1
|
Wang C, Zhou B, Zhang Y, Zeng L. Plant ubiquitin E2 enzymes UBC32, UBC33, and UBC34 are involved in ERAD and function in host stress tolerance. BMC PLANT BIOLOGY 2025; 25:412. [PMID: 40169946 PMCID: PMC11963658 DOI: 10.1186/s12870-025-06419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a critical component of the ER-mediated protein quality control (ERQC) system and plays a vital role in plant stress responses. However, the ubiquitination machinery underlying plant ERAD-particularly the ubiquitin-conjugating enzymes (E2s)-and their contributions to stress tolerance remain poorly understood. RESULTS In this study, we identified UBC32, UBC33, and UBC34 as ER-localized ubiquitin E2 enzymes involved in ERAD and demonstrated their roles in biotic and abiotic stress tolerance in tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana). In response to biotic stress, UBC33 and UBC34 collectively contribute more substantially than UBC32 to plant immunity against Pseudomonas syringae pv. tomato (Pst). Under abiotic stress and ER stress induced by tunicamycin (TM), all three E2s play important roles. Notably, mutation of UBC32 enhances tolerance to TM-induced ER stress, whereas the loss of function in UBC33 or UBC34 suppresses this response. Additionally, UBC32, UBC33, and UBC34 act synergistically in Arabidopsis seed germination under salt stress and abscisic acid (ABA) treatment. While the single mutants atubc32, atubc33, and atubc34 exhibit germination rates comparable to Col-0 under salt stress or ABA treatment, the double mutants atubc32/33, atubc32/34, and atubc33/34 show a significantly greater reduction in germination rate. Interestingly, the atubc32/33/34 triple mutant exhibits a seed germination rate under salt stress and ABA treatment, as well as a level of host immunity to Pst, comparable to that of the atubc33/34 and atubc32/34 double mutants. CONCLUSIONS Our findings establish UBC32, UBC33, and UBC34 as key components of the plant ERAD machinery, contributing to plant tolerance to both abiotic and biotic stress. Despite their close phylogenetic relationship, these E2 enzymes exhibit redundant, synergistic, or antagonistic roles depending on the specific stress response pathway, underscoring the complexity of their functional interactions.
Collapse
Affiliation(s)
- Chaofeng Wang
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68588, USA
| | - Bangjun Zhou
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68588, USA
| | - Yi Zhang
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68588, USA
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lirong Zeng
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68588, USA.
| |
Collapse
|
2
|
Fu X, Tang X, Zhang N, Si H. StUBC13, a Ubiquitin-Conjugating Enzyme, Positively Regulates Salt and Osmotic Stresses in Potato. Int J Mol Sci 2024; 25:13197. [PMID: 39684906 DOI: 10.3390/ijms252313197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Protein ubiquitination is an important regulatory mechanism for biological growth and development against environmental influences, and can affect several biological processes, including the growth, development, and stress responses of plants. However, the function of potato-related ubiquitin-conjugating enzymes in abiotic stress tolerance is poorly understood. In this study, a StUBC13 with a UBC conserved structural domain was identified in potato and its function was investigated under osmotic stress and salt stress conditions. The observation of plant phenotypes under stress conditions revealed that overexpressed plants grew better than wild-type plants. In line with the above results, the determination of stress-related physiological indices revealed that the overexpression transgenic plants had better stress tolerance and stronger adaptation to environmental stress, and the transgenic plants were found to tolerate better drought and salt stress by decreasing their malondialdehyde (MDA) content and increasing their superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) contents under stress conditions. Based on these results, StUBC13 has an important regulatory role in the response of plants to abiotic stresses (osmotic stress and salt stress), and overexpression of this gene can improve the tolerance of potatoes to osmotic and salt stresses.
Collapse
Affiliation(s)
- Xue Fu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Cheng J, Shao Y, Hu X, Gao L, Zheng X, Tan B, Ye X, Wang W, Zhang H, Wang X, Lian X, Li Z, Feng J, Zhang L. A simple and efficient gene functional analysis method for studying the growth and development of peach seedlings. HORTICULTURE RESEARCH 2024; 11:uhae155. [PMID: 39005999 PMCID: PMC11246241 DOI: 10.1093/hr/uhae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/26/2024] [Indexed: 07/16/2024]
Abstract
Stable genetic transformation of peach [Prunus persica (L.) Batsch] still faces many technical challenges, and existing transient expression methods are limited by tissue type or developmental stage, making it difficult to conduct functional analysis of genes regulating shoot growth. To overcome this dilemma, we developed a three-step method for efficient analysis of gene functions during peach seedling growth and development. This method resulted in transformation frequencies ranging from 48 to 87%, depending on the gene. From transformation of germinating seeds to phenotyping of young saplings took just 1.5 months and can be carried out any time of year. To test the applicability of this method, the function of three tree architecture-related genes, namely PpPDS, PpMAX4, and PpWEEP, and two lateral root-related genes, PpIAA14-1 and -2, were confirmed. Since functional redundancy can challenge gene functional analyses, tests were undertaken with the growth-repressor DELLA, which has three homologous genes, PpDGYLA (DG), PpDELLA1 (D1), and -2 (D2), in peach that are functionally redundant. Silencing using a triple-target vector (TRV2-DG-D1-D2) resulted in transgenic plants taller than those carrying just TRV2-DG or TRV2. Simultaneously silencing the three DELLA genes also attenuated the stature of two dwarf genotypes, 'FHSXT' and 'HSX', which normally accumulate DELLA proteins. Our study provides a method for the functional analysis of genes in peach and can be used for the study of root, stem, and leaf development. We believe this method can be replicated in other woody plants.
Collapse
|
4
|
Feng L, Yan W, Tang X, Wu H, Pan Y, Lu D, Ling-Hu Q, Liu Y, Liu Y, Song X, Ali M, Fang L, Guo H, Li B. Multiple factors and features dictate the selective production of ct-siRNA in Arabidopsis. Commun Biol 2024; 7:474. [PMID: 38637717 PMCID: PMC11026412 DOI: 10.1038/s42003-024-06142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
Coding transcript-derived siRNAs (ct-siRNAs) produced from specific endogenous loci can suppress the translation of their source genes to balance plant growth and stress response. In this study, we generated Arabidopsis mutants with deficiencies in RNA decay and/or post-transcriptional gene silencing (PTGS) pathways and performed comparative sRNA-seq analysis, revealing that multiple RNA decay and PTGS factors impede the ct-siRNA selective production. Genes that produce ct-siRNAs often show increased or unchanged expression and typically have higher GC content in sequence composition. The growth and development of plants can perturb the dynamic accumulation of ct-siRNAs from different gene loci. Two nitrate reductase genes, NIA1 and NIA2, produce massive amounts of 22-nt ct-siRNAs and are highly expressed in a subtype of mesophyll cells where DCL2 exhibits higher expression relative to DCL4, suggesting a potential role of cell-specific expression of ct-siRNAs. Overall, our findings unveil the multifaceted factors and features involved in the selective production and regulation of ct-siRNAs and enrich our understanding of gene silencing process in plants.
Collapse
Affiliation(s)
- Li Feng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Wei Yan
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xianli Tang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Huihui Wu
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yajie Pan
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Dongdong Lu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Qianyan Ling-Hu
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yuelin Liu
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yongqi Liu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Xiehai Song
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Muhammad Ali
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Liang Fang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China.
| |
Collapse
|
5
|
Wang YL, Li L, Paudel BR, Zhao JL. Genomic Insights into High-Altitude Adaptation: A Comparative Analysis of Roscoea alpina and R. purpurea in the Himalayas. Int J Mol Sci 2024; 25:2265. [PMID: 38396942 PMCID: PMC10889555 DOI: 10.3390/ijms25042265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Environmental stress at high altitudes drives the development of distinct adaptive mechanisms in plants. However, studies exploring the genetic adaptive mechanisms of high-altitude plant species are scarce. In the present study, we explored the high-altitude adaptive mechanisms of plants in the Himalayas through whole-genome resequencing. We studied two widespread members of the Himalayan endemic alpine genus Roscoea (Zingiberaceae): R. alpina (a selfing species) and R. purpurea (an outcrossing species). These species are distributed widely in the Himalayas with distinct non-overlapping altitude distributions; R. alpina is distributed at higher elevations, and R. purpurea occurs at lower elevations. Compared to R. purpurea, R. alpina exhibited higher levels of linkage disequilibrium, Tajima's D, and inbreeding coefficient, as well as lower recombination rates and genetic diversity. Approximately 96.3% of the genes in the reference genome underwent significant genetic divergence (FST ≥ 0.25). We reported 58 completely divergent genes (FST = 1), of which only 17 genes were annotated with specific functions. The functions of these genes were primarily related to adapting to the specific characteristics of high-altitude environments. Our findings provide novel insights into how evolutionary innovations promote the adaptation of mountain alpine species to high altitudes and harsh habitats.
Collapse
Affiliation(s)
- Ya-Li Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| | - Li Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| | - Babu Ram Paudel
- Research Centre for Applied Science and Technology, Tribhuvan University, Kirtipur 44613, Nepal
| | - Jian-Li Zhao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| |
Collapse
|
6
|
Shakir S, Zaidi SSEA, Hashemi FSG, Nyirakanani C, Vanderschuren H. Harnessing plant viruses in the metagenomics era: from the development of infectious clones to applications. TRENDS IN PLANT SCIENCE 2023; 28:297-311. [PMID: 36379846 DOI: 10.1016/j.tplants.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Recent metagenomic studies which focused on virus characterization in the entire plant environment have revealed a remarkable viral diversity in plants. The exponential discovery of viruses also requires the concomitant implementation of high-throughput methods to perform their functional characterization. Despite several limitations, the development of viral infectious clones remains a method of choice to understand virus biology, their role in the phytobiome, and plant resilience. Here, we review the latest approaches for efficient characterization of plant viruses and technical advances built on high-throughput sequencing and synthetic biology to streamline assembly of viral infectious clones. We then discuss the applications of plant viral vectors in fundamental and applied plant research as well as their technical and regulatory limitations, and we propose strategies for their safer field applications.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Syed Shan-E-Ali Zaidi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Farahnaz Sadat Golestan Hashemi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Chantal Nyirakanani
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Department of Crop Science, School of Agriculture, University of Rwanda, Musanze, Rwanda
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Ding T, Tomes S, Gleave AP, Zhang H, Dare AP, Plunkett B, Espley RV, Luo Z, Zhang R, Allan AC, Zhou Z, Wang H, Wu M, Dong H, Liu C, Liu J, Yan Z, Yao JL. microRNA172 targets APETALA2 to regulate flavonoid biosynthesis in apple (Malus domestica). HORTICULTURE RESEARCH 2022; 9:uhab007. [PMID: 35039839 PMCID: PMC8846330 DOI: 10.1093/hr/uhab007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/18/2022] [Accepted: 10/02/2021] [Indexed: 05/24/2023]
Abstract
MicroRNA172 (miR172) plays a role in regulating a diverse range of plant developmental processes, including flowering, fruit development and nodulation. However, its role in regulating flavonoid biosynthesis is unclear. In this study, we show that transgenic apple plants over-expressing miR172 show a reduction in red coloration and anthocyanin accumulation in various tissue types. This reduction was consistent with decreased expression of APETALA2 homolog MdAP2_1a (a miR172 target gene), MdMYB10, and targets of MdMYB10, as demonstrated by both RNA-seq and qRT-PCR analyses. The positive role of MdAP2_1a in regulating anthocyanin biosynthesis was supported by the enhanced petal anthocyanin accumulation in transgenic tobacco plants overexpressing MdAP2_1a, and by the reduction in anthocyanin accumulation in apple and cherry fruits transfected with an MdAP2_1a virus-induced-gene-silencing construct. We demonstrated that MdAP2_1a could bind directly to the promoter and protein sequences of MdMYB10 in yeast and tobacco, and enhance MdMYB10 promotor activity. In Arabidopsis, over-expression of miR172 reduced flavonoid (including anthocyanins and flavonols) concentration and RNA transcript abundance of flavonoid genes in plantlets cultured on medium containing 7% sucrose. The anthocyanin content and RNA abundance of anthocyanin genes could be partially restored by using a synonymous mutant of MdAP2_1a, which had lost the miR172 target sequences at mRNA level, but not restored by using a WT MdAP2_1a. These results indicate that miR172 inhibits flavonoid biosynthesis through suppressing the expression of an AP2 transcription factor that positively regulates MdMYB10.
Collapse
Affiliation(s)
- Tiyu Ding
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Sumathi Tomes
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Andrew P Gleave
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Andrew P Dare
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Blue Plunkett
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Zhiwei Luo
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Ruiping Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
- School of Biological Sciences, University of
Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Zhe Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Huan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Mengmeng Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Haiqing Dong
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Jihong Liu
- College of Horticulture and Forestry Sciences, Huazhong
Agricultural University, 1 Shizishan Street Wuhan 430070, China
| | - Zhenli Yan
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
| |
Collapse
|
8
|
Shi G, Hao M, Tian B, Cao G, Wei F, Xie Z. A Methodological Advance of Tobacco Rattle Virus-Induced Gene Silencing for Functional Genomics in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:671091. [PMID: 34149770 PMCID: PMC8212136 DOI: 10.3389/fpls.2021.671091] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/10/2021] [Indexed: 05/19/2023]
Abstract
As a promising high-throughput reverse genetic tool in plants, virus-induced gene silencing (VIGS) has already begun to fulfill some of this promise in diverse aspects. However, review of the technological advancements about widely used VIGS system, tobacco rattle virus (TRV)-mediated gene silencing, needs timely updates. Hence, this article mainly reviews viral vector construction, inoculation method advances, important influential factors, and summarizes the recent applications in diverse plant species, thus providing a better understanding and advice for functional gene analysis related to crop improvements.
Collapse
Affiliation(s)
- Gongyao Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengyuan Hao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Baoming Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Gangqiang Cao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Fang Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhengqing Xie
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Kuo S, Hu C, Huang Y, Lee C, Luo M, Tu C, Lee S, Lin N, Hsu Y. Argonaute 5 family proteins play crucial roles in the defence against Cymbidium mosaic virus and Odontoglossum ringspot virus in Phalaenopsis aphrodite subsp. formosana. MOLECULAR PLANT PATHOLOGY 2021; 22:627-643. [PMID: 33749125 PMCID: PMC8126185 DOI: 10.1111/mpp.13049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 05/27/2023]
Abstract
The orchid industry faces severe threats from diseases caused by viruses. Argonaute proteins (AGOs) have been shown to be the major components in the antiviral defence systems through RNA silencing in many model plants. However, the roles of AGOs in orchids against viral infections have not been analysed comprehensively. In this study, Phalaenopsis aphrodite subsp. formosana was chosen as the representative to analyse the AGOs (PaAGOs) involved in the defence against two major viruses of orchids, Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV). A total of 11 PaAGOs were identified from the expression profile analyses of these PaAGOs in P. aphrodite subsp. formosana singly or doubly infected with CymMV and/or ORSV. PaAGO5b was found to be the only one highly induced. Results from overexpression of individual PaAGO5 family genes revealed that PaAGO5a and PaAGO5b play central roles in the antiviral defence mechanisms of P. aphrodite subsp. formosana. Furthermore, a virus-induced gene silencing vector based on Foxtail mosaic virus was developed to corroborate the function of PaAGO5s. The results confirmed their importance in the defences against CymMV and ORSV. Our findings may provide useful information for the breeding of traits for resistance or tolerance to CymMV or ORSV infections in Phalaenopsis orchids.
Collapse
Affiliation(s)
- Song‐Yi Kuo
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Chung‐Chi Hu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Ying‐Wen Huang
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Chin‐Wei Lee
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Meng‐Jhe Luo
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Chin‐Wei Tu
- Microbial GenomicNational Chung Hsing University and Academia SinicaTaichungTaiwan
| | - Shu‐Chuan Lee
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Na‐Sheng Lin
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Yau‐Heiu Hsu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
10
|
Liu W, Tang X, Qi X, Fu X, Ghimire S, Ma R, Li S, Zhang N, Si H. The Ubiquitin Conjugating Enzyme: An Important Ubiquitin Transfer Platform in Ubiquitin-Proteasome System. Int J Mol Sci 2020; 21:E2894. [PMID: 32326224 PMCID: PMC7215765 DOI: 10.3390/ijms21082894] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
Owing to a sessile lifestyle in nature, plants are routinely faced with diverse hostile environments such as various abiotic and biotic stresses, which lead to accumulation of free radicals in cells, cell damage, protein denaturation, etc., causing adverse effects to cells. During the evolution process, plants formed defense systems composed of numerous complex gene regulatory networks and signal transduction pathways to regulate and maintain the cell homeostasis. Among them, ubiquitin-proteasome pathway (UPP) is the most versatile cellular signal system as well as a powerful mechanism for regulating many aspects of the cell physiology because it removes most of the abnormal and short-lived peptides and proteins. In this system, the ubiquitin-conjugating enzyme (E2) plays a critical role in transporting ubiquitin from the ubiquitin-activating enzyme (E1) to the ubiquitin-ligase enzyme (E3) and substrate. Nevertheless, the comprehensive study regarding the role of E2 enzymes in plants remains unexplored. In this review, the ubiquitination process and the regulatory role that E2 enzymes play in plants are primarily discussed, with the focus particularly put on E2's regulation of biological functions of the cell.
Collapse
Affiliation(s)
- Weigang Liu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
| | - Xun Tang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xuehong Qi
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xue Fu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Shantwana Ghimire
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
| | - Rui Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
| | - Shigui Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Huaijun Si
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
11
|
Abstract
Virus-induced gene silencing (VIGS) enables the targeted silencing of genes in opium poppy (Papaver somniferum) and has been used extensively to determine or support the physiological functions of benzylisoquinoline alkaloid biosynthetic enzymes. Here we describe detailed protocols involved in the application of VIGS to investigate BIA metabolism in opium poppy.
Collapse
|
12
|
Xu M, Chen J, Huang Y, Shen D, Sun P, Xu Y, Tao X. Dynamic Transcriptional Profiles of Arabidopsis thaliana Infected by Tomato spotted wilt virus. PHYTOPATHOLOGY 2020; 110:153-163. [PMID: 31544594 DOI: 10.1094/phyto-06-19-0199-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tomato spotted wilt virus (TSWV) is a negative-stranded RNA virus that infects hundreds of plant species, causing great economic loss. Infected Arabidopsis thaliana plants develop symptoms including chlorosis and wilt, which can lead to cell death. From 9 to 15 days after TSWV infection, symptoms progress through a three-stage process of appearance, severity, and death. In this study, deep sequencing technology was first used to explore gene expression in response to TSWV infection in model plant A. thaliana at different symptom development stages. We found that plant immune defense and protein degradation are induced by TSWV infection and that both inductions became stronger over time. The photosynthesis pathway was attenuated with TSWV infection. Cell wall metabolism had a large extent of downregulation while some genes were upregulated. These results illustrate the dynamic nature of TSWV infection in A. thaliana at the whole-transcriptome level. The link between biological processes and subpathway metabolism was further analyzed. Our study provides new insight into host regulatory networks and dynamic processes in response to TSWV infection.
Collapse
Affiliation(s)
- Min Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jing Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ying Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Peng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
13
|
Bastedo DP, Khan M, Martel A, Seto D, Kireeva I, Zhang J, Masud W, Millar D, Lee JY, Lee AHY, Gong Y, Santos-Severino A, Guttman DS, Desveaux D. Perturbations of the ZED1 pseudokinase activate plant immunity. PLoS Pathog 2019; 15:e1007900. [PMID: 31269090 PMCID: PMC6634424 DOI: 10.1371/journal.ppat.1007900] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/16/2019] [Accepted: 06/08/2019] [Indexed: 11/19/2022] Open
Abstract
The Pseudomonas syringae acetyltransferase HopZ1a is delivered into host cells by the type III secretion system to promote bacterial growth. However, in the model plant host Arabidopsis thaliana, HopZ1a activity results in an effector-triggered immune response (ETI) that limits bacterial proliferation. HopZ1a-triggered immunity requires the nucleotide-binding, leucine-rich repeat domain (NLR) protein, ZAR1, and the pseudokinase, ZED1. Here we demonstrate that HopZ1a can acetylate members of a family of ‘receptor-like cytoplasmic kinases’ (RLCK family VII; also known as PBS1-like kinases, or PBLs) and promote their interaction with ZED1 and ZAR1 to form a ZAR1-ZED1-PBL ternary complex. Interactions between ZED1 and PBL kinases are determined by the pseudokinase features of ZED1, and mutants designed to restore ZED1 kinase motifs can (1) bind to PBLs, (2) recruit ZAR1, and (3) trigger ZAR1-dependent immunity in planta, all independently of HopZ1a. A ZED1 mutant that mimics acetylation by HopZ1a also triggers immunity in planta, providing evidence that effector-induced perturbations of ZED1 also activate ZAR1. Overall, our results suggest that interactions between these two RLCK families are promoted by perturbations of structural features that distinguish active from inactive kinase domain conformations. We propose that effector-induced interactions between ZED1/ZRK pseudokinases (RLCK family XII) and PBL kinases (RLCK family VII) provide a sensitive mechanism for detecting perturbations of either kinase family to activate ZAR1-mediated ETI. All plants must ward off potentially infectious microbes, and those grown in large-scale crop operations are especially vulnerable to the rapid spread of disease by successful pathogens. Although many bacteria and fungi can supress plant immune responses by producing specialized virulence proteins called ‘effectors’, these effectors can also trigger immune responses that render plants resistant to infection. We studied the molecular mechanisms underlying one such effector-triggered immune response elicited by the bacterial effector HopZ1a in the model plant host Arabidopsis thaliana. We have shown that HopZ1a promotes binding between a ZED1, a ‘pseudokinase’ required for HopZ1a-triggered immunity, and several ‘true kinases’ (known as PBLs) that are likely targets of HopZ1a activity in planta. HopZ1a-induced ZED1-PBL interactions also recruit ZAR1, an Arabidopsis ‘resistance protein’ previously implicated in HopZ1a-triggered immunity. Importantly, ZED1 mutants that restore degenerate kinase motifs can bridge interactions between PBLs and ZAR1 (independently of HopZ1a) and trigger immunity in planta. Our results suggest that equilibria between active and inactive kinase domain conformations regulate ZED1-PBL interactions and formation of ternary complexes with ZAR1. Improved models describing molecular interactions between immunity determinants, effectors and effector targets will inform efforts to exploit natural diversity for development of crops with enhanced disease resistance.
Collapse
Affiliation(s)
- D. Patrick Bastedo
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Madiha Khan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Martel
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Derek Seto
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Inga Kireeva
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Jianfeng Zhang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Wardah Masud
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - David Millar
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jee Yeon Lee
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Amy Huei-Yi Lee
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yunchen Gong
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - André Santos-Severino
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (DSG); (DD)
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (DSG); (DD)
| |
Collapse
|
14
|
Regulation of Plant Immunity by the Proteasome. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 343:37-63. [DOI: 10.1016/bs.ircmb.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Chen X, Yang B, Huang W, Wang T, Li Y, Zhong Z, Yang L, Li S, Tian J. Comparative Proteomic Analysis Reveals Elevated Capacity for Photosynthesis in Polyphenol Oxidase Expression-Silenced Clematis terniflora DC. Leaves. Int J Mol Sci 2018; 19:E3897. [PMID: 30563128 PMCID: PMC6321541 DOI: 10.3390/ijms19123897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022] Open
Abstract
Polyphenol oxidase (PPO) catalyzes the o-hydroxylation of monophenols and oxidation of o-diphenols to quinones. Although the effects of PPO on plant physiology were recently proposed, little has been done to explore the inherent molecular mechanisms. To explore the in vivo physiological functions of PPO, a model with decreased PPO expression and enzymatic activity was constructed on Clematis terniflora DC. using virus-induced gene silencing (VIGS) technology. Proteomics was performed to identify the differentially expressed proteins (DEPs) in the model (VC) and empty vector-carrying plants (VV) untreated or exposed to high levels of UV-B and dark (HUV-B+D). Following integration, it was concluded that the DEPs mainly functioned in photosynthesis, glycolysis, and redox in the PPO silence plants. Mapman analysis showed that the DEPs were mainly involved in light reaction and Calvin cycle in photosynthesis. Further analysis illustrated that the expression level of adenosine triphosphate (ATP) synthase, the content of chlorophyll, and the photosynthesis rate were increased in VC plants compared to VV plants pre- and post HUV-B+D. These results indicate that the silence of PPO elevated the plant photosynthesis by activating the glycolysis process, regulating Calvin cycle and providing ATP for energy metabolism. This study provides a prospective approach for increasing crop yield in agricultural production.
Collapse
Affiliation(s)
- Xi Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Bingxian Yang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Wei Huang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Tantan Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Yaohan Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Zhuoheng Zhong
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Lin Yang
- Zhuhai Weilan Pharmaceutical Co., Ltd., Zhuhai 519030, China.
| | - Shouxin Li
- Changshu Qiushi Technology Co., Ltd., Suzhou 215500, China.
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
- Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
16
|
Zhou B, Zeng L. The Tomato U-Box Type E3 Ligase PUB13 Acts With Group III Ubiquitin E2 Enzymes to Modulate FLS2-Mediated Immune Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:615. [PMID: 29868071 PMCID: PMC5952000 DOI: 10.3389/fpls.2018.00615] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/18/2018] [Indexed: 06/01/2023]
Abstract
In Arabidopsis and rice, the ubiquitin ligase PUB13-mediated protein degradation plays a significant role in plant pattern-triggered immunity (PTI) and flowering time control. The Arabidopsis PUB13 has been shown to attenuate the pattern recognition receptor FLS2-mediated immune signaling by ubiquitinating FLS2 and consequently promoting its degradation by the 26S proteasome. Nevertheless, the cognate ubiquitin-conjugating enzymes (E2) with which PUB13 acts to modulate FLS2-mediated PTI are unknown. To address this question, we investigate here the tomato (Solanum lycopersicum) homolog of PUB13, SlPUB13 by utilizing the recently characterized complete set of tomato E2s. Of the 13 groups of tomato E2s, only members in group III are found to interact and act with SlPUB13. Knocking-down of the group III E2 genes enhances callose deposition and induction of the RbohB gene in the immunity-associated, early oxidative burst after flg22 treatment. The group III E2s are also found to work with SlPUB13 to ubiquitinate FLS2 in vitro and are required for PUB13-mediated degradation of FLS2 in vivo upon flg22 treatment, suggesting an essential role for group III E2s in the modulation of FLS2-mediated immune signaling by PUB13. Additionally, another immunity-associated E3, NtCMPG1 is shown to also work specifically with members of group III E2 in the in vitro ubiquitination assay, which implies the group III E2 enzymes may cooperate with many E3 ligases to regulate different aspects of PTI. Taken together, these data corroborate the notion that group III E2 enzymes play an important role in PTI and build a foundation for further functional and mechanistic characterization of tomato PUB13.
Collapse
|