1
|
Su N, Cai P, Dou Z, Yin X, Xu H, He J, Li Z, Li C. Brain nuclei and neural circuits in neuropathic pain and brain modulation mechanisms of acupuncture: a review on animal-based experimental research. Front Neurosci 2023; 17:1243231. [PMID: 37712096 PMCID: PMC10498311 DOI: 10.3389/fnins.2023.1243231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Neuropathic pain (NP) is known to be associated with abnormal changes in specific brain regions, but the complex neural network behind it is vast and complex and lacks a systematic summary. With the help of various animal models of NP, a literature search on NP brain regions and circuits revealed that the related brain nuclei included the periaqueductal gray (PAG), lateral habenula (LHb), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC); the related brain circuits included the PAG-LHb and mPFC-ACC. Moreover, acupuncture and injurious information can affect different brain regions and influence brain functions via multiple aspects to play an analgesic role and improve synaptic plasticity by regulating the morphology and structure of brain synapses and the expression of synapse-related proteins; maintain the balance of excitatory and inhibitory neurons by regulating the secretion of glutamate, γ-aminobutyric acid, 5-hydroxytryptamine, and other neurotransmitters and receptors in the brain tissues; inhibit the overactivation of glial cells and reduce the release of pro-inflammatory mediators such as interleukins to reduce neuroinflammation in brain regions; maintain homeostasis of glucose metabolism and regulate the metabolic connections in the brain; and play a role in analgesia through the mediation of signaling pathways and signal transduction molecules. These factors help to deepen the understanding of NP brain circuits and the brain mechanisms of acupuncture analgesia.
Collapse
Affiliation(s)
- Na Su
- First Clinical Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital, Jinan, China
| | - Zhiqiang Dou
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxue Yin
- Department of Science and Education, Shandong Academy of Chinese Medicine, Jinan, China
| | - Hongmin Xu
- Department of Gynecology, Laiwu Hospital of Traditional Chinese, Jinan, China
| | - Jing He
- First Clinical Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaofeng Li
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
- International Office, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shenzhen Hospital, Peking University, Shenzhen, China
- Department of Gynecology, Shandong Provincial Hospital, Jinan, China
| |
Collapse
|
2
|
Zhou M, Zhang Q, Huo M, Song H, Chang H, Cao J, Fang Y, Zhang D. The mechanistic basis for the effects of electroacupuncture on neuropathic pain within the central nervous system. Biomed Pharmacother 2023; 161:114516. [PMID: 36921535 DOI: 10.1016/j.biopha.2023.114516] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Nociceptive signaling responses to painful stimuli are transmitted to the central nervous system (CNS) from the afferent nerves of the periphery through a series of neurotransmitters and associated signaling mechanisms. Electroacupuncture (EA) is a pain management strategy that is widely used, with clinical evidence suggesting that a frequency of 2-10 Hz is better able to suppress neuropathic pain in comparison to higher frequencies such as 100 Hz. While EA is widely recognized as a viable approach to alleviating neuralgia, the mechanistic basis underlying such analgesic activity remains poorly understood. The present review offers an overview of current research pertaining to the mechanisms whereby EA can alleviate neuropathic pain in the CNS, with a particular focus on the serotonin/norepinephrine, endogenous opioid, endogenous cannabinoid, amino acid neurotransmitter, and purinergic pathways. Moreover, the corresponding neurotransmitters, neuromodulatory compounds, neuropeptides, and associated receptors that shape these responses are discussed. Together, this review seeks to provide a robust foundation for further studies of the EA-mediated alleviation of neuropathic pain.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Huijun Song
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
3
|
Mechanism of Electroacupuncture Analgesia on Nicotine Withdrawal-Induced Hyperalgesia in a Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7975803. [PMID: 36072415 PMCID: PMC9444398 DOI: 10.1155/2022/7975803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022]
Abstract
Purpose This study aimed to investigate the analgesic effect and mechanism of electroacupuncture (EA) in nicotine withdrawal-induced hyperalgesia rats. Methods Behavioral testing was conducted twice a week for 7 weeks during nicotine administration using von Frey filaments. Electroacupuncture at the bilateral “Zusanli” and “Taichong” points was applied daily for 3 days during nicotine withdrawal. Western blot analysis and immunohistology were used to determine expression levels of pain-related factors in the spinal cord and midbrain periaqueductal gray (PAG). Results Behavioral tests showed that electroacupuncture had a significant analgesic effect on nicotine withdrawal-induced hyperalgesic rats. Western blot results demonstrated that, in hyperalgesic rats, the expressions of nicotinic acetylcholine receptors (subunits: nAChR α7, α4, or β2) decreased in the spinal cord, nAChR α7, and β2 decreased in PAG. The proinflammatory factor cyclooxygenase 2 (COX2) and the activated microglia (ionized calcium-binding adaptor molecule 1, Iba1 positive cells) increased in the spinal cord and PAG compared to controls. After electroacupuncture treatment, nAChR α7 and nAChR β2 expressions increased significantly, and COX2 and Iba1 expressions decreased in the spinal cord. Compared with the nonelectroacupuncture nicotine withdrawal group, electroacupuncture stimulation increased the expression of nAChR α7 and nAChR α4 in the PAG of rats with electroacupuncture. Immunohistochemical results confirmed that electroacupuncture reversed nicotine withdrawal-induced changes in nAChR α7 positive neurons and Iba1-positive microglia in the dorsal horn of the spinal cord. Conclusion Electroacupuncture treatment has an analgesic effect on nicotine withdrawal-induced pain in nicotine-dependent rats. The mechanism of analgesia of the electroacupuncture treatment relates to the increased expression of nAChR α7 and nAChR β2 proteins in the spinal cord, nAChR α7 in the PAG, and decreased expression of Iba1 and COX2 protein in the spinal cord.
Collapse
|
4
|
Sasajima S, Kondo M, Ohno N, Ujisawa T, Motegi M, Hayami T, Asano S, Asano-Hayami E, Nakai-Shimoda H, Inoue R, Yamada Y, Miura-Yura E, Morishita Y, Himeno T, Tsunekawa S, Kato Y, Nakamura J, Kamiya H, Tominaga M. Thermal gradient ring reveals thermosensory changes in diabetic peripheral neuropathy in mice. Sci Rep 2022; 12:9724. [PMID: 35697861 PMCID: PMC9192750 DOI: 10.1038/s41598-022-14186-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) includes symptoms of thermosensory impairment, which are reported to involve changes in the expression or function, or both, of nociceptive TRPV1 and TRPA1 channels in rodents. In the present study, we did not find changes in the expression or function of TRPV1 or TRPA1 in DPN mice caused by STZ, although thermal hypoalgesia was observed in a murine model of DPN or TRPV1−/− mice with a Plantar test, which specifically detects temperature avoidance. With a Thermal Gradient Ring in which mice can move freely in a temperature gradient, temperature preference can be analyzed, and we clearly discriminated the temperature-dependent phenotype between DPN and TRPV1−/− mice. Accordingly, we propose approaches with multiple behavioral methods to analyze the progression of DPN by response to thermal stimuli. Attention to both thermal avoidance and preference may provide insight into the symptoms of DPN.
Collapse
Affiliation(s)
- Sachiko Sasajima
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.,Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Masaki Kondo
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Tomoyo Ujisawa
- Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.,Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Mikio Motegi
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Tomohide Hayami
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Saeko Asano
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Emi Asano-Hayami
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hiromi Nakai-Shimoda
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Rieko Inoue
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yuichiro Yamada
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Emiri Miura-Yura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yoshiaki Morishita
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Shin Tsunekawa
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yoshiro Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.,Department of Innovative Diabetes Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan. .,Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan. .,Department of Physiological Sciences, Sokendai, Okazaki, Japan.
| |
Collapse
|
5
|
da Motta KP, Santos BF, Domingues NLDC, Luchese C, Wilhelm EA. Target enzymes in oxaliplatin-induced peripheral neuropathy in Swiss mice: A new acetylcholinesterase inhibitor as therapeutic strategy. Chem Biol Interact 2021; 352:109772. [PMID: 34896366 DOI: 10.1016/j.cbi.2021.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/03/2022]
Abstract
In the present study it was hypothesized that 5-((4-methoxyphenyl)thio)benzo[c][1,2,5] thiodiazole (MTDZ), a new acetylcholinesterase inhibitor, exerts antinociceptive action and reduces the oxaliplatin (OXA)-induced peripheral neuropathy and its comorbidities (anxiety and cognitive deficits). Indeed, the acute antinociceptive activity of MTDZ (1 and 10 mg/kg; per oral route) was observed for the first time in male Swiss mice in formalin and hot plate tests and on mechanical withdrawal threshold induced by Complete Freund's Adjuvant (CFA). To evaluate the MTDZ effect on OXA-induced peripheral neuropathy and its comorbidities, male and female Swiss mice received OXA (10 mg/kg) or vehicle intraperitoneally, on days 0 and 2 of the experimental protocol. Oral administration of MTDZ (1 mg/kg) or vehicle was performed on days 2-14. OXA caused cognitive impairment, anxious-like behaviour, mechanical and thermal hypersensitivity in animals, with females more susceptible to thermal sensitivity. MTDZ reversed the hypersensitivity, cognitive impairment and anxious-like behaviour induced by OXA. Here, the negative correlation between the paw withdrawal threshold caused by OXA and acetylcholinesterase (AChE) activity was demonstrated in the cortex, hippocampus, and spinal cord. OXA inhibited the activity of total ATPase, Na+ K+ - ATPase, Ca2+ - ATPase and altered Mg2+ - ATPase in the cortex, hippocampus, and spinal cord. OXA exposure increased reactive species (RS) levels and superoxide dismutase (SOD) activity in the cortex, hippocampus, and spinal cord. MTDZ modulated ion pumps and reduced the oxidative stress induced by OXA. In conclusion, MTDZ is an antinociceptive molecule promising to treat OXA-induced neurotoxicity since it reduced nociceptive and anxious-like behaviours, and cognitive deficit in male and female mice.
Collapse
Affiliation(s)
- Ketlyn P da Motta
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Beatriz F Santos
- Laboratório de Catálise Orgânica e Biocatálise - LACOB - Universidade Federal de Grande Dourados, UFGD, P.O., Dourados, MS, Brazil
| | - Nelson Luís De C Domingues
- Laboratório de Catálise Orgânica e Biocatálise - LACOB - Universidade Federal de Grande Dourados, UFGD, P.O., Dourados, MS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
6
|
Wang Y, Xia YY, Xue M, Jiang Q, Huang Z, Huang C. Electroacupuncture ameliorates mechanical hypersensitivity by down-regulating spinal Janus kinase 2/signal transducer and activation of transcription 3 and interleukin 6 in rats with spared nerve injury. Acupunct Med 2021; 39:358-366. [PMID: 32744065 DOI: 10.1177/0964528420938376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Evidence shows that the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway participates in the pathogenesis of neuropathic pain. Our previous study revealed that electroacupuncture (EA) attenuated neuropathic pain via activation of alpha-7 nicotinic acetylcholine receptor (α7nAChR) in the spinal cord. However, whether 2 Hz EA alleviates neuropathic pain by regulating the downstream molecules JAK2/STAT3 has not been fully clarified. METHODS Paw withdrawal threshold (PWT) was used as a marker of mechanical allodynia in rats with spared nerve injury (SNI). After applying 2 Hz EA on day 3, 7, 14 and 21 post-surgery, spinal expression of JAK2, STAT3 and pro-inflammatory cytokine interleukin (IL)-6 was examined using quantitative reverse transcription and real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. Intrathecal injection of the α7nAChR antagonist alpha-bungarotoxin (α-Bgtx) was used to further explore the mechanism underlying the effects of 2 Hz EA on expression of JAK2/STAT3 in SNI rats. RESULTS It was found that levels of spinal STAT3 and IL-6 mRNA, as well as levels of phosphorylated (p)-JAK2, p-STAT3 and IL-6 protein, were markedly increased in SNI rats. 2 Hz EA attenuated the SNI-induced up-regulation of p-JAK2, p-STAT3 and IL-6 expression in the spinal cord. Furthermore, intrathecal injection of α-Bgtx (1.0 μg/kg) not only inhibited the effect of 2 Hz EA on mechanical hypersensitivity but also ameliorated the down-regulation of p-JAK2, p-STAT3 and IL-6 expression induced by 2 Hz EA. CONCLUSION This study revealed that 2 Hz EA attenuated SNI-induced mechanical hypersensitivity and the concomitant up-regulation of spinal JAK2, STAT3 and IL-6 in SNI rats, suggesting that suppression of the JAK2/STAT3 signaling pathway might be the mechanism underlying the therapeutic effect of 2 Hz EA on neuropathic pain.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology, Gannan Medical University, Ganzhou, P.R. China
| | - Yang-Yang Xia
- Department of Physiology, Gannan Medical University, Ganzhou, P.R. China
| | - Meng Xue
- Department of Physiology, Gannan Medical University, Ganzhou, P.R. China
| | - Qian Jiang
- Department of Physiology, Gannan Medical University, Ganzhou, P.R. China
| | - Zhihua Huang
- Department of Physiology, Gannan Medical University, Ganzhou, P.R. China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou, P.R. China
| | - Cheng Huang
- Department of Physiology, Gannan Medical University, Ganzhou, P.R. China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou, P.R. China
| |
Collapse
|
7
|
Zheng Y, Jia C, Jiang X, Chen J, Chen XL, Ying X, Wu J, Jiang M, Yang G, Tu W, Zhou K, Jiang S. Electroacupuncture effects on the P2X4R pathway in microglia regulating the excitability of neurons in the substantia gelatinosa region of rats with spinal nerve ligation. Mol Med Rep 2021; 23:175. [PMID: 33398365 PMCID: PMC7821227 DOI: 10.3892/mmr.2020.11814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/05/2020] [Indexed: 01/02/2023] Open
Abstract
Electroacupuncture (EA) has been used to treat neuropathic pain induced by peripheral nerve injury (PNI) by applying an electrical current to acupoints with acupuncture needles. However, the mechanisms by which EA treats pain remain indistinct. High P2X4 receptor (P2X4R) expression levels demonstrate a notable increase in hyperactive microglia in the ipsilateral spinal dorsal horn following PNI. In order to demonstrate the possibility that EA analgesia is mediated in part by P2X4R in hyperactive microglia, the present study performed mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) tests in male Sprague-Dawley rats that had undergone spinal nerve ligation (SNL). The expression levels of spinal P2X4R were determined using reverse transcription-quantitative PCR, western blotting analysis and immunofluorescence staining. Furthermore, spontaneous excitatory postsynaptic currents (sEPSCs) were recorded using whole-cell patch clamp to demonstrate the effect of EA on synaptic transmission in rat spinal substantia gelatinosa (SG) neurons. The results of the present study demonstrated that EA increased the MWT and TWL and decreased overexpression of P2X4R in hyperactive microglia in SNL rats. Moreover, EA attenuated the frequency of sEPSCs in SG neurons in SNL rats. The results of the present study indicate that EA may mediate P2X4R in hyperactive spinal microglia to inhibit nociceptive transmission of SG neurons, thus relieving pain in SNL rats.
Collapse
Affiliation(s)
- Yuyin Zheng
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Chengqian Jia
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xia Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jie Chen
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xiao-Long Chen
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xinwang Ying
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jiayu Wu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Mingchen Jiang
- China‑USA Institute for Acupuncture and Rehabilitation, Integrative and Optimized Medicine Research Center, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Kecheng Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
8
|
Gamage R, Wagnon I, Rossetti I, Childs R, Niedermayer G, Chesworth R, Gyengesi E. Cholinergic Modulation of Glial Function During Aging and Chronic Neuroinflammation. Front Cell Neurosci 2020; 14:577912. [PMID: 33192323 PMCID: PMC7594524 DOI: 10.3389/fncel.2020.577912] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex biological process that increases the risk of age-related cognitive degenerative diseases such as dementia, including Alzheimer’s disease (AD), Lewy Body Dementia (LBD), and mild cognitive impairment (MCI). Even non-pathological aging of the brain can involve chronic oxidative and inflammatory stress, which disrupts the communication and balance between the brain and the immune system. There has been an increasingly strong connection found between chronic neuroinflammation and impaired memory, especially in AD. While microglia and astrocytes, the resident immune cells of the central nervous system (CNS), exerting beneficial effects during the acute inflammatory phase, during chronic neuroinflammation they can become more detrimental. Central cholinergic circuits are involved in maintaining normal cognitive function and regulating signaling within the entire cerebral cortex. While neuronal-glial cholinergic signaling is anti-inflammatory and anti-oxidative, central cholinergic neuronal degeneration is implicated in impaired learning, memory sleep regulation, and attention. Although there is evidence of cholinergic involvement in memory, fewer studies have linked the cholinergic anti-inflammatory and anti-oxidant pathways to memory processes during development, normal aging, and disease states. This review will summarize the current knowledge of cholinergic effects on microglia and astroglia, and their role in both anti-inflammatory and anti-oxidant mechanisms, concerning normal aging and chronic neuroinflammation. We provided details on how stimulation of α7 nicotinic acetylcholine (α7nACh) receptors can be neuroprotective by increasing amyloid-β phagocytosis, decreasing inflammation and reducing oxidative stress by promoting the nuclear factor erythroid 2-related factor 2 (Nrf2) pathways and decreasing the release of pro-inflammatory cytokines. There is also evidence for astroglial α7nACh receptor stimulation mediating anti-inflammatory and antioxidant effects by inhibiting the nuclear factor-κB (NF-κB) pathway and activating the Nrf2 pathway respectively. We conclude that targeting cholinergic glial interactions between neurons and glial cells via α7nACh receptors could regulate neuroinflammation and oxidative stress, relevant to the treatment of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Rashmi Gamage
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ingrid Wagnon
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ilaria Rossetti
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ryan Childs
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Garry Niedermayer
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
9
|
CBS-Induced H 2S Generation in Hippocampus Inhibits EA-Induced Analgesia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5917910. [PMID: 32419814 PMCID: PMC7210538 DOI: 10.1155/2020/5917910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/13/2020] [Accepted: 04/03/2020] [Indexed: 11/17/2022]
Abstract
Hydrogen sulfide (H2S) is an important mediator participating in both physiological and pathological systems and related to the inflammatory process. Acupuncture has a therapeutic effect on inflammatory pain. However, whether H2S generated in the central nervous system (CNS) is a mediator of electroacupuncture (EA) treatment for inflammatory pain is unknown. We injected complete Freund's adjuvant (CFA) to induce inflammatory pain and applied EA treatment as an interventional strategy for pain relief. The results presented here show that S-adenosyl-l-methionine (SAM), an allosteric activator of cystathionine-β-synthetase (CBS), may reverse the therapeutic effect of EA. CBS-induced H2S generation might get involved in the mechanism of EA-induced analgesia in the hippocampus on chronic inflammatory pain.
Collapse
|
10
|
Chen T, Zhang WW, Chu YX, Wang YQ. Acupuncture for Pain Management: Molecular Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:793-811. [DOI: 10.1142/s0192415x20500408] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acupuncture reduces pain by activating specific areas called acupoints on the patient’s body. When these acupoints are fully activated, sensations of soreness, numbness, fullness, or heaviness called De qi or Te qi are felt by clinicians and patients. There are two kinds of acupuncture, manual acupuncture and electroacupuncture (EA). Compared with non-acupoints, acupoints are easily activated on the basis of their special composition of blood vessels, mast cells, and nerve fibers that mediate the acupuncture signals. In the spinal cord, EA can inhibit glial cell activation by down-regulating the chemokine CX3CL1 and increasing the anti-inflammatory cytokine interleukin-10. This inhibits P38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways, which are associated with microglial activation of the C-Jun N-terminal kinase signaling pathway and subsequent astrocyte activation. The inactivation of spinal microglia and astrocytes mediates the immediate and long-term analgesic effects of EA, respectively. A variety of pain-related substances released by glial cells such as the proinflammatory cytokines tumor necrosis factor [Formula: see text], interleukin-1[Formula: see text], interleukin-6, and prostaglandins such as prostaglandins E2 can also be reduced. The descending pain modulation system in the brain, including the anterior cingulated cortex, the periaqueductal gray, and the rostral ventromedial medulla, plays an important role in EA analgesia. Multiple transmitters and modulators, including endogenous opioids, cholecystokinin octapeptide, 5-hydroxytryptamine, glutamate, noradrenalin, dopamine, [Formula: see text]-aminobutyric acid, acetylcholine, and orexin A, are involved in acupuncture analgesia. Finally, the “Acupuncture [Formula: see text]” strategy is introduced to help clinicians achieve better analgesic effects, and a newly reported acupuncture method called acupoint catgut embedding, which injects sutures made of absorbable materials at acupoints to achieve long-term effects, is discussed.
Collapse
Affiliation(s)
- Teng Chen
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University Shanghai, P. R. China
| | - Wen Wen Zhang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University Shanghai, P. R. China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University Shanghai, P. R. China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University Shanghai, P. R. China
| |
Collapse
|
11
|
Javad-Moosavi BZ, Nasehi M, Vaseghi S, Jamaldini SH, Zarrindast MR. Activation and Inactivation of Nicotinic Receptnors in the Dorsal Hippocampal Region Restored Negative Effects of Total (TSD) and REM Sleep Deprivation (RSD) on Memory Acquisition, Locomotor Activity and Pain Perception. Neuroscience 2020; 433:200-211. [PMID: 32200080 DOI: 10.1016/j.neuroscience.2020.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Sleep deprivation (SD) is a common issue in today's society. Sleep is essential for proper cognitive functions, including learning and memory. Furthermore, sleep disorders can alter pain information processing. Meanwhile, hippocampal nicotinic receptors have a role in modulating pain and memory. The goal of this study is to investigate the effect of dorsal hippocampal (CA1) nicotinic receptors on behavioral changes induced by Total (TSD) and REM Sleep Deprivation (RSD). A modified water box and multi-platform apparatus were used to induce TSD and RSD, respectively. To investigate the interaction between nicotinic receptors and hippocampus-dependent memory, nicotinic receptor agonist (nicotine) or antagonist (mecamylamine) was injected into the CA1 region. The results showed, nicotine at the doses of 0.001 and 0.1 µg/rat and mecamylamine at the doses of 0.01 and 0.1 µg/rat decreased memory acquisition, while both at the doses of 0.01 and 0.1 µg/rat enhanced locomotor activity. Additionally, all doses used for both drugs did not alter pain perception. Also, 24 h TSD or RSD attenuated memory acquisition with no effect on locomotor activity and only TSD induced an analgesic effect. Intra-CA1 administration of subthreshold dose of nicotine (0.0001 µg/rat) and mecamylamine (0.001 µg/rat) did not alter memory acquisition, pain perception and locomotor activity in sham of TSD/RSD rats. Both drugs reversed all behavioral changes induced by TSD. Furthermore, both drugs reversed the effect of RSD on memory acquisition, while only mecamylamine reversed the effect of RSD on locomotor activity. In conclusion, CA1 nicotinic receptors play a significant role in TSD/RSD-induced behavioral changes.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Hamid Jamaldini
- Department of Genetic, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
12
|
Wang Y, Xue M, Xia Y, Jiang Q, Huang Z, Huang C. Electroacupuncture treatment upregulates α7nAChR and inhibits JAK2/STAT3 in dorsal root ganglion of rat with spared nerve injury. J Pain Res 2019; 12:1947-1955. [PMID: 31308727 PMCID: PMC6613452 DOI: 10.2147/jpr.s203867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
Background Neuropathic pain with complicated mechanism severely disrupts patient quality of life. The novel approaches and more effective management should be further investigated. It was reported that alpha-7 nicotinic acetylcholine receptor (α7nAChR) and janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling in dorsal root ganglion (DRG) contributed to the pathogenesis of neuropathic pain. Our previous study has shown that electroacupuncture (EA) alleviated neuropathic pain via activating α7nAChR in the spinal cord. However, whether the effect of 2 Hz EA on spared nerve injury (SNI)-induced neuropathic pain is mediated through modulation of α7nAChR and JAK2/STAT3 pathway in the DRG remains unclear. Materials and methods The SNI-induced neuropathic pain rat model was used in this study. After application of 2 Hz EA treatment to SNI rats on day 3, 7, 14 and 21 post-surgery, the expression levels of α7nAChR, JAK2/STAT3 and some cytokines in DRG were determined by qRT-PCR and Western blot analysis. Results We found that SNI induced significant down-regulation of α7nAChR mRNA and protein expression. SNI also obviously elicited the decrease in anti-inflammatory cytokine IL-10 protein expression. The enhancement of p-JAK2, p-STAT3, pro-inflammatory cytokines IL-1β and IL-6 protein levels induced by SNI were also observed. However, 2 Hz EA treatment to SNI rats distinctly improved α7nAChR and IL-10 levels and reduced p-JAK2, p-STAT3, IL-1β and IL-6 expression in the DRG. Conclusion Our present study suggested that 2 Hz EA treatment indeed activated α7nAChR, suppressed JAK2/STAT3 signaling and re-balanced the relationship between pro-inflammatory and anti-inflammatory cytokines in DRG of SNI rat, which provided insight into our understanding of the mechanism for 2 Hz EA to attenuate neuropathic pain.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Meng Xue
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Yangyang Xia
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Qian Jiang
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Zhihua Huang
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China.,Pain Medicine Research Institute, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Cheng Huang
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China.,Pain Medicine Research Institute, Gannan Medical University, Ganzhou 341000, People's Republic of China
| |
Collapse
|
13
|
Feishu Acupuncture Inhibits Acetylcholine Synthesis and Restores Muscarinic Acetylcholine Receptor M2 Expression in the Lung When Treating Allergic Asthma. Inflammation 2018. [PMID: 29520557 DOI: 10.1007/s10753-017-0726-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acupuncture was proven beneficial in treating allergic inflammation. We aimed to explore the regulation underlying the effects of acupuncture on Feishu, an acupoint most commonly used in the acupuncture therapy for respiratory diseases, with respect to the system of sympathetic nerve neurotransmitter acetylcholine (Ach). Male Wistar rats were randomly grouping. No treatment was taken in the normal group. Allergic asthma was induced using ovalbumin on the model, Feishu acupuncture, and sham acupuncture groups; then control or acupuncture treatment lasting for 3 weeks was performed. Bronchoalveolar lavage fluid (BALF) from the four groups was examined. And pulmonary tissues were subjected to histological analysis with H&E staining; besides, immunofluorescent staining, quantitative PCR, and western blot were used to detect synthetase (ChAT) and Ach hydrolase (AchE), and its muscarinic receptors (mAchRs) M1-M3. There was inflammatory infiltration in the lung upon allergic asthma, which was alleviated by the Feishu acupuncture. The eosinophilic granulocytes, neutrophils, and lymphocytes in BALF from the Feishu acupuncture group were all significantly decreased compared with those of the model and sham acupuncture groups. The specific acupuncture on Feishu upon allergic asthma put down the pulmonary expression of ChAT, repaired at the level of gene expression the pulmonary expression of mAchR M1, and restored the pulmonary expression of mAchR M2 (especially in the bronchiolar epithelium) which has a role in inhibiting Ach release; while sham acupuncture had no effect. These results confirmed the therapeutic effects of Feishu acupuncture on allergic asthma, suggesting that the mechanisms may involve suppression of the Ach signal both from its synthesis and during its release.
Collapse
|
14
|
Li SS, Tu WZ, Jia CQ, Jiang X, Qian XR, Yang GH, Hu QM, Chen WC, Lu B, Jiang SH. KCC2-GABAA pathway correlates with the analgesic effect of electro-acupuncture in CCI rats. Mol Med Rep 2018; 17:6961-6968. [PMID: 29568893 PMCID: PMC5928653 DOI: 10.3892/mmr.2018.8766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/08/2017] [Indexed: 01/08/2023] Open
Abstract
Potassium-chloride cotransporter 2 (KCC2) has been indicated to serve a crucial role during chronic neuropathic pain (NP). Following the emergence of NP, γ‑aminobutyric acid (GABA) A receptor‑mediated signaling may be further impaired by the changes of KCC2 chloride anion gradient. In the present study, the authors investigate the effect of electro-acupuncture (EA) on the behavior and the expression of KCC2 and GABAA receptor γ2 subunit in the spinal cord of chronic constriction injury (CCI) model rats. A total of 60 adult male Sprague‑Dawley rats were divided into four groups: Normal group, sham‑CCI group, CCI group and CCI+EA group. The effect of EA was assessed via the values of mechanical withdrawal threshold and thermal withdrawal latency, which were significantly improved upon stimulation of the ST‑36 and GB‑34 acupoints. In addition, a marked reduction in both the mRNA and protein levels of KCC2 and GABAA receptor γ2 subunit was observed in the spinal cord following loose ligation of the sciatic nerve. The reductions in KCC2 and GABAA receptor γ2 subunit expression were reversed by EA treatment. These results support the notion that KCC2 and GABAA receptor γ2 subunit contribute to NP following peripheral nerve injury and extend the understanding of the analgesic effects of EA on NP.
Collapse
Affiliation(s)
- Si-Si Li
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Wen-Zhan Tu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
- Integrative and Optimized Medicine Research Center, China-US Institute for Acupuncture and Rehabilitation of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Cheng-Qian Jia
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xia Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xin-Ru Qian
- Integrative and Optimized Medicine Research Center, China-US Institute for Acupuncture and Rehabilitation of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
- Department of Rehabilitation, NYU Langone Medical Center, New York, NY 10016, USA
| | - Guan-Hu Yang
- Integrative and Optimized Medicine Research Center, China-US Institute for Acupuncture and Rehabilitation of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
- Department of Specialty Medicine, Ohio University, Athens, OH 45701, USA
| | - Qi-Miao Hu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Wen-Ci Chen
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Bin Lu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Song-He Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
- Integrative and Optimized Medicine Research Center, China-US Institute for Acupuncture and Rehabilitation of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
15
|
Mechanism of Activating the Proprioceptive NT-3/TrkC Signalling Pathway by Reverse Intervention for the Anterior Cruciate Ligament-Hamstring Reflex Arc with Electroacupuncture. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6348764. [PMID: 29581981 PMCID: PMC5822800 DOI: 10.1155/2018/6348764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/02/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022]
Abstract
The anterior cruciate ligament (ACL) is an important structure maintaining stability of the knee joints. Deficits in physical stability and the proprioceptive capabilities of the knee joints are observed, when the ACL is damaged. Additionally, a unilateral ACL injury can affect bilateral knee proprioception; therefore, proprioception of the ACL may play a key role in stability. Electroacupuncture therapy has a definite effect nerve regeneration. In this study, cynomolgus monkeys were randomly divided into 4 groups: the model control group, intervention of the injured knee with electroacupuncture (IIKE) group, intervention of the bilateral knees with electroacupuncture (IBKE) group, and the blank control group. The unilateral ACL injury model was developed in IIKE and IBKE groups; acupuncture points around the knees underwent intervention similarly in the IIKE and IBKE groups. Then, mRNA and protein expressions of NT-3 and TrkC in the dorsal root ganglion and of growth-associated protein-43 in the ACL increased according to reverse-transcription quantitative polymerase chain reaction and Western blotting results. Decreased incubations and increased amplitudes were found for somatosensory-evoked potentials and motor nerve conduction velocity. The finding indicates that electroacupuncture may play an important role in the recovery of proprioception in the ACL by activating the NT-3/TrkC signalling pathway.
Collapse
|
16
|
Wang Y, Jiang Q, Xia YY, Huang ZH, Huang C. Involvement of α7nAChR in electroacupuncture relieving neuropathic pain in the spinal cord of rat with spared nerve injury. Brain Res Bull 2018; 137:257-264. [DOI: 10.1016/j.brainresbull.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/24/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022]
|