1
|
Zhu Y, Liu Z, Cao L, Fan G, Ji R, Zhang L, Daji S, Zhu H, Wang Y, Zhou G. FRS2 regulated by miR-429 and miR-206 promotes angiogenesis in osteosarcoma. Gene 2024; 898:148118. [PMID: 38159618 DOI: 10.1016/j.gene.2023.148118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
FRS2 has demonstrated oncogenic roles in various malignancies, including liposarcoma and giant cell tumor of bone. However, its role in osteosarcoma remains less understood, and the upstream regulatory molecules influencing FRS2 remain unclear. This study aims to explore the clinical implications and biological function of FRS2 in osteosarcoma, and the potential regulatory microRNAs (miRNAs) governing its expression. Our study indicated significant upregulation of FRS2 in osteosarcoma cells and tissues by Western blotting and immunohistochemical staining. Elevated FRS2 expression correlated positively with increased angiogenesis and poor prognosis, possibly serving as an independent prognostic indicator for osteosarcoma patients. Functional assays revealed that attenuating FRS2 in osteosarcoma cells could mitigate proliferation, migration, and angiogenesis of vascular endothelial cells. Further investigations revealed that miR-429 and miR-206 directly targeted FRS2, exerting a negative regulation on its expression. Furthermore, FRS2 played a role in repressing osteosarcoma advancement influenced by miR-429 or miR-206. In summary, FRS2, influenced by miR-429 and miR-206, emerges as a promising therapeutic candidate for antiangiogenic osteosarcoma treatments.
Collapse
Affiliation(s)
- Yan Zhu
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China; Jinling Hospital, Department of Orthopaedics, Nanjing Medical University, Nanjing 210002, China
| | - Ziying Liu
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China
| | - Lili Cao
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China
| | - Gentao Fan
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China
| | - Ronghao Ji
- Jiangsu Cancer Hospital, Department of Pathology, Nanjing 210002, China
| | - Liming Zhang
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China
| | - Suolang Daji
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China
| | - Hao Zhu
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China
| | - Yicun Wang
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China; Jinling Hospital, Department of Orthopaedics, Nanjing Medical University, Nanjing 210002, China.
| | - Guangxin Zhou
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China; Wuxi Xishan NJU Institue of Applied Biotechnology, Wuxi 214101, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Sguinzi RM, Aissaoui S, Genevay-Infante M, Breguet R, Charbonnet P, Francis K, Kini R, Bühler L. Retroperitoneal liposarcoma and craniosynostosis: possible genomic relationship, case report, and literature review. Funct Integr Genomics 2022; 23:8. [PMID: 36538187 DOI: 10.1007/s10142-022-00924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
Based on a case report, this review explores the genomic landscape for patients with liposarcomas and possible relationships with gene mutations related to craniosynostosis. We describe the case of a 40-year-old man, known for a surgical correction of craniosynostosis before the age of 1 year, who underwent a radical resection of a voluminous retroperitoneal liposarcoma; histopathological analysis revealed a low-grade well-differentiated, mostly sclerosing, liposarcoma. A genetic analysis searching for mutations in blood DNA was performed and did not detect any specific mutation. A literature review was also conducted. Several tumors related to syndromic and non-syndromic craniosynostosis are mentioned in the literature; no specific link with retroperitoneal liposarcoma is established but the FGFR3 mutation is detected in dedifferentiated liposarcomas. To date, no case has been reported in the literature demonstrating a genetic relationship between craniosynostosis and low-grade differentiated retroperitoneal liposarcoma. We conclude that further studies for gene complex mutations should be conducted to show a possible genetic relationship between retroperitoneal liposarcoma and craniosynostosis.
Collapse
Affiliation(s)
| | - Souria Aissaoui
- Genetic Consultation, Genesupport - Centre du Sein, Geneva, Switzerland
| | | | | | | | | | - Riad Kini
- Vesenaz Medical Center, Geneva, Switzerland
| | - Leo Bühler
- Department of Surgery, Cantonal Hospital Fribourg, Fribourg, Switzerland.,Hirslanden Clinic Grangettes, Geneva, Switzerland.,Vesenaz Medical Center, Geneva, Switzerland
| |
Collapse
|
3
|
TRIM44 Promotes Endometrial Carcinoma Progression by Activating the FRS2 Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6235771. [PMID: 36387361 PMCID: PMC9663230 DOI: 10.1155/2022/6235771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/09/2022]
Abstract
The Tripartite Motif Containing 44 (TRIM44) is highly expressed in a variety of tumours. However, the TRIM44's role in endometrial carcinoma (EC) progression remains unknown. To investigate the TRIM44's role in the development and metastasis of EC, we detected TRIM44 expression in EC cell lines and surgical specimens from patients with EC using immunohistochemistry, real-time reverse transcription-polymerase chain reaction, and western blotting analysis. The biological functions of TRIM44 by loss-of-function analysis in RL95-2 and Ishikawa cells were studied. The effect of TRIM44 on the progression of EC in terms of cell proliferation, apoptosis, and invasion was examined and revealed its underlying mechanism in vitro using EC cell lines and in vivo using mouse xenograft models. The TRIM44's expression was positively correlated with EC progression and poor prognosis. The TRIM44 knockdown reduced the EC cell proliferation and invasion while promoting cell apoptosis. Mechanism experiments showed that the TRIM44 interacts with Fibroblast Growth Factor Receptor Substrate 2 (FRS2) and negatively regulates the expression of Bone Morphogenetic Protein 4(BMP4), β-catenin, and Transforming Growth Factor Beta Receptor 1(TGF-βR1). Moreover, the effect of TRIM44 overexpression on EC cell proliferation, invasion, and apoptosis is reversed by the FRS2 knockdown. Our study may provide a new perspective on targeting the TRIM44/FRS2 signaling pathway in treating EC, which deserves further investigation.
Collapse
|