMEM16A and p-ERK in SNI-induced persistent pain and hypersensitivity. The role of TMEM16A in the hyperexcitability of primary nociceptor neurons was assessed by electrophysiological recording. The results show that TMEM16A, p-ERK, and NK-1 are predominantly expressed in small neurons associated with nociceptive sensation. TMEM16A is colocalized with p-ERK/NK-1 in DRG. TMEM16A, the MEK/ERK pathway, and NK-1 are activated in DRG after SNI. ERK inhibitor or TMEM16A antagonist prevents SNI-induced allodynia. ERK and NK-1 are downstream of TMEM16A activation. Electrophysiological recording showed that CaCC current increases and intrathecal application of T16Ainh-A01, a selective TMEM16A inhibitor, reverses the hyperexcitability of DRG neurons harvested from rats after SNI. We conclude that TMEM16A activation in DRG leads to a positive interaction of the ERK pathway with activation of NK-1 production and is involved in the development of neuropathic pain after SNI. Also, the blockade of TMEM16A or inhibition of the downstream ERK pathway or NK-1 upregulation may prevent the development of neuropathic pain.
Collapse
Affiliation(s)
- Qinyi Chen
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Liangjingyuan Kong
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Zhenzhen Xu
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Cao
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Xuechun Tang
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Ruijuan Gao
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Jingrong Zhang
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Shiyu Deng
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Chaoyang Tan
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Security, Karamay Army Division, Xinjiang Uygur Autonomous Region, Chinese People's Liberation Army, Karamay, China
| | - Meng Zhang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Yang Wang
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Liang Zhang
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Ketao Ma
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Li Li
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China. .,Department of Physiology, Medical College of Jiaxing University, Jiaxing, China.
| | - Junqiang Si
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China. .,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China. .,Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Wang Y, Gao J, Zhao S, Song Y, Huang H, Zhu G, Jiao P, Xu X, Zhang G, Wang K, Zhang L, Liu Z. Discovery of 4-arylthiophene-3-carboxylic acid as inhibitor of ANO1 and its effect as analgesic agent. Acta Pharm Sin B 2021; 11:1947-1964. [PMID: 34386330 PMCID: PMC8343189 DOI: 10.1016/j.apsb.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023] Open
Abstract
Anoctamin 1 (ANO1) is a kind of calcium-activated chloride channel involved in nerve depolarization. ANO1 inhibitors display significant analgesic activity by the local peripheral and intrathecal administration. In this study, several thiophenecarboxylic acid and benzoic acid derivatives were identified as novel ANO1 inhibitors through the shape-based virtual screening, among which the 4-arylthiophene-3-carboxylic acid analogues with the best ANO1 inhibitory activity were designed, synthesized and compound 42 (IC50 = 0.79 μmol/L) was finally obtained. Compound 42 selectively inhibited ANO1 without affecting ANO2 and intracellular Ca2+ concentration. Subsequently, the analgesic effect was investigated by intragastric administration in pain models. Compound 42 significantly attenuated allodynia which was induced by formalin and chronic constriction injury. Through homology modeling and molecular dynamics, the binding site was predicted to be located near the calcium-binding region between α6 and α8. Our study validates ANO1 inhibitors having a significant analgesic effect by intragastric administration and also provides selective molecular tools for ANO1-related research.
Collapse
|
16
|
Liu Y, Liu Z, Wang K. The Ca 2+-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B 2021; 11:1412-1433. [PMID: 34221860 PMCID: PMC8245819 DOI: 10.1016/j.apsb.2020.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Anoctamin 1 (ANO1) or TMEM16A gene encodes a member of Ca2+ activated Cl– channels (CaCCs) that are critical for physiological functions, such as epithelial secretion, smooth muscle contraction and sensory signal transduction. The attraction and interest in ANO1/TMEM16A arise from a decade long investigations that abnormal expression or dysfunction of ANO1 is involved in many pathological phenotypes and diseases, including asthma, neuropathic pain, hypertension and cancer. However, the lack of specific modulators of ANO1 has impeded the efforts to validate ANO1 as a therapeutic target. This review focuses on the recent progress made in understanding of the pathophysiological functions of CaCC ANO1 and the current modulators used as pharmacological tools, hopefully illustrating a broad spectrum of ANO1 channelopathy and a path forward for this target validation.
Collapse
Key Words
- ANO1
- ANO1, anoctamin-1
- ASM, airway smooth muscle
- Ang II, angiotensin II
- BBB, blood–brain barrier
- CAMK, Ca2+/calmodulin-dependent protein kinase
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Ca2+-activated Cl– channels (CaCCs)
- CaCCinh-A01
- CaCCs, Ca2+ activated chloride channels
- Cancer
- Cystic fibrosis
- DRG, dorsal root ganglion
- Drug target
- EGFR, epidermal growth factor receptor
- ENaC, epithelial sodium channels
- ER, endoplasmic reticulum
- ESCC, esophageal squamous cell carcinoma
- FRT, fisher rat thyroid
- GI, gastrointestinal
- GIST, gastrointestinal stromal tumor
- GPCR, G-protein coupled receptor
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, interstitial cells of Cajal
- IPAH, idiopathic pulmonary arterial hypertension
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor κB
- PAH, pulmonary arterial hypertension
- PAR2, protease activated receptor 2
- PASMC, pulmonary artery smooth muscle cells
- PIP2, phosphatidylinositol 4,5-bisphosphate
- PKD, polycystic kidney disease
- T16Ainh-A01
- TGF-β, transforming growth factor-β
- TMEM16A
- VGCC, voltage gated calcium channel
- VRAC, volume regulated anion channel
- VSMC, vascular smooth muscle cells
- YFP, yellow fluorescent protein
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Qingdao Third People's Hospital, Qingdao 266041, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
- Corresponding authors.
| |
Collapse
|
17
|
Peng C, Chen XT, Xu H, Chen LP, Shen W. Role of the CXCR4/ALK5/Smad3 Signaling Pathway in Cancer-Induced Bone Pain. J Pain Res 2020; 13:2567-2576. [PMID: 33116799 PMCID: PMC7569080 DOI: 10.2147/jpr.s260508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The chemokine receptor, CXCR4, and the transforming growth factor-beta receptor, ALK5, both contribute to various processes associated with the sensation of pain. However, the relationship between CXCR4 and ALK5 and the possible mechanisms promoted by ALK5 in the development of pain have not been evaluated. Materials and Methods Tumor cell implantation (TCI) technology was used to generate a model of cancer-induced bone pain (CIBP) in rats; intrathecal (i.t.) injections of small interfering (si) RNAs targeting CXCR4 and the ALK5-specific inhibitor, RepSox, were performed. Behavioral outcomes, Western blotting, and immunofluorescence techniques were used to evaluate the expression of the aforementioned specific target proteins in the CIBP model. Results The results revealed that i.t. administration of siRNAs targeting CXCR4 resulted in significant reductions in both mechanical and thermal hyperalgesia in rats with CIBP and likewise significantly reduced the expression of ALK5 in the spinal cord. Similarly, i.t. administration of RepSox also resulted in significant reductions in mechanical and thermal hyperalgesia in rats with CIBP together with diminished levels of spinal p-Smad3. Conclusion Taken together, our results suggest that CXCR4 expression in the spinal cord may be a critical mediator of CIBP via its capacity to activate ALK5 and downstream signaling pathways.
Collapse
Affiliation(s)
- Chong Peng
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Heng Xu
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Li-Ping Chen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Wen Shen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China.,Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| |
Collapse
|
18
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
19
|
Wilke BU, Kummer KK, Leitner MG, Kress M. Chloride - The Underrated Ion in Nociceptors. Front Neurosci 2020; 14:287. [PMID: 32322187 PMCID: PMC7158864 DOI: 10.3389/fnins.2020.00287] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 01/06/2023] Open
Abstract
In contrast to pain processing neurons in the spinal cord, where the importance of chloride conductances is already well established, chloride homeostasis in primary afferent neurons has received less attention. Sensory neurons maintain high intracellular chloride concentrations through balanced activity of Na+-K+-2Cl- cotransporter 1 (NKCC1) and K+-Cl- cotransporter 2 (KCC2). Whereas in other cell types activation of chloride conductances causes hyperpolarization, activation of the same conductances in primary afferent neurons may lead to inhibitory or excitatory depolarization depending on the actual chloride reversal potential and the total amount of chloride efflux during channel or transporter activation. Dorsal root ganglion (DRG) neurons express a multitude of chloride channel types belonging to different channel families, such as ligand-gated, ionotropic γ-aminobutyric acid (GABA) or glycine receptors, Ca2+-activated chloride channels of the anoctamin/TMEM16, bestrophin or tweety-homolog family, CLC chloride channels and transporters, cystic fibrosis transmembrane conductance regulator (CFTR) as well as volume-regulated anion channels (VRACs). Specific chloride conductances are involved in signal transduction and amplification at the peripheral nerve terminal, contribute to excitability and action potential generation of sensory neurons, or crucially shape synaptic transmission in the spinal dorsal horn. In addition, chloride channels can be modified by a plethora of inflammatory mediators affecting them directly, via protein-protein interaction, or through signaling cascades. Since chloride channels as well as mediators that modulate chloride fluxes are regulated in pain disorders and contribute to nociceptor excitation and sensitization it is timely and important to emphasize their critical role in nociceptive primary afferents in this review.
Collapse
Affiliation(s)
| | | | | | - Michaela Kress
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
García G, Noriega-Navarro R, Martínez-Rojas VA, Gutiérrez-Lara EJ, Oviedo N, Murbartián J. Spinal TASK-1 and TASK-3 modulate inflammatory and neuropathic pain. Eur J Pharmacol 2019; 862:172631. [DOI: 10.1016/j.ejphar.2019.172631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/09/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
|
21
|
Liu PY, Zhang Z, Liu Y, Tang XL, Shu S, Bao XY, Zhang Y, Gu Y, Xu Y, Cao X. TMEM16A Inhibition Preserves Blood-Brain Barrier Integrity After Ischemic Stroke. Front Cell Neurosci 2019; 13:360. [PMID: 31447648 PMCID: PMC6691060 DOI: 10.3389/fncel.2019.00360] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/23/2022] Open
Abstract
The inflammatory response plays a pivotal role in Blood–Brain Barrier (BBB) destruction following ischemic brain injury. Enhanced leukocyte adhesion to vascular endothelial cells is an essential event in the inflammatory process. TMEM16A, a newly discovered protein regulating calcium-activated chloride channels, is widely expressed in eukaryotes. Recent studies have suggested that upregulated expression of TMEM16A is associated with the occurrence and development of many diseases. However, the role of TMEM16A in regulating BBB integrity after ischemic stroke has not been fully investigated. In this study, we found that TMEM16A is mainly expressed in brain endothelial cells and upregulated after ischemic stroke in the mouse brain. Caccinh-A01, an TMEM16A inhibitor that reduced its upregulation, attenuated brain infarct size and neurological deficits after ischemic stroke. ICAM-1 and MPO expression and BBB permeability were decreased after TMEM16A inhibitor administration. In addition, TMEM16A silencing rescued oxygen-glucose deprivation/reoxygenation (OGD/R)-induced transendothelial permeability in vitro accompanied by decreased ICAM-1 expression and leukocyte adhesion. Furthermore, our mechanistic study showed that TMEM16A knockdown alleviated NF-κB activation and nuclear translocation, indicating that TMEM16A knockdown downregulated OGD/R-induced ICAM-1 expression in an NF-κB-dependent manner. Finally, NF-κB inhibitor treatment also alleviated OGD/ R-induced BBB permeability, confirming that activated NF-κB and increased ICAM-1 are essential factors involved in ischemia-induced BBB damage. Thus, our research provides a promising treatment strategy against BBB destruction after ischemic stroke, and TMEM16A may become a potential target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Pin-Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xue-Lian Tang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Shu Shu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xin-Yu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yan Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yue Gu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
22
|
HCN channel antagonist ZD7288 ameliorates neuropathic pain and associated depression. Brain Res 2019; 1717:204-213. [DOI: 10.1016/j.brainres.2019.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 03/19/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
|
23
|
García G, Gutiérrez-Lara EJ, Centurión D, Granados-Soto V, Murbartián J. Fructose-Induced Insulin Resistance as a Model of Neuropathic Pain in Rats. Neuroscience 2019; 404:233-245. [DOI: 10.1016/j.neuroscience.2019.01.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/21/2022]
|
24
|
Miner K, Labitzke K, Liu B, Wang P, Henckels K, Gaida K, Elliott R, Chen JJ, Liu L, Leith A, Trueblood E, Hensley K, Xia XZ, Homann O, Bennett B, Fiorino M, Whoriskey J, Yu G, Escobar S, Wong M, Born TL, Budelsky A, Comeau M, Smith D, Phillips J, Johnston JA, McGivern JG, Weikl K, Powers D, Kunzelmann K, Mohn D, Hochheimer A, Sullivan JK. Drug Repurposing: The Anthelmintics Niclosamide and Nitazoxanide Are Potent TMEM16A Antagonists That Fully Bronchodilate Airways. Front Pharmacol 2019; 10:51. [PMID: 30837866 PMCID: PMC6382696 DOI: 10.3389/fphar.2019.00051] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/18/2019] [Indexed: 01/21/2023] Open
Abstract
There is an unmet need in severe asthma where approximately 40% of patients exhibit poor β-agonist responsiveness, suffer daily symptoms and show frequent exacerbations. Antagonists of the Ca2+-activated Cl- channel, TMEM16A, offers a new mechanism to bronchodilate airways and block the multiple contractiles operating in severe disease. To identify TMEM16A antagonists we screened a library of ∼580,000 compounds. The anthelmintics niclosamide, nitazoxanide, and related compounds were identified as potent TMEM16A antagonists that blocked airway smooth muscle depolarization and contraction. To evaluate whether TMEM16A antagonists resist use- and inflammatory-desensitization pathways limiting β-agonist action, we tested their efficacy under harsh conditions using maximally contracted airways or airways pretreated with a cytokine cocktail. Stunningly, TMEM16A antagonists fully bronchodilated airways, while the β-agonist isoproterenol showed only partial effects. Thus, antagonists of TMEM16A and repositioning of niclosamide and nitazoxanide represent an important additional treatment for patients with severe asthma and COPD that is poorly controlled with existing therapies. It is of note that drug repurposing has also attracted wide interest in niclosamide and nitazoxanide as a new treatment for cancer and infectious disease. For the first time we identify TMEM16A as a molecular target for these drugs and thus provide fresh insights into their mechanism for the treatment of these disorders in addition to respiratory disease.
Collapse
Affiliation(s)
- Kent Miner
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Katja Labitzke
- Department of Therapeutic Discovery, Amgen Inc., Regensburg, Germany
| | - Benxian Liu
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Paul Wang
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA, United States
| | - Kathryn Henckels
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Kevin Gaida
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Robin Elliott
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Jian Jeffrey Chen
- Department of Medicinal Chemistry, Amgen Inc., Thousand Oaks, CA, United States
| | - Longbin Liu
- Department of Medicinal Chemistry, Amgen Inc., Thousand Oaks, CA, United States
| | - Anh Leith
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Esther Trueblood
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Seattle, WA, United States
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, United States
- Department of Comparative Biology and Safety Sciences, Amgen Inc., South San Francisco, CA, United States
| | - Kelly Hensley
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Seattle, WA, United States
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, United States
- Department of Comparative Biology and Safety Sciences, Amgen Inc., South San Francisco, CA, United States
| | - Xing-Zhong Xia
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Oliver Homann
- Genome Analysis Unit, Amgen Inc., South San Francisco, CA, United States
| | - Brian Bennett
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Mike Fiorino
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - John Whoriskey
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Gang Yu
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Sabine Escobar
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Min Wong
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Teresa L. Born
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Alison Budelsky
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Mike Comeau
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Dirk Smith
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Jonathan Phillips
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - James A. Johnston
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Joseph G. McGivern
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA, United States
| | - Kerstin Weikl
- Department of Therapeutic Discovery, Amgen Inc., Regensburg, Germany
| | - David Powers
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA, United States
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Deanna Mohn
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | | | - John K. Sullivan
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| |
Collapse
|
25
|
Chen QY, Tan CY, Wang Y, Ma KT, Li L, Si JQ. Mechanism of persistent hyperalgesia in neuropathic pain caused by chronic constriction injury. Neural Regen Res 2019; 14:1091-1098. [PMID: 30762024 PMCID: PMC6404508 DOI: 10.4103/1673-5374.250631] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transmembrane member 16A (TMEM16A) is involved in many physiological functions, such as epithelial secretion, sensory conduction, nociception, control of neuronal excitability, and regulation of smooth muscle contraction, and may be important in peripheral pain transmission. To explore the role of TMEM16A in the persistent hyperalgesia that results from chronic constriction injury-induced neuropathic pain, a rat model of the condition was established by ligating the left sciatic nerve. A TMEM16A selective antagonist (10 μg T16Ainh-A01) was intrathecally injected at L5-6. For measurement of thermal hyperalgesia, the drug was administered once at 14 days and thermal withdrawal latency was recorded with an analgesia meter. For measurement of other indexes, the drug was administered at 12 days, once every 6 hours, totally five times. The measurements were performed at 14 days. Western blot assay was conducted to analyze TMEM16A expression in the L4-6 dorsal root ganglion. Immunofluorescence staining was used to detect the immunoreactivity of TMEM16A in the L4-6 dorsal root ganglion on the injured side. Patch clamp was used to detect electrophysiological changes in the neurons in the L4-6 dorsal root ganglion. Our results demonstrated that thermal withdrawal latency was shortened in the model rats compared with control rats. Additionally, TMEM16A expression and the number of TMEM16A positive cells in the L4-6 dorsal root ganglion were higher in the model rats, which induced excitation of the neurons in the L4-6 dorsal root ganglion. These findings were inhibited by T16Ainh-A01 and confirm that TMEM16A plays a key role in persistent chronic constriction injury-induced hyperalgesia. Thus, inhibiting TMEM16A might be a novel pharmacological intervention for neuropathic pain. All experimental protocols were approved by the Animal Ethics Committee at the First Affiliated Hospital of Shihezi University School of Medicine, China (approval No. A2017-170-01) on February 27, 2017.
Collapse
Affiliation(s)
- Qin-Yi Chen
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University; Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Chao-Yang Tan
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Yang Wang
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Ke-Tao Ma
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Li Li
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region; Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
26
|
García G, Martínez-Rojas VA, Oviedo N, Murbartián J. Blockade of anoctamin-1 in injured and uninjured nerves reduces neuropathic pain. Brain Res 2018; 1696:38-48. [DOI: 10.1016/j.brainres.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 04/12/2018] [Accepted: 06/01/2018] [Indexed: 12/28/2022]
|
27
|
Danielsson J, Vink J, Hyuga S, Fu XW, Funayama H, Wapner R, Blanks AM, Gallos G. Anoctamin Channels in Human Myometrium: A Novel Target for Tocolysis. Reprod Sci 2018; 25:1589-1600. [PMID: 29471754 DOI: 10.1177/1933719118757683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Spontaneous preterm labor leading to preterm birth is a significant obstetric problem leading to neonatal morbidity and mortality. Current tocolytics are not completely effective and novel targets may afford a therapeutic benefit. OBJECTIVE To determine whether the anoctamin (ANO) family, including the calcium-activated chloride channel ANO1, is present in pregnant human uterine smooth muscle (USM) and whether pharmacological and genetic modulation of ANO1 modulates USM contraction. METHODS Reverse transcription-polymerase chain reaction (RT-PCR), quantitative RT-PCR, and immunohistochemical staining were done to determine which members of the ANO family are expressed in human USM. Uterine smooth muscle strips were studied in an organ bath to determine whether ANO1 antagonists inhibit oxytocin-induced USM contractions. Anoctamin 1 small interfering RNA (siRNA) knockdown was performed to determine its effect on filamentous-/globular (F/G)-actin ratio, a measurement of actin polymerization's role in promoting smooth muscle contraction. RESULTS Messenger RNA (mRNA) encoding all members of the ANO family (except ANO7) are expressed in pregnant USM tissue. Anoctamin 1 mRNA expression was decreased 15.2-fold in pregnant USM compared to nonpregnant. Anoctamin 1 protein is expressed in pregnant human USM tissue. Functional organ bath studies with pregnant human USM tissue demonstrated that the ANO1 antagonist benzbromarone attenuates the force and frequency of oxytocin-induced contractions. In human USM cells, siRNA knockdown of ANO1 decreases F-/G-actin ratios. CONCLUSION Multiple members of the ANO family, including the calcium-activated chloride channel ANO1, are expressed in human USM. Antagonism of ANO1 by pharmacological inhibition and genetic knockdown leads to an attenuation of contraction in pregnant human USM. Anoctamin 1 is a potentially novel target for tocolysis.
Collapse
Affiliation(s)
- Jennifer Danielsson
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Joy Vink
- 2 Department of Obstetrics and Gynecology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Shunsuke Hyuga
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Xiao Wen Fu
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hiromi Funayama
- 3 Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ronald Wapner
- 2 Department of Obstetrics and Gynecology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrew M Blanks
- 4 Cell and Developmental Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - George Gallos
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
28
|
Evaluation of the neonatal streptozotocin model of diabetes in rats: Evidence for a model of neuropathic pain. Pharmacol Rep 2017; 70:294-303. [PMID: 29477037 DOI: 10.1016/j.pharep.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/01/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The purpose of this study was to evaluate the participation of satellite glial cells (SGC), microglia and astrocytes in a model of streptozotocin-induced diabetes initiated in neonatal rats (nSTZ) and to determine the pharmacological profile for pain relief. METHODS nSTZ was used to induce experimental diabetes. Von Frey filaments were used to assess tactile allodynia. Drugs were given by systemic administration. Western blotting and immunohistochemistry were used to determine protein expression and cellular localization. RESULTS nSTZ produced mild hyperglycemia, weight loss, glucose intolerance, and reduction of nerve conduction velocity of C fibers. Moreover, nSTZ enhanced activating transcription factor 3 (ATF3) immunoreactivity in dorsal root ganglia (DRG) and sciatic nerve of adult rats. ATF3 was found in SGC (GFAP+ cells) surrounding DRG at week 16. Late changes in ATF3 immunoreactivity in DRG correlated with up-regulation of ATF3 and GFAP protein expression. nSTZ increased GFAP and OX-42 immunoreactivity and percentage of hypertrophied and ameboid microglia in the spinal dorsal horn. These changes correlated with the presence of mechanical hypersensitivity (tactile allodynia). Administration of gabapentin (30-100mg/kg, po) and metformin (200mg/kg/day, po for 2 weeks) alleviated tactile allodynia, whereas morphine (1-3mg/kg, ip) had a modest effect. CONCLUSIONS Results suggest that nSTZ leads to activation of SGC, microglia and astrocytes in DRG and spinal cord. Pharmacological profile in the nSTZ model resembles diabetic neuropathic pain in humans. Our findings support the conclusion that the nSTZ rat model has utility for the study of a long-lasting diabetic neuropathic pain.
Collapse
|
29
|
|
30
|
Oh SJ, Lee CJ. Distribution and Function of the Bestrophin-1 (Best1) Channel in the Brain. Exp Neurobiol 2017; 26:113-121. [PMID: 28680296 PMCID: PMC5491579 DOI: 10.5607/en.2017.26.3.113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/29/2022] Open
Abstract
Bestrophin-1 (Best1) is a calcium-activated anion channel identified from retinal pigment epithelium where human mutations are associated with Best's macular degeneration. Best1 is known to be expressed in a variety of tissues including the brain, and is thought to be involved in many physiological processes. This review focuses on the current state of knowledge on aspects of expression and function of Best1 in the brain. Best1 protein is observed in cortical and hippocampal astrocytes, in cerebellar Bergmann glia and lamellar astrocytes, in thalamic reticular neurons, in meninges and in the epithelial cells of the choroid plexus. The most prominent feature of Best1 is its significant permeability to glutamate and GABA in addition to chloride ions because glutamate and GABA are important transmitters in the brain. Under physiological conditions, both Best1-mediated glutamate release and tonic GABA release from astrocytes modulate neuronal excitability, synaptic transmission and synaptic plasticity. Under pathological conditions such as neuroinflammation and neurodegeneration, reactive astrocytes phenotypically switch from GABA-negative to GABA-producing and redistribute Best1 from the perisynaptic microdomains to the soma and processes to tonically release GABA via Best1. This implicates that tonic GABA release from reactive astrocyte via redistributed Best1 is a common phenomenon that occur in various pathological conditions with astrogliosis such as traumatic brain injury, neuroinflammation, neurodegeneration, and hypoxic and ischemic insults. These properties of Best1, including the permeation and release of glutamate and GABA and its redistribution in reactive astrocytes, promise us exciting discoveries of novel brain functions to be uncovered in the future.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - C Justin Lee
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| |
Collapse
|
31
|
Qu L, Fu K, Shimada SG, LaMotte RH. Cl - channel is required for CXCL10-induced neuronal activation and itch response in a murine model of allergic contact dermatitis. J Neurophysiol 2017; 118:619-624. [PMID: 28446581 DOI: 10.1152/jn.00187.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/14/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
Persistent itch often accompanies allergic contact dermatitis (ACD), but the underlying mechanisms remain largely unexplored. We previously demonstrated that CXCL10/CXCR3 signaling activated a subpopulation of cutaneous primary sensory neurons and mediated itch response after contact hypersensitivity (CHS), a murine model of ACD, induced by squaric acid dibutylester. The purpose of this study was to determine the ionic mechanisms underlying CXCL10-induced neuronal activation and allergic itch. In whole cell recordings, CXCL10 triggered a current in dorsal root ganglion (DRG) neurons innervating the area of CHS. This current was modulated by intracellular Cl- and blocked by the general Cl- channel inhibitors. Moreover, increasing Ca2+ buffering capacity reduced this current. In addition, blockade of Cl- channels significantly suppressed CXCL10-induced Ca2+ response. In behavioral tests, injection of CXCL10 into CHS site exacerbated itch-related scratching behaviors. Moreover, the potentiating behavioral effects of CXCL10 were attenuated by either of two Cl- channel blockers. Thus we suggest that the Cl- channel acts as a downstream target mediating the excitatory and pruritic behavioral effects of CXCL10. Cl- channels may provide a promising therapeutic target for the treatment of allergic itch in which CXCL10/CXCR3 signaling may participate.NEW & NOTEWORTHY The ionic mechanisms underlying CXCL10-induced neuronal activation and allergic itch are largely unexplored. This study revealed that CXCL10 evoked an ionic current mainly carried by Cl- channels. We suggest that Cl- channels are likely key molecular candidates responsible for the CXCL10-evoked neuronal activation and itch-like behaviors in a murine model of allergic contact dermatitis induced by the antigen squaric acid dibutylester. Cl- channels may emerge as a promising drug target for the treatment of allergic itch in which CXCL10/CXCR3 signaling may participate.
Collapse
Affiliation(s)
- Lintao Qu
- Departments of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland; and .,Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| | - Kai Fu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| | - Steven G Shimada
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| | - Robert H LaMotte
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
32
|
Johnson AA, Guziewicz KE, Lee CJ, Kalathur RC, Pulido JS, Marmorstein LY, Marmorstein AD. Bestrophin 1 and retinal disease. Prog Retin Eye Res 2017; 58:45-69. [PMID: 28153808 DOI: 10.1016/j.preteyeres.2017.01.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/18/2022]
Abstract
Mutations in the gene BEST1 are causally associated with as many as five clinically distinct retinal degenerative diseases, which are collectively referred to as the "bestrophinopathies". These five associated diseases are: Best vitelliform macular dystrophy, autosomal recessive bestrophinopathy, adult-onset vitelliform macular dystrophy, autosomal dominant vitreoretinochoroidopathy, and retinitis pigmentosa. The most common of these is Best vitelliform macular dystrophy. Bestrophin 1 (Best1), the protein encoded by the gene BEST1, has been the subject of a great deal of research since it was first identified nearly two decades ago. Today we know that Best1 functions as both a pentameric anion channel and a regulator of intracellular Ca2+ signaling. Best1 is an integral membrane protein which, within the eye, is uniquely expressed in the retinal pigment epithelium where it predominantly localizes to the basolateral plasma membrane. Within the brain, Best1 expression has been documented in both glial cells and astrocytes where it functions in both tonic GABA release and glutamate transport. The crystal structure of Best1 has revealed critical information about how Best1 functions as an ion channel and how Ca2+ regulates that function. Studies using animal models have led to critical insights into the physiological roles of Best1 and advances in stem cell technology have allowed for the development of patient-derived, "disease in a dish" models. In this article we review our knowledge of Best1 and discuss prospects for near-term clinical trials to test therapies for the bestrophinopathies, a currently incurable and untreatable set of diseases.
Collapse
Affiliation(s)
- Adiv A Johnson
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA; Nikon Instruments, Melville, NY, USA
| | - Karina E Guziewicz
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Justin Lee
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Ravi C Kalathur
- New York Structural Biology Center, New York Consortium on Membrane Protein Structure, New York, NY, USA
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
33
|
Liu L, Ma SH, Xia LJ. The influence of thiamin on the efficacy of pregabalin in rats with spinal nerve ligation (SNL)-induced neuropathic pain. Neurol Res 2016; 38:717-24. [PMID: 27334563 DOI: 10.1080/01616412.2016.1188550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The thiamin is often used in the treatment of neuropathy, and pregabalin is often used to treat neuropathic pain. Our study examined the influence of thiamin on the efficacy of pregabalin in a rat model of spinal nerve ligation (SNL)-induced neuropathic pain. METHODS Sprague-Dawley male rats were randomly divided into six groups. The neuropathic pain-relieving properties were measured by plantar test, cold plate test, and hot plate test after administration of pregabalin (i.v) and/or thiamin (i.p) in SNL rats 14 days after operation. RESULTS In the therapy period, pregabalin, or thiamin alone all produced antinociceptive effects in rats with neuropathic pain. And combination treatment of thiamin and pregabalin resulted in an enhanced pain relief compared to the administration of pregabalin or thiamin alone. CONCLUSION Combination of thiamin and pregabalin produces an additive antinociceptive effect in neuropathic pain rats, this drug combination may offer a beneficial treatment option for neuropathic pain.
Collapse
Affiliation(s)
- Lin Liu
- a Department of Pain , Henan Province Hospital , Zhengzhou , China
| | - Song-He Ma
- a Department of Pain , Henan Province Hospital , Zhengzhou , China
| | - Ling-Jie Xia
- a Department of Pain , Henan Province Hospital , Zhengzhou , China
| |
Collapse
|
34
|
Vidal-Cantú GC, Jiménez-Hernández M, Rocha-González HI, Villalón CM, Granados-Soto V, Muñoz-Islas E. Role of 5-HT5A and 5-HT1B/1D receptors in the antinociception produced by ergotamine and valerenic acid in the rat formalin test. Eur J Pharmacol 2016; 781:109-16. [PMID: 27068146 DOI: 10.1016/j.ejphar.2016.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 12/29/2022]
Abstract
Sumatriptan, dihydroergotamine and methysergide inhibit 1% formalin-induced nociception by activation of peripheral 5-HT1B/1D receptors. This study set out to investigate the pharmacological profile of the antinociception produced by intrathecal and intraplantar administration of ergotamine (a 5-HT1B/1D and 5-HT5A/5B receptor agonist) and valerenic acid (a partial agonist at 5-HT5A receptors). Intraplantar injection of 1% formalin in the right hind paw resulted in spontaneous flinching behavior of the injected hindpaw of female Wistar rats. Intrathecal ergotamine (15nmol) or valerenic acid (1 nmol) blocked in a dose dependent manner formalin-induced nociception. The antinociception by intrathecal ergotamine (15nmol) or valerenic acid (1nmol) was partly or completely blocked by intrathecal administration of the antagonists: (i) methiothepin (non-selective 5-HT5A/5B; 0.01-0.1nmol); (ii) SB-699551 (selective 5-HT5A; up to 10nmol); (iii) anti-5-HT5A antibody; (iv) SB-224289 (selective 5-HT1B; 0.1-1nmol); or (v) BRL-15572 (selective 5-HT1D; 0.1-1nmol). Likewise, antinociception by intraplantar ergotamine (15nmol) and valerenic acid (10nmol) was: (i) partially blocked by methiothepin (1nmol), SB-699551 (10nmol) or SB-224289 (1nmol); and (ii) abolished by BRL-15572 (1nmol). The above doses of antagonists (which did not affect per se the formalin-induced nociception) were high enough to completely block their respective receptors. Our results suggest that ergotamine and valerenic acid produce antinociception via 5-HT5A and 5-HT1B/1D receptors located at both spinal and peripheral sites. This provides new evidence for understanding the modulation of nociceptive pathways in inflammatory pain.
Collapse
Affiliation(s)
- Guadalupe C Vidal-Cantú
- Laboratories of Neurobiology of Pain and Cardiovascular Pharmacology, Departamento de Farmacobiología, Cinvestav, Sede Sur, México D.F., México
| | | | - Héctor I Rocha-González
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México D.F., México
| | - Carlos M Villalón
- Laboratories of Neurobiology of Pain and Cardiovascular Pharmacology, Departamento de Farmacobiología, Cinvestav, Sede Sur, México D.F., México
| | - Vinicio Granados-Soto
- Laboratories of Neurobiology of Pain and Cardiovascular Pharmacology, Departamento de Farmacobiología, Cinvestav, Sede Sur, México D.F., México
| | - Enriqueta Muñoz-Islas
- Departamento de Biología Celular, Instituto Nacional de Perinatología, Secretaría de Salud, Montes Urales 800, Col. Lomas Virreyes, 11000 México D.F., México; Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, México.
| |
Collapse
|
35
|
Liu S, Feng J, Luo J, Yang P, Brett TJ, Hu H. Eact, a small molecule activator of TMEM16A, activates TRPV1 and elicits pain- and itch-related behaviours. Br J Pharmacol 2016; 173:1208-18. [PMID: 26756551 DOI: 10.1111/bph.13420] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE TMEM16A, also known as anoctamin 1 channel, is a member of the Ca(2+)-activated chloride channels family and serves as a heat sensor in the primary nociceptors. Eact is a recently discovered small molecule activator of the TMEM16A channel. Here, we asked if Eact produces pain- and itch-related responses in vivo and investigated the cellular and molecular basis of Eact-elicited responses in dorsal root ganglia (DRG) neurons. EXPERIMENTAL APPROACH We employed behavioural testing combined with pharmacological inhibition and genetic ablation approaches to identify transient receptor potential vanilloid 1 (TRPV1) as the prominent mediator for Eact-evoked itch- or pain-related responses. We investigated the effects of Eact on TRPV1 and TMEM16A channels expressed in HEK293T cells and in DRG neurons isolated from wild type and Trpv1(-/-) mice using Ca(2+) imaging and patch-clamp recordings. We also used site-directed mutagenesis to determine the molecular basis of Eact activation of TRPV1. KEY RESULTS Administration of Eact elicited both itch- and pain-related behaviours. Unexpectedly, the Eact-elicited behavioural responses were dependent on the function of TRPV1, as shown by pharmacological inhibition and genetic ablation studies. Eact activated membrane currents and increased intracellular free Ca(2+) in both TRPV1-expressing HEK293T cells and isolated DRG neurons in a TRPV1-dependent manner. Eact activation of the TRPV1 channel was severely attenuated by mutations disrupting the capsaicin-binding sites. CONCLUSIONS AND IMPLICATIONS Our results suggest that Eact activates primary sensory nociceptors and produces both pain and itch responses mainly through direct activation of TRPV1 channels.
Collapse
Affiliation(s)
- Shenbin Liu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Pu Yang
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thomas J Brett
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|