1
|
Giger AI, Voldrich JC, Michel BW. An Amplificative Detection Approach for Autocatalytic Sensing of Ethylene. J Am Chem Soc 2025; 147:11654-11661. [PMID: 40145903 PMCID: PMC11981833 DOI: 10.1021/jacs.5c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Amplified sensing offers the potential for high sensitivity; however, the vast majority of molecular strategies involve stoichiometric detection and signal transduction, including numerous recent examples of systems inspired by transition-metal-catalyzed reactions. Activation of latent precatalysts by a target analyte represents an attractive strategy for detecting low-concentration species. Analyte amplification represents another attractive approach, akin to PCR-based assays. Here we report an autocatalytic detection system based on the ethylene activation of Ru-I2 olefin metathesis precatalysts. Signal transduction is amplified by both catalytic ring closing metathesis of profluorescent substrates and ethylene propagation to activate additional units of catalyst. High sensitivity is observed as a result of this dual-mode amplified detection of ethylene. Detection of endogenous ethylene from fruit and oxidation-decomposition of polyunsaturated fatty acids via lipid peroxides is demonstrated.
Collapse
Affiliation(s)
- Autumn I Giger
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Jaiden C Voldrich
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Brian W Michel
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| |
Collapse
|
2
|
Zhang B, Hua L, Fan Z, Wen Y, Zhang L, Xie Y, Gao Y, Jiang J, Li H. A new photoionization-induced substitution reaction chemical ionization time-of-flight mass spectrometry for highly sensitive detection of trace exhaled ethylene. Anal Chim Acta 2024; 1317:342910. [PMID: 39030010 DOI: 10.1016/j.aca.2024.342910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
Highly sensitive and rapid detection of ethylene, the smallest alkene of great significance in human physiological metabolism remains a great challenge. In this study, we developed a new photoionization-induced substitution reaction chemical ionization time-of-flight mass spectrometry (PSCI-TOFMS) for trace exhaled ethylene detection. An intriguing ionization phenomenon involving a substitution reaction between the CH2Br2+ reactant ion and ethylene molecule was discovered and studied for the first time. The formation of readily identifiable [CH2Br·C2H4]+ product ion greatly enhanced the ionization efficiency of ethylene, which led to approximately 800-fold improvement of signal intensity over that in single photon ionization mode. The CH2Br2+ reactant ion intensity and ion-molecule reaction time were optimized, and a Nafion tube was employed to eliminate the influence of humidity on the ionization of ethylene. Consequently, a limit of detection (LOD) as low as 0.1 ppbv for ethylene was attained within 30 s at 100 % relative humidity. The application of PSCI-TOFMS on the rapid detection of trace amounts of exhaled ethylene from healthy smoker and non-smoker volunteers demonstrated the satisfactory performance and potential of this system for trace ethylene measurement in clinical diagnosis, atmospheric measurement, and process monitoring.
Collapse
Affiliation(s)
- Baimao Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Lei Hua
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Zhigang Fan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Yuxuan Wen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Lichuan Zhang
- Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Road, Dalian, 116001, People's Republic of China
| | - Yuanyuan Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Yunnan Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| | - Jichun Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| |
Collapse
|
3
|
Yumoto M, Kawata Y, Abe T, Matsuyama T, Wada S. Non-destructive mid-IR spectroscopy with quantum cascade laser can detect ethylene gas dynamics of apple cultivar 'Fuji' in real time. Sci Rep 2021; 11:20695. [PMID: 34667237 PMCID: PMC8526585 DOI: 10.1038/s41598-021-00254-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023] Open
Abstract
Many plants, including fruits and vegetables, release biogenic gases containing various volatile organic compounds such as ethylene (C2H4), which is a gaseous phytohormone. Non-destructive and in-situ gas sampling technology to detect trace C2H4 released from plants in real time would be attractive for visualising the ageing, ripening, and defence reactions of plants. In this study, we developed a C2H4 detection system with a detection limit of 0.8 ppb (3σ) using laser absorption spectroscopy. The C2H4 detection system consists of a mid-infrared quantum cascade laser oscillated at 10.5 µm, a multi-pass gas cell, a mid-IR photodetector, and a gas sampling system. Using non-destructive and in-situ gas sampling, while maintaining the internal pressure of the multi-pass gas cell at low pressure, the change in trace C2H4 concentration released from apples (Malus domestica Borkh.) can be observed in real time. We succeeded in observing C2H4 concentration changes with a time resolution of 1 s, while changing the atmospheric gas and surface temperature of apples from the ‘Fuji’ cultivar. This technique allows the visualisation of detailed C2H4 dynamics in plant environmental response, which may be promising for further progress in plant physiology, agriculture, and food science.
Collapse
Affiliation(s)
- Masaki Yumoto
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Yasushi Kawata
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tetsuya Abe
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,TOPCON CORPORATION, 75-1 Hasunuma-cho, Itabashi, Tokyo, 174-8580, Japan
| | - Tomoki Matsuyama
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
4
|
Dey S, Nag S, Santra S, Ray SK, Guha PK. Voltage-controlled NiO/ZnO p-n heterojunction diode: a new approach towards selective VOC sensing. MICROSYSTEMS & NANOENGINEERING 2020; 6:35. [PMID: 34567649 PMCID: PMC8433462 DOI: 10.1038/s41378-020-0139-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 05/31/2023]
Abstract
Metal oxide resistive gas sensors suffer from poor selectivity that restricts their practical applicability. Conventional sensor arrays are used to improve selectivity which increased the system complexity. Here, we have proposed a novel NiO/ZnO-based p-n junction single-diode device for selective sensing of several volatile organic compounds (VOCs) simultaneously by tuning bias voltage. The operating voltage was varied between 3 and 5 volts to achieve selective sensing of 2-propanol (19.1 times for 95 ppm with response and recovery times of 70 s and 55 s respectively' at 3 volts), toluene (20.1 times for 95 ppm with response and recovery times of 100 s and 60 s respectively, at 4 volts), and formaldehyde (11.2 times for 95 ppm with response and recovery times of 88 s and 54 s respectively, at 5 volts). A probable mechanism of the tunable selectivity with operating bias voltage due to increase in surface carriers with increasing voltage was hence put forth. Thus, this device may play an important role to develop future selective multiple VOC sensor thereby replacing standard sensor arrays.
Collapse
Affiliation(s)
- Sayan Dey
- Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, 721302 India
| | - Swati Nag
- Department of Electrical Engineering, National Institute of Technology, Agartala, 99046 India
| | - Sumita Santra
- Department of Physics, Indian Institute of Technology, Kharagpur, 721302 India
- Department of Physics, Belda College, Belda, 721424 India
| | - Samit Kumar Ray
- Department of Physics, Indian Institute of Technology, Kharagpur, 721302 India
- S N Bose National Centre for Basic Sciences, Kolkata, 700106 India
| | - Prasanta Kumar Guha
- Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, 721302 India
| |
Collapse
|
5
|
Identification of Quantitative Trait Loci Controlling Ethylene Production in Germinating Seeds in Maize (Zea mays L.). Sci Rep 2020; 10:1677. [PMID: 32015470 PMCID: PMC6997408 DOI: 10.1038/s41598-020-58607-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/17/2020] [Indexed: 11/15/2022] Open
Abstract
Plant seed germination is a crucial developmental event that has significant effects on seedling establishment and yield production. This process is controlled by multiple intrinsic signals, particularly phytohormones. The gaseous hormone ethylene stimulates seed germination; however, the genetic basis of ethylene production in maize during seed germination remains poorly understood. In this study, we quantified the diversity of germination among 14 inbred lines representing the parental materials corresponding to multiple recombinant inbred line (RIL) mapping populations. Quantitative trait loci (QTLs) controlling ethylene production were then identified in germinating seeds from an RIL population constructed from two parental lines showing differences in both germination speed and ethylene production during germination. To explore the possible genetic correlations of ethylene production with other traits, seed germination and seed weight were evaluated using the same batch of samples. On the basis of high-density single nucleotide polymorphism-based genetic linkage maps, we detected three QTLs for ethylene production in germinating seeds, three QTLs for seed germination, and four QTLs for seed weight, with each QTL explaining 5.8%–13.2% of the phenotypic variation of the trait. No QTLs were observed to be co-localized, suggesting that the genetic bases underlying the three traits are largely different. Our findings reveal three chromosomal regions responsible for ethylene production during seed germination, and provide a valuable reference for the future investigation of the genetic mechanism underlying the role of the stress hormone ethylene in maize germination control under unfavourable external conditions.
Collapse
|