1
|
Lin BT, Chien CF, Huang LC, Yang YH. Association Between Angiotensin-Converting Enzyme (ACE) Gene Insertion/Deletion (I/D) Polymorphism Genotypes With Brain Volume and Hypertension in Alzheimer's Disease-A Retrospective Study. Kaohsiung J Med Sci 2025:e70046. [PMID: 40372199 DOI: 10.1002/kjm2.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/12/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
This study investigates the role of the ACE I/D polymorphism in Alzheimer's disease (AD) patients, particularly in relation to hypertension and its influence on brain volume. Seventy-seven AD patients, diagnosed based on Aging and Alzheimer's Association criteria, were enrolled from the Kaohsiung Municipal Ta-Tung Hospital Dementia Cohort. ACE I/D genotypes were identified through polymerase chain reaction, and various factors such as age, sex, education, brain volume, and neuropsychological test scores were analyzed. The results indicated that ACE genotypes, presence of apolipoprotein epsilon 4 (APOEε4), and brain volume did not significantly differ between patients with and without hypertension. While age and sex were associated with gray matter volume, cerebrospinal fluid volume correlated with age, sex, and hypertension. Total cranial volume was linked to sex, and the cerebrospinal fluid-to-total intracranial volume ratio was influenced by sex and education. Overall, ACE I/D genotypes and APOEε4 did not have a significant impact on brain volume in AD patients, regardless of hypertension status. Instead, brain atrophy was associated with sex, age, education, and hypertension. These findings suggest that although ACE may not significantly influence brain volume in AD patients, further large-scale studies are needed to clarify its role in AD pathogenesis.
Collapse
Affiliation(s)
- Bin-Tse Lin
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Post-Baccalaureate Medicine, Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Fang Chien
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Gangshan Hospital, Kaohsiung, Taiwan
| | - Ling-Chun Huang
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Post-Baccalaureate Medicine, Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Gangshan Hospital, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Post-Baccalaureate Medicine, Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Gangshan Hospital, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Reveret L, Leclerc M, Emond V, Tremblay C, Loiselle A, Bourassa P, Bennett DA, Hébert SS, Calon F. Higher angiotensin-converting enzyme 2 (ACE2) levels in the brain of individuals with Alzheimer's disease. Acta Neuropathol Commun 2023; 11:159. [PMID: 37784209 PMCID: PMC10544218 DOI: 10.1186/s40478-023-01647-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
Cognitive decline due to Alzheimer's disease (AD) is frequent in the geriatric population, which has been disproportionately affected by the COVID-19 pandemic. In this study, we investigated the levels of angiotensin-converting enzyme 2 (ACE2), a regulator of the renin-angiotensin system and the main entry receptor of SARS-CoV-2 in host cells, in postmortem parietal cortex samples from two independent AD cohorts, totalling 142 persons. Higher concentrations of ACE2 protein (p < 0.01) and mRNA (p < 0.01) were found in individuals with a neuropathological diagnosis of AD compared to age-matched healthy control subjects. Brain levels of soluble ACE2 were inversely associated with cognitive scores (p = 0.02) and markers of pericytes (PDGFRβ, p = 0.02 and ANPEP, p = 0.007), but positively correlated with concentrations of soluble amyloid-β peptides (Aβ) (p = 0.01) and insoluble phospho-tau (S396/404, p = 0.002). However, no significant differences in ACE2 were observed in the 3xTg-AD mouse model of tau and Aβ neuropathology. Results from immunofluorescence and Western blots showed that ACE2 protein is predominantly localized in microvessels in the mouse brain whereas it is more frequently found in neurons in the human brain. The present data suggest that higher levels of soluble ACE2 in the human brain may contribute to AD, but their role in CNS infection by SARS-CoV-2 remains unclear.
Collapse
Affiliation(s)
- Louise Reveret
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Vincent Emond
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Cyntia Tremblay
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Andréanne Loiselle
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Philippe Bourassa
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Sébastien S Hébert
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
- Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada.
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada.
| |
Collapse
|
3
|
Louise R, Manon L, Vincent E, Andréanne L, Philippe B, Cyntia T, Bennett DA, Sébastien H, Frédéric C. Higher Angiotensin I Converting Enzyme 2 (ACE2) levels in the brain of individuals with Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524254. [PMID: 36711734 PMCID: PMC9882134 DOI: 10.1101/2023.01.17.524254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major cause of death in the elderly. Cognitive decline due to Alzheimer's disease (AD) is frequent in the geriatric population disproportionately affected by the COVID-19 pandemic. Interestingly, central nervous system (CNS) manifestations have been reported in SARS-CoV-2-infected patients. In this study, we investigated the levels of Angiotensin I Converting Enzyme 2 (ACE2), the main entry receptor of SARS-COV-2 in cells, in postmortem parietal cortex samples from two independent AD cohorts, totalling 142 persons. Higher concentrations of ACE2 protein and mRNA were found in individuals with a neuropathological diagnosis of AD compared to age-matched healthy control subjects. Brain levels of soluble ACE2 were inversely associated with cognitive scores (p = 0.02), markers of pericytes (PDGFRβ, p=0.02 and ANPEP, p = 0.007) and caveolin1 (p = 0.03), but positively correlated with soluble amyloid-β peptides (Aβ) concentrations (p = 0.01) and insoluble phospho- tau (S396/404, p = 0.002). No significant differences in ACE2 were observed in the 3xTgAD mouse model of tau and Aβ neuropathology. Results from immunofluorescence and Western blots showed that ACE2 protein is mainly localized in neurons in the human brain but predominantly in microvessels in the mouse brain. The present data show that an AD diagnosis is associated with higher levels of soluble ACE2 in the human brain, which might contribute to a higher risk of CNS SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Reveret Louise
- Faculty of pharmacy, Laval University, Quebec, QC, Canada
- CHU de Quebec Research Center, Quebec, QC, Canada
| | - Leclerc Manon
- Faculty of pharmacy, Laval University, Quebec, QC, Canada
- CHU de Quebec Research Center, Quebec, QC, Canada
| | | | | | - Bourassa Philippe
- Faculty of pharmacy, Laval University, Quebec, QC, Canada
- CHU de Quebec Research Center, Quebec, QC, Canada
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Hébert Sébastien
- CHU de Quebec Research Center, Quebec, QC, Canada
- Faculty of medicine, Laval University, Quebec, QC, Canada
| | - Calon Frédéric
- Faculty of pharmacy, Laval University, Quebec, QC, Canada
- CHU de Quebec Research Center, Quebec, QC, Canada
| |
Collapse
|
4
|
Xin XY, Lai ZH, Ding KQ, Zeng LL, Ma JF. Angiotensin-converting enzyme polymorphisms AND Alzheimer's disease susceptibility: An updated meta-analysis. PLoS One 2021; 16:e0260498. [PMID: 34818351 PMCID: PMC8612529 DOI: 10.1371/journal.pone.0260498] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/10/2021] [Indexed: 01/10/2023] Open
Abstract
Background Many studies among different ethnic populations suggested that angiotensin converting enzyme (ACE) gene polymorphisms were associated with susceptibility to Alzheimer’s disease (AD). However, the results remained inconclusive. In the present meta-analysis, we aimed to clarify the effect of ACE polymorphisms on AD risk using all available relevant data. Methods Systemic literature searches were performed using PubMed, Embase, Alzgene and China National Knowledge Infrastructure (CNKI). Relevant data were abstracted according to predefined criteria. Results Totally, 82 independent cohorts from 65 studies were included, focusing on five candidate polymorphisms. For rs1799752 polymorphism, in overall analyses, the insertion (I) allele conferred increased risk to AD compared to the deletion (D) allele (I vs. D: OR = 1.091, 95% CI = 1.007–1.181, p = 0.032); while the I carriers showed increased AD susceptibility compared with the D homozygotes (II + ID vs. DD: OR = 1.131, 95% CI = 1.008–1.270, p = 0.036). However, none of the positive results passed FDR adjustment. In subgroup analysis restricted to late-onset individuals, the associations between rs1799752 polymorphism and AD risk were identified using allelic comparison (OR = 1.154, 95% CI = 1.028–1.295, p = 0.015, FDR = 0.020), homozygotes comparison, dominant model and recessive model (II vs. ID + DD: OR = 1.272, 95% CI = 1.120–1.444, p < 0.001, FDR < 0.001). Nevertheless, no significant association could be revealed after excluding studies not in accordance with Hardy-Weinberg equilibrium (HWE). In North Europeans, but not in East Asians, the I allele demonstrated increased AD susceptibility compared to the D allele (OR = 1.096, 95% CI = 1.021–1.178, p = 0.012, FDR = 0.039). After excluding HWE-deviated cohorts, significant associations were also revealed under homozygotes comparison, additive model (ID vs. DD: OR = 1.266, 95% CI = 1.045–1.534, p = 0.016, FDR = 0.024) and dominant model (II + ID vs. DD: OR = 1.197, 95% CI = 1.062–1.350, p = 0.003, FDR = 0.018) in North Europeans. With regard to rs1800764 polymorphism, significant associations were identified particularly in subgroup of European descent under allelic comparison (T vs. C: OR = 1.063, 95% CI = 1.008–1.120, p = 0.023, FDR = 0.046), additive model and dominant model (TT + TC vs. CC: OR = 1.116, 95% CI = 1.018–1.222, p = 0.019, FDR = 0.046). But after excluding studies not satisfying HWE, all these associations disappeared. No significant associations were detected for rs4343, rs4291 and rs4309 polymorphisms in any genetic model. Conclusions Our results suggested the significant but modest associations between rs1799752 polymorphism and risk to AD in North Europeans. While rs4343, rs4291 and rs4309 polymorphisms are unlikely to be major factors in AD development in our research.
Collapse
Affiliation(s)
- Xiao-Yu Xin
- Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ze-Hua Lai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kai-Qi Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Li Zeng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail: (LLZ); (JFM)
| | - Jian-Fang Ma
- Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail: (LLZ); (JFM)
| |
Collapse
|
5
|
Dolatshahi M, Sabahi M, Aarabi MH. Pathophysiological Clues to How the Emergent SARS-CoV-2 Can Potentially Increase the Susceptibility to Neurodegeneration. Mol Neurobiol 2021; 58:2379-2394. [PMID: 33417221 PMCID: PMC7791539 DOI: 10.1007/s12035-020-02236-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Along with emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019, a myriad of neurologic symptoms, associated with structural brain changes, were reported. In this paper, we provide evidence to critically discuss the claim that the survived patients could possibly be at increased risk for neurodegenerative diseases via various mechanisms. This virus can directly invade the brain through olfactory bulb, retrograde axonal transport from peripheral nerve endings, or via hematogenous or lymphatic routes. Infection of the neurons along with peripheral leukocytes activation results in pro-inflammatory cytokine increment, rendering the brain to neurodegenerative changes. Also, occupation of the angiotensin-converting enzyme 2 (ACE-2) with the virus may lead to a decline in ACE-2 activity, which acts as a neuroprotective factor. Furthermore, acute respiratory distress syndrome (ARDS) and septicemia induce hypoxemia and hypoperfusion, which are locally exacerbated due to the hypercoagulable state and micro-thrombosis in brain vessels, leading to oxidative stress and neurodegeneration. Common risk factors for COVID-19 and neurodegenerative diseases, such as metabolic risk factors, genetic predispositions, and even gut microbiota dysbiosis, can contribute to higher occurrence of neurodegenerative diseases in COVID-19 survivors. However, it should be considered that severity of the infection, the extent of neurologic symptoms, and the persistence of viral infection consequences are major determinants of this association. Importantly, whether this pandemic will increase the overall incidence of neurodegeneration is not clear, as a high percentage of patients with severe form of COVID-19 might probably not survive enough to develop neurodegenerative diseases.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran. .,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammadmahdi Sabahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience, University of Padova, Padova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| |
Collapse
|
6
|
Panariello F, Cellini L, Speciani M, De Ronchi D, Atti AR. How Does SARS-CoV-2 Affect the Central Nervous System? A Working Hypothesis. Front Psychiatry 2020; 11:582345. [PMID: 33304284 PMCID: PMC7701095 DOI: 10.3389/fpsyt.2020.582345] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Interstitial pneumonia was the first manifestation to be recognized as caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, in just a few weeks, it became clear that the coronavirus disease-2019 (COVID-19) overrun tissues and more body organs than just the lungs, so much so that it could be considered a systemic pathology. Several studies reported the involvement of the conjunctiva, the gut, the heart and its pace, and vascular injuries such as thromboembolic complications and Kawasaki disease in children and toddlers were also described. More recently, it was reported that in a sample of 214 SARS-CoV-2 positive patients, 36.4% complained of neurological symptoms ranging from non-specific manifestations (dizziness, headache, and seizures), to more specific symptoms such hyposmia or hypogeusia, and stroke. Older individuals, especially males with comorbidities, appear to be at the highest risk of developing such severe complications related to the Central Nervous System (CNS) involvement. Neuropsychiatric manifestations in COVID-19 appear to develop in patients with and without pre-existing neurological disorders. Growing evidence suggests that SARS-CoV-2 binds to the human Angiotensin-Converting Enzyme 2 (ACE2) for the attachment and entrance inside host cells. By describing ACE2 and the whole Renin Angiotensin Aldosterone System (RAAS) we may better understand whether specific cell types may be affected by SARS-CoV-2 and whether their functioning can be disrupted in case of an infection. Since clear evidences of neurological interest have already been shown, by clarifying the topographical distribution and density of ACE2, we will be able to speculate how SARS-CoV-2 may affect the CNS and what is the pathogenetic mechanism by which it contributes to the specific clinical manifestations of the disease. Based on such evidences, we finally hypothesize the process of SARS-CoV-2 invasion of the CNS and provide a possible explanation for the onset or the exacerbation of some common neuropsychiatric disorders in the elderly including cognitive impairment and Alzheimer disease.
Collapse
Affiliation(s)
- Fabio Panariello
- Department of Mental Health, Local Health Authorities, Bologna, Italy
| | - Lorenzo Cellini
- Department of Biomedical and Neuromotor Sciences, Psychiatry, Bologna University, Bologna, Italy
| | - Maurizio Speciani
- Department of Biomedical and Neuromotor Sciences, Psychiatry, Bologna University, Bologna, Italy
| | - Diana De Ronchi
- Department of Biomedical and Neuromotor Sciences, Psychiatry, Bologna University, Bologna, Italy
| | - Anna Rita Atti
- Department of Biomedical and Neuromotor Sciences, Psychiatry, Bologna University, Bologna, Italy
| |
Collapse
|
7
|
El Ezzi AA, Clawson JM, El-Saidi MA, Zaidan WR, Kovash A, Orellana J, Thornock A, Kuddus RH. Association of Angiotensin I Converting Enzyme Insertion/287 bp Deletion Polymorphisms and Proliferative Prostatic Diseases among Lebanese Men. Prostate Cancer 2020; 2020:5959134. [PMID: 32089890 PMCID: PMC7029258 DOI: 10.1155/2020/5959134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Angiotensin I converting enzyme (ACE) insertion (I) and 287 bp Alu repeat DNA fragment deletion (D) polymorphisms have been indicated in various cancers. Here, we investigated I/D polymorphisms in prostate cancer (PCa) and benign prostate hyperplasia (BPH) among Lebanese men. METHODS Blood DNA extracted from 69 control subjects, 69 subjects with clinically confirmed PCa, and 69 subjects with clinical BPH, all the subjects were aged 50 years or older, was subjected to the polymerase chain reaction. The PCR products were resolved in polyacrylamide gels to determine II, ID, and DD genotypes. The odds ratios (OR), 95% confidence intervals (CI), and p values of the allele frequencies and genotype ratios were calculated for establishing possible association of the alleles and/or genotypes and PCa and/or BPH. RESULTS The proportions of II, ID, and DD genotypes were significantly different from Hardy-Weinberg equilibrium for BPH and PCa groups (but not the control group), mostly due to overabundance of the ID genotypes. There was no significant difference in the I and D allele frequencies between the control groups and the affected groups. The ratio of (DD + ID)/II is significantly lower among the control group compared to the BPH group (RR = 8.92, p values of the allele frequencies and genotype ratios were calculated for establishing possible association of the alleles and/or genotypes and PCa and/or BPH. p values of the allele frequencies and genotype ratios were calculated for establishing possible association of the alleles and/or genotypes and PCa and/or BPH. CONCLUSIONS Our data indicate that the D allele of the I/D polymorphisms of the ACE gene is associated with increased risk of BPH, and the ID genotype is a risk factor for both BPH and PCa among Lebanese males.
Collapse
Affiliation(s)
- Asmahan A. El Ezzi
- Radioimmunoassay Laboratory, Lebanese Atomic Energy Commission, Beirut, Lebanon
- Department of Chemistry and Biochemistry, Lebanese University, Hadath, Lebanon
| | | | - Mohammed A. El-Saidi
- Department of Strategic Management and Operations, Utah Valley University, Orem, UT, USA
| | - Wissam R. Zaidan
- Radioimmunoassay Laboratory, Lebanese Atomic Energy Commission, Beirut, Lebanon
| | - Abigail Kovash
- Department of Biology, Utah Valley University, Orem, UT, USA
| | - Jeremy Orellana
- Department of Biology, Utah Valley University, Orem, UT, USA
| | | | - Ruhul H. Kuddus
- Department of Biology, Utah Valley University, Orem, UT, USA
| |
Collapse
|
8
|
El Shamieh S, Saleh F, Masri N, Fakhoury HM, Fakhoury R. The association between ACE I/D polymorphism and the risk of Alzheimer's disease in Lebanon. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|