1
|
Che Y, Zhang C, Xing J, Xi Q, Shao Y, Zhao L, Guo S, Zuo Y. Machine Learning-Based identification of resistance genes associated with sunflower broomrape. PLANT METHODS 2025; 21:62. [PMID: 40380306 PMCID: PMC12082884 DOI: 10.1186/s13007-025-01383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/29/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND Sunflowers (Helianthus annuus L.), a vital oil crop, are facing a severe challenge from broomrape (Orobanche cumana), a parasitic plant that seriously jeopardizes the growth and development of sunflowers, limits global production and leads to substantial economic losses, which urges the development of resistant sunflower varieties. RESULTS This study aims to identify resistance genes from a comprehensive transcriptomic profile of 103 sunflower varieties based on gene expression data and then constructs predictive models with the key resistant genes. The least absolute shrinkage and selection operator (LASSO) regression and random forest feature importance ranking method were used to identify resistance genes. These genes were considered as biomarkers in constructing machine learning models with Support Vector Machine (SVM), K-Nearest Neighbours (KNN), Logistic Regression (LR), and Gaussian Naive Bayes (GaussianNB). The SVM model constructed with the 24 key genes selected by the LASSO method demonstrated high classification accuracy (0.9514) and a robust AUC value (0.9865), effectively distinguishing between resistant and susceptible varieties based on gene expression data. Furthermore, we discovered a correlation between key genes and differential metabolites, particularly jasmonic acid (JA). CONCLUSION Our study highlights a novel perspective on screening sunflower varieties for broomrape resistance, which is anticipated to guide future biological research and breeding strategies.
Collapse
Affiliation(s)
- Yingxue Che
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Congzi Zhang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jixiang Xing
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Qilemuge Xi
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Ying Shao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010000, China
| | - Lingmin Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010000, China
| | - Shuchun Guo
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010000, China.
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
| |
Collapse
|
2
|
Pubert C, Boniface MC, Legendre A, Chabaud M, Carrère S, Callot C, Cravero C, Dufau I, Patrascoiu M, Baussart A, Belmonte E, Gautier V, Poncet C, Zhao J, Hu L, Zhou W, Langlade N, Vautrin S, Coussy C, Muños S. A cluster of putative resistance genes is associated with a dominant resistance to sunflower broomrape. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:103. [PMID: 38613680 DOI: 10.1007/s00122-024-04594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/05/2024] [Indexed: 04/15/2024]
Abstract
KEY MESSAGE The HaOr5 resistance gene is located in a large genomic insertion containing putative resistance genes and provides resistance to O. cumana, preventing successful connection to the sunflower root vascular system. Orobanche cumana (sunflower broomrape) is a parasitic plant that is part of the Orobanchaceae family and specifically infests sunflower crops. This weed is an obligate parasitic plant that does not carry out photosynthetic activity or develop roots and is fully dependent on its host for its development. It produces thousands of dust-like seeds per plant. It possesses a high spreading ability and has been shown to quickly overcome resistance genes successively introduced by selection in cultivated sunflower varieties. The first part of its life cycle occurs underground. The connection to the sunflower vascular system is essential for parasitic plant survival and development. The HaOr5 gene provides resistance to sunflower broomrape race E by preventing the connection of O. cumana to the root vascular system. We mapped a single position of the HaOr5 gene by quantitative trait locus mapping using two segregating populations. The same location of the HaOr5 gene was identified by genome-wide association. Using a large population of thousands of F2 plants, we restricted the location of the HaOr5 gene to a genomic region of 193 kb. By sequencing the whole genome of the resistant line harboring the major resistance gene HaOr5, we identified a large insertion of a complex genomic region containing a cluster of putative resistance genes.
Collapse
Affiliation(s)
- Camille Pubert
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), CNRS, INRAE, Université de Toulouse, Castanet-Tolosan, Toulouse, France
| | - Marie-Claude Boniface
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), CNRS, INRAE, Université de Toulouse, Castanet-Tolosan, Toulouse, France
| | - Alexandra Legendre
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), CNRS, INRAE, Université de Toulouse, Castanet-Tolosan, Toulouse, France
| | - Mireille Chabaud
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), CNRS, INRAE, Université de Toulouse, Castanet-Tolosan, Toulouse, France
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), CNRS, INRAE, Université de Toulouse, Castanet-Tolosan, Toulouse, France
| | - Caroline Callot
- Center National de Ressources Génomiques Végétales (CNRGV), INRAE, Castanet-Tolosan, France
| | - Charlotte Cravero
- Center National de Ressources Génomiques Végétales (CNRGV), INRAE, Castanet-Tolosan, France
| | - Isabelle Dufau
- Center National de Ressources Génomiques Végétales (CNRGV), INRAE, Castanet-Tolosan, France
| | | | | | - Elodie Belmonte
- Plateforme de Génotypage et Séquençage en Auvergne (Gentyane), INRAE, Clermont Ferrand, France
| | - Véronique Gautier
- Plateforme de Génotypage et Séquençage en Auvergne (Gentyane), INRAE, Clermont Ferrand, France
| | - Charles Poncet
- Plateforme de Génotypage et Séquençage en Auvergne (Gentyane), INRAE, Clermont Ferrand, France
| | - Jun Zhao
- Inner Mongolia Agricultural University, Hohhot, China
| | - Luyang Hu
- Postdoctoral Research Station of Mizuda Group, Huzhou, 313000, China
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhou
- Postdoctoral Research Station of Mizuda Group, Huzhou, 313000, China
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Nicolas Langlade
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), CNRS, INRAE, Université de Toulouse, Castanet-Tolosan, Toulouse, France
| | - Sonia Vautrin
- Center National de Ressources Génomiques Végétales (CNRGV), INRAE, Castanet-Tolosan, France
| | | | - Stéphane Muños
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), CNRS, INRAE, Université de Toulouse, Castanet-Tolosan, Toulouse, France.
| |
Collapse
|
3
|
Auriac MC, Griffiths C, Robin-Soriano A, Legendre A, Boniface MC, Muños S, Fournier J, Chabaud M. The penetration of sunflower root tissues by the parasitic plant Orobanche cumana is intracellular. THE NEW PHYTOLOGIST 2024; 241:2326-2332. [PMID: 38124276 DOI: 10.1111/nph.19495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Marie-Christine Auriac
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, Cedex, France
| | - Caitlin Griffiths
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, Cedex, France
| | - Alexandre Robin-Soriano
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Montpellier, F-31398, Cedex 05, France
| | - Alexandra Legendre
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, Cedex, France
| | - Marie-Claude Boniface
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, Cedex, France
| | - Stéphane Muños
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, Cedex, France
| | - Joëlle Fournier
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, Cedex, France
| | - Mireille Chabaud
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, Cedex, France
| |
Collapse
|
4
|
Fernández-Melero B, Del Moral L, Todesco M, Rieseberg LH, Owens GL, Carrère S, Chabaud M, Muños S, Velasco L, Pérez-Vich B. Development and characterization of a new sunflower source of resistance to race G of Orobanche cumana Wallr. derived from Helianthus anomalus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:56. [PMID: 38386181 PMCID: PMC10884359 DOI: 10.1007/s00122-024-04558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
KEY MESSAGE A new OrAnom1 gene introgressed in cultivated sunflower from wild Helianthus anomalus confers late post-attachment resistance to Orobanche cumana race G and maps to a target interval in Chromosome 4 where two receptor-like kinases (RLKs) have been identified in the H. anomalus genome as putative candidates. Sunflower broomrape is a parasitic weed that infects sunflower (Helianthus annuus L.) roots causing severe yield losses. Breeding for resistance is the most effective and sustainable control method. In this study, we report the identification, introgression, and genetic and physiological characterization of a new sunflower source of resistance to race G of broomrape developed from the wild annual sunflower H. anomalus (accession PI 468642). Crosses between PI 468642 and the susceptible line P21 were carried out, and the genetic study was conducted in BC1F1, BC1F2, and its derived BC1F3 populations. A BC1F5 germplasm named ANOM1 was developed through selection for race G resistance and resemblance to cultivated sunflower. The resistant trait showed monogenic and dominant inheritance. The gene, named OrAnom1, was mapped to Chromosome 4 within a 1.2 cM interval and co-segregated with 7 SNP markers. This interval corresponds to a 1.32 Mb region in the sunflower reference genome, housing a cluster of receptor-like kinase and receptor-like protein (RLK-RLP) genes. Notably, the analysis of the H. anomalus genome revealed the absence of RLPs in the OrAnom1 target region but featured two RLKs as possible OrAnom1 candidates. Rhizotron and histological studies showed that OrAnom1 determines a late post-attachment resistance mechanism. Broomrape can establish a vascular connection with the host, but parasite growth is stopped before tubercle development, showing phenolic compounds accumulation and tubercle necrosis. ANOM1 will contribute to broadening the genetic basis of broomrape resistance in the cultivated sunflower pool and to a better understanding of the molecular basis of the sunflower-broomrape interaction.
Collapse
Affiliation(s)
- Belén Fernández-Melero
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo S/N, 14004, Córdoba, Spain
| | - Lidia Del Moral
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo S/N, 14004, Córdoba, Spain
| | - Marco Todesco
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), Université de Toulouse, CNRS, INRAE, Castanet-Tolosan, France
| | - Mireille Chabaud
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), Université de Toulouse, CNRS, INRAE, Castanet-Tolosan, France
| | - Stéphane Muños
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), Université de Toulouse, CNRS, INRAE, Castanet-Tolosan, France
| | - Leonardo Velasco
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo S/N, 14004, Córdoba, Spain
| | - Begoña Pérez-Vich
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo S/N, 14004, Córdoba, Spain.
| |
Collapse
|
5
|
Chabaud M, Auriac MC, Boniface MC, Delgrange S, Folletti T, Jardinaud MF, Legendre A, Pérez-Vich B, Pouvreau JB, Velasco L, Delavault P, Muños S. Wild Helianthus species: A reservoir of resistance genes for sustainable pyramidal resistance to broomrape in sunflower. FRONTIERS IN PLANT SCIENCE 2022; 13:1038684. [PMID: 36340383 PMCID: PMC9630478 DOI: 10.3389/fpls.2022.1038684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Orobanche cumana Wall., sunflower broomrape, is one of the major pests for the sunflower crop. Breeding for resistant varieties in sunflower has been the most efficient method to control this parasitic weed. However, more virulent broomrape populations continuously emerge by overcoming genetic resistance. It is thus essential to identify new broomrape resistances acting at various stages of the interaction and combine them to improve resistance durability. In this study, 71 wild sunflowers and wild relatives accessions from 16 Helianthus species were screened in pots for their resistance to broomrape at the late emergence stage. From this initial screen, 18 accessions from 9 species showing resistance, were phenotyped at early stages of the interaction: the induction of broomrape seed germination by sunflower root exudates, the attachment to the host root and the development of tubercles in rhizotron assays. We showed that wild Helianthus accessions are an important source of resistance to the most virulent broomrape races, affecting various stages of the interaction: the inability to induce broomrape seed germination, the development of incompatible attachments or necrotic tubercles, and the arrest of emerged structure growth. Cytological studies of incompatible attachments showed that several cellular mechanisms were shared among resistant Helianthus species.
Collapse
Affiliation(s)
- Mireille Chabaud
- Laboratoire des Interactions Plantes-Microbes- Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet-tolosan, France
| | - Marie-Christine Auriac
- Laboratoire des Interactions Plantes-Microbes- Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet-tolosan, France
| | - Marie-Claude Boniface
- Laboratoire des Interactions Plantes-Microbes- Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet-tolosan, France
| | - Sabine Delgrange
- Unité en Sciences Biologiques et Biotechnologies (US2B), Nantes Université, Centre national de la recherche scientifique (CNRS), Unité mixte de recherche 6286 (UMR 6286), Nantes, France
| | - Tifaine Folletti
- Laboratoire des Interactions Plantes-Microbes- Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet-tolosan, France
| | - Marie-Françoise Jardinaud
- Laboratoire des Interactions Plantes-Microbes- Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet-tolosan, France
| | - Alexandra Legendre
- Laboratoire des Interactions Plantes-Microbes- Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet-tolosan, France
| | | | - Jean-Bernard Pouvreau
- Unité en Sciences Biologiques et Biotechnologies (US2B), Nantes Université, Centre national de la recherche scientifique (CNRS), Unité mixte de recherche 6286 (UMR 6286), Nantes, France
| | | | - Philippe Delavault
- Unité en Sciences Biologiques et Biotechnologies (US2B), Nantes Université, Centre national de la recherche scientifique (CNRS), Unité mixte de recherche 6286 (UMR 6286), Nantes, France
| | - Stéphane Muños
- Laboratoire des Interactions Plantes-Microbes- Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet-tolosan, France
| |
Collapse
|