1
|
Maitz CA, Bryan JN. The role of companion animal models in radiopharmaceutical development and translation. Vet Comp Oncol 2024; 22:165-173. [PMID: 38439693 DOI: 10.1111/vco.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
Advancements in molecular imaging and drug targeting have created a renaissance in the development of radiopharmaceuticals for therapy and theranostics. While some radiopharmaceuticals, such as Na[131I]I, have been used clinically for decades, new agents are being approved using small-molecules, peptides, and antibodies for targeting. As these agents are being developed, the need to understand dosimetry and biologic effects of the systemically delivered radiotherapy becomes more important, particularly as highly potent radiopharmaceuticals using targeted alpha therapy become clinically utilized. As the processes being targeted become more complex, and the radiobiology of different particulate radiation becomes more diverse, models that better recapitulate human cancer and geometry are necessary. Companion animals develop many of the same types of cancer, carrying many of the same genetic drivers as those seen in people, and the scale and geometry of tumours in dogs more closely mimics those in humans than murine tumour models. Key translational challenges in oncology, such as alterations in tumour microenvironment, hypoxia, heterogeneity, and geometry are addressed by companion animal models. This review paper will provide background on radiopharmaceutical targeting techniques, review the use of radiopharmaceuticals in companion animal oncology, and explore the translational value of treating these patients in terms of dosimetry, treatment outcomes, and normal tissue complication rates.
Collapse
Affiliation(s)
- Charles A Maitz
- Comparative Oncology Radiobiology and Epigenetics Laboratory, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, USA
| | - Jeffrey N Bryan
- Comparative Oncology Radiobiology and Epigenetics Laboratory, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
2
|
Ten Eikelder SCM, Ferjančič P, Ajdari A, Bortfeld T, den Hertog D, Jeraj R. Optimal treatment plan adaptation using mid-treatment imaging biomarkers. Phys Med Biol 2020; 65:245011. [PMID: 33053518 DOI: 10.1088/1361-6560/abc130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies on personalized radiotherapy (RT) have mostly focused on baseline patient stratification, adapting the treatment plan according to mid-treatment anatomical changes, or dose boosting to selected tumor subregions using mid-treatment radiological findings. However, the question of how to find the optimal adapted plan has not been properly tackled. Moreover, the effect of information uncertainty on the resulting adaptation has not been explored. In this paper, we present a framework to optimally adapt radiation therapy treatments to early radiation treatment response estimates derived from pre- and mid-treatment imaging data while considering the information uncertainty. The framework is based on the optimal stopping in radiation therapy (OSRT) framework. Biological response is quantified using tumor control probability (TCP) and normal tissue complication probability (NTCP) models, and these are directly optimized for in the adaptation step. Two adaptation strategies are discussed: (1) uniform dose adaptation and (2) continuous dose adaptation. In the first strategy, the original fluence-map is simply scaled upwards or downwards, depending on whether dose escalation or de-escalation is deemed appropriate based on the mid-treatment response observed from the radiological images. In the second strategy, a full NTCP-TCP-based fluence map re-optimization is performed to achieve the optimal adapted plans. We retrospectively tested the performance of these strategies on 14 canine head and neck cases treated with tomotherapy, using as response biomarker the change in the 3'-deoxy-3'[(18)F]-fluorothymidine (FLT)-PET signals between the pre- and mid-treatment images, and accounting for information uncertainty. Using a 10% uncertainty level, the two adaptation strategies both yield a noteworthy average improvement in guaranteed (worst-case) TCP.
Collapse
Affiliation(s)
- S C M Ten Eikelder
- Department of Econometrics and Operations Research, Tilburg University, Tilburg, The Netherlands
| | | | | | | | | | | |
Collapse
|
3
|
Gray M, Meehan J, Turnbull AK, Martínez-Pérez C, Kay C, Pang LY, Argyle DJ. The Importance of the Tumor Microenvironment and Hypoxia in Delivering a Precision Medicine Approach to Veterinary Oncology. Front Vet Sci 2020; 7:598338. [PMID: 33282935 PMCID: PMC7688625 DOI: 10.3389/fvets.2020.598338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
Treating individual patients on the basis of specific factors, such as biomarkers, molecular signatures, phenotypes, environment, and lifestyle is what differentiates the precision medicine initiative from standard treatment regimens. Although precision medicine can be applied to almost any branch of medicine, it is perhaps most easily applied to the field of oncology. Cancer is a heterogeneous disease, meaning that even though patients may be histologically diagnosed with the same cancer type, their tumors may have different molecular characteristics, genetic mutations or tumor microenvironments that can influence prognosis or treatment response. In this review, we describe what methods are currently available to clinicians that allow them to monitor key tumor microenvironmental parameters in a way that could be used to achieve precision medicine for cancer patients. We further describe exciting novel research involving the use of implantable medical devices for precision medicine, including those developed for mapping tumor microenvironment parameters (e.g., O2, pH, and cancer biomarkers), delivering local drug treatments, assessing treatment responses, and monitoring for recurrence and metastasis. Although these research studies have predominantly focused on and were tailored to humans, the results and concepts are equally applicable to veterinary patients. While veterinary clinical studies that have adopted a precision medicine approach are still in their infancy, there have been some exciting success stories. These have included the development of a receptor tyrosine kinase inhibitor for canine mast cell tumors and the production of a PCR assay to monitor the chemotherapeutic response of canine high-grade B-cell lymphomas. Although precision medicine is an exciting area of research, it currently has failed to gain significant translation into human and veterinary healthcare practices. In order to begin to address this issue, there is increasing awareness that cross-disciplinary approaches involving human and veterinary clinicians, engineers and chemists may be needed to help advance precision medicine toward its full integration into human and veterinary clinical practices.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - James Meehan
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Arran K. Turnbull
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Lisa Y. Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - David J. Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
4
|
Martinez S, Brandl A, Leary D. Monte Carlo Evaluation of Dose Enhancement Due to CuATSM or GNP Uptake in Hypoxic Environments with External Beam Radiation. Int J Nanomedicine 2020; 15:3719-3727. [PMID: 32547024 PMCID: PMC7261688 DOI: 10.2147/ijn.s241756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Most solid tumors contain areas of chronic hypoxia. Gold nanoparticles (GNP) have been extensively explored as enhancers of external beam radiation; however, GNP have lower cellular uptake in hypoxic conditions than under normoxic conditions. Conversely, the chelator diacetyl-bis (N(4)-methylthiosemicarbazonato) copper II (CuATSM) deposits copper in hypoxic regions, allowing for dose enhancement in previously inaccessible regions. Methods External beam sources with different spectra were modeled using a Monte Carlo code (EGSnrc) to evaluate radioenhancement in a layered model with metal solutions. Also considered was a simple concentric layered tumor model containing a hypoxic core with each layer varying in concentrations of either copper or gold according to hypoxic conditions. Low energy external photon beams were then projected onto the tumor to determine the regional dose enhancement dependent on hypoxic conditions. Results Dose enhancement was more pronounced for beam spectra with low energy photons (225 kVp) and was highly dependent on metal concentrations from 0.1 g/kg to 100 g/kg. Increasing the depth of the metallic solution layer from 1 cm to 6 cm decreased dose enhancement. A small increase in the dose enhancement factor (DEF) of 1.01 was predicted in the hypoxic regions of the tumor model with commonly used diagnostic concentrations of CuATSM. At threshold concentrations of toxic subcutaneous injection levels, the DEF increases to 1.02, and in simulation of a high concentration of CuATSM, the DEF increased to 1.07. High concentration treatments are also considered, as well as synergistic combinations of GNP/CuATSM treatments. Conclusion The research presented is novel utilization of CuATSM to target hypoxic regions and act as a radiosensitizer by the nature of its ability to deposit copper metal in reduced tissue. We demonstrate CuATSM at high concentrations with low energy photons can increase dose deposition in hypoxic tumor regions.
Collapse
Affiliation(s)
- Stephen Martinez
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Alexander Brandl
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Del Leary
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
A novel concept for tumour targeting with radiation: Inverse dose-painting or targeting the “Low Drug Uptake Volume”. Radiother Oncol 2017; 124:513-520. [DOI: 10.1016/j.radonc.2017.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/17/2017] [Accepted: 04/21/2017] [Indexed: 01/21/2023]
|
6
|
Grimes DR, Warren DR, Warren S. Hypoxia imaging and radiotherapy: bridging the resolution gap. Br J Radiol 2017; 90:20160939. [PMID: 28540739 PMCID: PMC5603947 DOI: 10.1259/bjr.20160939] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oxygen distribution is a major determinant of treatment success in radiotherapy, with well-oxygenated tumour regions responding by up to a factor of three relative to anoxic volumes. Conversely, tumour hypoxia is associated with treatment resistance and negative prognosis. Tumour oxygenation is highly heterogeneous and difficult to measure directly. The recent advent of functional hypoxia imaging modalities such as fluorine-18 fluoromisonidazole positron emission tomography have shown promise in non-invasively determining regions of low oxygen tension. This raises the prospect of selectively increasing dose to hypoxic subvolumes, a concept known as dose painting. Yet while this is a promising approach, oxygen-mediated radioresistance is inherently a multiscale problem, and there are still a number of substantial challenges that must be overcome if hypoxia dose painting is to be successfully implemented. Current imaging modalities are limited by the physics of such systems to have resolutions in the millimetre regime, whereas oxygen distribution varies over a micron scale, and treatment delivery is typically modulated on a centimetre scale. In this review, we examine the mechanistic basis and implications of the radiobiological oxygen effect, the factors influencing microscopic heterogeneity in tumour oxygenation and the consequent challenges in the interpretation of clinical hypoxia imaging (in particular fluorine-18 fluoromisonidazole positron emission tomography). We also discuss dose-painting approaches and outline challenges that must be addressed to improve this treatment paradigm.
Collapse
Affiliation(s)
- David Robert Grimes
- 1 Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX37DQ, UK.,2 Centre for Advanced and Interdisciplinary Radiation Research (CAIRR), School of Mathematics and Physics, Queen's University Belfast, UK
| | - Daniel R Warren
- 1 Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX37DQ, UK
| | - Samantha Warren
- 1 Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX37DQ, UK.,3 Hall-Edwards Radiotherapy Research Group, Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
7
|
Abstract
In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.
Collapse
Affiliation(s)
- Bryan Ronain Smith
- Stanford University , 3155 Porter Drive, #1214, Palo Alto, California 94304-5483, United States
| | - Sanjiv Sam Gambhir
- The James H. Clark Center , 318 Campus Drive, First Floor, E-150A, Stanford, California 94305-5427, United States
| |
Collapse
|
8
|
Thureau S, Hapdey S, Vera P. [Role of functional imaging in the definition of target volumes for lung cancer radiotherapy]. Cancer Radiother 2016; 20:699-704. [PMID: 27614514 DOI: 10.1016/j.canrad.2016.08.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 12/23/2022]
Abstract
Functional imaging with positron emission tomography (PET) is interesting to optimize lung radiotherapy planning, and probably to deliver a heterogeneous dose or adapt the radiation dose during treatment. Only fluorodeoxyglucose (FDG) PET-computed tomography (CT) is validated for staging lung cancer and planning radiotherapy. The optimal segmentation methods remain to be defined as well as the interest of "dose painting" from pre-treatment PET (metabolism: FDG) or hypoxia (fluoromisonidazole: FMISO) and the interest of replanning based on pertherapeutic PET.
Collapse
Affiliation(s)
- S Thureau
- Département de médecine nucléaire, centre de lutte contre le cancer Henri-Becquerel, rue d'Amiens, 76000 Rouen, France; Département de radiothérapie et de physique médicale, centre de lutte contre le cancer Henri-Becquerel, rue d'Amiens, 76000 Rouen, France; Laboratoire QuantIF, EA4108-Litis, FR CNRS 3638, 1, rue d'Amiens, 76000 Rouen, France.
| | - S Hapdey
- Département de médecine nucléaire, centre de lutte contre le cancer Henri-Becquerel, rue d'Amiens, 76000 Rouen, France; Laboratoire QuantIF, EA4108-Litis, FR CNRS 3638, 1, rue d'Amiens, 76000 Rouen, France
| | - P Vera
- Département de médecine nucléaire, centre de lutte contre le cancer Henri-Becquerel, rue d'Amiens, 76000 Rouen, France; Laboratoire QuantIF, EA4108-Litis, FR CNRS 3638, 1, rue d'Amiens, 76000 Rouen, France
| |
Collapse
|
9
|
Lai YL, Wu CY, Chao KSC. Biological imaging in clinical oncology: radiation therapy based on functional imaging. Int J Clin Oncol 2016; 21:626-632. [PMID: 27384183 DOI: 10.1007/s10147-016-1000-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/29/2016] [Indexed: 12/25/2022]
Abstract
Radiation therapy is one of the most effective tools for cancer treatment. In recent years, intensity-modulated radiation therapy has become increasingly popular in that target dose-escalation can be done while sparing adjacent normal tissues. For this reason, the development of measures to pave the way for accurate target delineation is of great interest. With the integration of functional information obtained by biological imaging with radiotherapy, strategies using advanced biological imaging to visualize metabolic pathways and to improve therapeutic index and predict treatment response are discussed in this article.
Collapse
Affiliation(s)
- Yo-Liang Lai
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - K S Clifford Chao
- China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| |
Collapse
|
10
|
Sanghera B, Wood K, Sonoda LI, Gogbashian A, Lowe G, Nunes A, Stirling J, Shepherd C, Beynon G, Wong WL. Pre-clinical Positron Emission Tomography Reconstruction Algorithm Effect on Cu-64 ATSM Lesion Hypoxia. Mol Imaging Radionucl Ther 2016; 25:19-25. [PMID: 27299284 PMCID: PMC4807345 DOI: 10.4274/mirt.18189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Application of distinct positron emission tomography (PET) scan reconstruction algorithms can lead to statistically significant differences in measuring lesion functional properties. We looked at the influence of two-dimensional filtered back projection (2D FBP), two-dimensional ordered subset expectation maximization (2D OSEM), three-dimensional ordered subset expectation maximization (3D OSEM) without 3D maximum a posteriori and with (3D OSEM MAP) on lesion hypoxia tracer uptake using a pre-clinical PET scanner. Methods: Reconstructed images of a rodent tumor model bearing P22 carcinosarcoma injected with hypoxia tracer Copper-64-Diacetyl-bis (N4-methylthiosemicarbazone) (i.e. Cu-64 ATSM) were analyzed at 10 minute intervals till 60 minute post injection. Lesion maximum standardized uptake values (SUVmax) and SUVmax/background SUVmean (T/B) were recorded and investigated after application of multiple algorithm and reconstruction parameters to assess their influence on Cu-64 ATSM measurements and associated trends over time. Results: SUVmaxSUVmax or T/B between 2D FBP, exhibited convergence for OSEM reconstructions while ANOVA results showed a significant difference in SUVmax or T/B between 2D FBP, 2D OSEM, 3D OSEM and 3D OSEM MAP reconstructions across all time frames. SUVmax and T/B were greatest in magnitude for 2D OSEM followed by 3D OSEM MAP, 3D OSEM and then 2D FBP at all time frames respectively. Similarly SUVmax and T/B standard deviations (SD) were lowest for 2D OSEM in comparison with other algorithms. Conclusion: Significantly higher magnitude lesion SUVmax and T/B combined with lower SD were observed using 2D OSEM reconstruction in comparison with 2D FBP, 3D OSEM and 3D OSEM MAP algorithms at all time frames. Results are SUVmax or T/B between 2D FBP, consistent with other published studies however more specimens are required for full validation.
Collapse
Affiliation(s)
- Bal Sanghera
- Mount Vernon Hospital, Paul Strickland Scanner Centre, Northwood, UK, Phone: +90 192 384 43 92 E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Micro Regional Heterogeneity of 64Cu-ATSM and 18F-FDG Uptake in Canine Soft Tissue Sarcomas: Relation to Cell Proliferation, Hypoxia and Glycolysis. PLoS One 2015; 10:e0141379. [PMID: 26501874 PMCID: PMC4621038 DOI: 10.1371/journal.pone.0141379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Tumour microenvironment heterogeneity is believed to play a key role in cancer progression and therapy resistance. However, little is known about micro regional distribution of hypoxia, glycolysis and proliferation in spontaneous solid tumours. The overall aim was simultaneous investigation of micro regional heterogeneity of 64Cu-ATSM (hypoxia) and 18F-FDG (glycolysis) uptake and correlation to endogenous markers of hypoxia, glycolysis, proliferation and angiogenesis to better therapeutically target aggressive tumour regions and prognosticate outcome. METHODS Exploiting the different half-lives of 64Cu-ATSM (13 h) and 18F-FDG (2 h) enabled simultaneous investigation of micro regional distribution of hypoxia and glycolysis in 145 tumour pieces from four spontaneous canine soft tissue sarcomas. Pairwise measurements of radioactivity and gene expression of endogenous markers of hypoxia (HIF-1α, CAIX), glycolysis (HK2, GLUT1 and GLUT3), proliferation (Ki-67) and angiogenesis (VEGFA and TF) were performed. Dual tracer autoradiography was compared with Ki-67 immunohistochemistry. RESULTS Micro regional heterogeneity in hypoxia and glycolysis within and between tumour sections of each tumour piece was observed. The spatial distribution of 64Cu-ATSM and 18F-FDG was rather similar within each tumour section as reflected in moderate positive significant correlations between the two tracers (ρ = 0.3920-0.7807; p = 0.0180 -<0.0001) based on pixel-to-pixel comparisons of autoradiographies and gamma counting of tumour pieces. 64Cu-ATSM and 18F-FDG correlated positively with gene expression of GLUT1 and GLUT3, but negatively with HIF-1α and CAIX. Significant positive correlations were seen between Ki-67 gene expression and 64Cu-ATSM (ρ = 0.5578, p = 0.0004) and 18F-FDG (ρ = 0.4629-0.7001, p = 0.0001-0.0151). Ki-67 gene expression more consistently correlated with 18F-FDG than with 64Cu-ATSM. CONCLUSIONS Micro regional heterogeneity of hypoxia and glycolysis was documented in spontaneous canine soft tissue sarcomas. 64Cu-ATSM and 18F-FDG uptakes and distributions showed significant moderate correlations at the micro regional level indicating overlapping, yet different information from the tracers.18F-FDG better reflected cell proliferation as measured by Ki-67 gene expression than 64Cu-ATSM.
Collapse
|
12
|
Zornhagen KW, Clausen MM, Hansen AE, Law I, McEvoy FJ, Engelholm SA, Kjær A, Kristensen AT. Use of Molecular Imaging Markers of Glycolysis, Hypoxia and Proliferation ((18)F-FDG, (64)Cu-ATSM and (18)F-FLT) in a Dog with Fibrosarcoma: The Importance of Individualized Treatment Planning and Monitoring. Diagnostics (Basel) 2015; 5:372-82. [PMID: 26854160 PMCID: PMC4665600 DOI: 10.3390/diagnostics5030372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 12/14/2022] Open
Abstract
Glycolysis, hypoxia, and proliferation are important factors in the tumor microenvironment contributing to treatment-resistant aggressiveness. Imaging these factors using combined functional positron emission tomography and computed tomography can potentially guide diagnosis and management of cancer patients. A dog with fibrosarcoma was imaged using 18F-FDG, 64Cu-ATSM, and 18F-FLT before, during, and after 10 fractions of 4.5 Gy radiotherapy. Uptake of all tracers decreased during treatment. Fluctuations in 18F-FDG and 18F-FLT PET uptakes and a heterogeneous spatial distribution of the three tracers were seen. Tracer distributions partially overlapped. It appears that each tracer provides distinct information about tumor heterogeneity and treatment response.
Collapse
Affiliation(s)
- Kamilla Westarp Zornhagen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, DK-1870 Frederiksberg C, Denmark.
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark.
- Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2200 Copenhagen N, Denmark.
| | - Malene M Clausen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark.
| | - Anders E Hansen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345E, DK-2800 Kgs. Lyngby, Denmark.
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark.
| | - Fintan J McEvoy
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, DK-1870 Frederiksberg C, Denmark.
| | - Svend A Engelholm
- Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2200 Copenhagen N, Denmark.
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark.
| | - Annemarie T Kristensen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
13
|
Alonzi R. Functional Radiotherapy Targeting using Focused Dose Escalation. Clin Oncol (R Coll Radiol) 2015; 27:601-17. [PMID: 26456478 DOI: 10.1016/j.clon.2015.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
Various quantitative and semi-quantitative imaging biomarkers have been identified that may serve as valid surrogates for the risk of recurrence after radiotherapy. Tumour characteristics, such as hypoxia, vascularity, cellular proliferation and clonogen density, can be geographically mapped using biological imaging techniques. The potential gains in therapeutic ratio from the precision targeting of areas of intrinsic resistance makes focused dose escalation an exciting field of study. This overview will explore the issues surrounding biologically optimised radiotherapy, including its requirements, feasibility, technical considerations and potential applicability.
Collapse
Affiliation(s)
- R Alonzi
- Mount Vernon Cancer Centre, Northwood, UK.
| |
Collapse
|
14
|
Colombié M, Gouard S, Frindel M, Vidal A, Chérel M, Kraeber-Bodéré F, Rousseau C, Bourgeois M. Focus on the Controversial Aspects of (64)Cu-ATSM in Tumoral Hypoxia Mapping by PET Imaging. Front Med (Lausanne) 2015; 2:58. [PMID: 26380261 PMCID: PMC4547458 DOI: 10.3389/fmed.2015.00058] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
Mapping tumor hypoxia is a great challenge in positron emission tomography (PET) imaging as the precise functional information of the biological processes is needed for many effective therapeutic strategies. Tumor hypoxia has been widely reported as a poor prognostic indicator and is often associated with tumor aggressiveness, chemo- and radio-resistance. An accurate diagnosis of hypoxia is a challenge and is crucial for providing accurate treatment for patients' survival benefits. This challenge has led to the emergence of new and novel PET tracers for the functional and metabolic characterization of tumor hypoxia non-invasively. Among these tracers, copper semicarbazone compound [64Cu]-diacetyl-bis(N (4)-methylthiosemicarbazone) (=64Cu-ATSM) has been developed as a tracer for hypoxia imaging. This review focuses on 64Cu-ATSM PET imaging and the concept is presented in two sections. The first section describes its in vitro development and pre-clinical testing and particularly its affinity in different cell lines. The second section describes the controversial reports on its specificity for hypoxia imaging. The review concludes that 64Cu-ATSM - more than a hypoxic tracer, exhibits tracer accumulation in tumor, which is linked to the redox potential and reactive oxygen species. The authors concluded that 64Cu-ATSNM is a marker of over-reduced cell state and thus an indirect marker for hypoxia imaging. The affinity of 64Cu-ATSM for over-reduced cells was observed to be a complex phenomenon. And to provide a definitive and convincing mechanism, more in vivo studies are needed to prove the diagnostic utility of 64Cu-ATSM.
Collapse
Affiliation(s)
| | | | | | | | - Michel Chérel
- Institut de Cancérologie de l'Ouest , Saint-Herblain , France ; CRCNA, INSERM, Université de Nantes , Nantes , France
| | - Françoise Kraeber-Bodéré
- Institut de Cancérologie de l'Ouest , Saint-Herblain , France ; CRCNA, INSERM, Université de Nantes , Nantes , France ; Service de Médecine Nucléaire - CHU de Nantes , Nantes , France
| | - Caroline Rousseau
- Institut de Cancérologie de l'Ouest , Saint-Herblain , France ; CRCNA, INSERM, Université de Nantes , Nantes , France
| | - Mickaël Bourgeois
- CRCNA, INSERM, Université de Nantes , Nantes , France ; GIP ARRONAX , Saint-Herblain , France ; Service de Médecine Nucléaire - CHU de Nantes , Nantes , France
| |
Collapse
|
15
|
Preclinical Assessment of Efficacy of Radiation Dose Painting Based on Intratumoral FDG-PET Uptake. Clin Cancer Res 2015; 21:5511-8. [DOI: 10.1158/1078-0432.ccr-15-0290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/03/2015] [Indexed: 11/16/2022]
|
16
|
Prokopiou S, Moros EG, Poleszczuk J, Caudell J, Torres-Roca JF, Latifi K, Lee JK, Myerson R, Harrison LB, Enderling H. A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation. Radiat Oncol 2015; 10:159. [PMID: 26227259 PMCID: PMC4521490 DOI: 10.1186/s13014-015-0465-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/16/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Although altered protocols that challenge conventional radiation fractionation have been tested in prospective clinical trials, we still have limited understanding of how to select the most appropriate fractionation schedule for individual patients. Currently, the prescription of definitive radiotherapy is based on the primary site and stage, without regard to patient-specific tumor or host factors that may influence outcome. We hypothesize that the proportion of radiosensitive proliferating cells is dependent on the saturation of the tumor carrying capacity. This may serve as a prognostic factor for personalized radiotherapy (RT) fractionation. METHODS We introduce a proliferation saturation index (PSI), which is defined as the ratio of tumor volume to the host-influenced tumor carrying capacity. Carrying capacity is as a conceptual measure of the maximum volume that can be supported by the current tumor environment including oxygen and nutrient availability, immune surveillance and acidity. PSI is estimated from two temporally separated routine pre-radiotherapy computed tomography scans and a deterministic logistic tumor growth model. We introduce the patient-specific pre-treatment PSI into a model of tumor growth and radiotherapy response, and fit the model to retrospective data of four non-small cell lung cancer patients treated exclusively with standard fractionation. We then simulate both a clinical trial hyperfractionation protocol and daily fractionations, with equal biologically effective dose, to compare tumor volume reduction as a function of pretreatment PSI. RESULTS With tumor doubling time and radiosensitivity assumed constant across patients, a patient-specific pretreatment PSI is sufficient to fit individual patient response data (R(2) = 0.98). PSI varies greatly between patients (coefficient of variation >128 %) and correlates inversely with radiotherapy response. For this study, our simulations suggest that only patients with intermediate PSI (0.45-0.9) are likely to truly benefit from hyperfractionation. For up to 20 % uncertainties in tumor growth rate, radiosensitivity, and noise in radiological data, the absolute estimation error of pretreatment PSI is <10 % for more than 75 % of patients. CONCLUSIONS Routine radiological images can be used to calculate individual PSI, which may serve as a prognostic factor for radiation response. This provides a new paradigm and rationale to select personalized RT dose-fractionation.
Collapse
Affiliation(s)
- Sotiris Prokopiou
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Jan Poleszczuk
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Jimmy Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Javier F Torres-Roca
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Jae K Lee
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Robert Myerson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Louis B Harrison
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Heiko Enderling
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
17
|
Klaassen R, Bennink RJ, van Tienhoven G, Bijlsma MF, Besselink MGH, van Berge Henegouwen MI, Wilmink JW, Nederveen AJ, Windhorst AD, Hulshof MCCM, van Laarhoven HWM. Feasibility and repeatability of PET with the hypoxia tracer [(18)F]HX4 in oesophageal and pancreatic cancer. Radiother Oncol 2015; 116:94-9. [PMID: 26049919 DOI: 10.1016/j.radonc.2015.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE To investigate the feasibility and to determine the repeatability of recurrent [(18)F]HX4 PET scans in patients with oesophageal (EC) and pancreatic (PC) cancer. MATERIALS AND METHODS 32 patients were scanned in total; seven patients (4 EC/3 PC) were scanned 2, 3 and 4h post injection (PI) of [(18)F]HX4 and 25 patients (15 EC/10 PC) were scanned twice 3.5h PI, on two separate days (median 4, range 1-9days). Maximum tumour to background ratio (TBRmax) and the tumour hypoxic volume (HV) (TBR>1.0) were calculated. Repeatability was assessed using Bland-Altman analysis. Agreement in localization was calculated as the distance between the centres of mass in the HVs. RESULTS For EC, the TBRmax in the tumour (mean±SD) was 1.87±0.46 with a coefficient of repeatability (CoR) of 0.53 (28% of mean). The HV ranged from 3.4 to 98.8ml with a CoR of 5.1ml. For PC, the TBRmax was 1.72±0.23 with a CoR of 0.27 (16% of mean). The HV ranged from 4.6 to 104.0ml with a CoR of 7.8ml. The distance between the centres of mass in the HV was 2.2±1.3mm for EC and 2.1±1.5mm for PC. CONCLUSIONS PET scanning with [(18)F]HX4 was feasible in both EC and PC patients. Amount and location of elevated [(18)F]HX4 uptake showed good repeatability, suggesting [(18)F]HX4 PET could be a promising tool for radiation therapy planning and treatment response monitoring in EC and PC patients.
Collapse
Affiliation(s)
- Remy Klaassen
- Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands; LEXOR (Laboratory for Experimental Oncology and Radiobiology), Academic Medical Center, Amsterdam, The Netherlands.
| | - Roelof J Bennink
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Maarten F Bijlsma
- LEXOR (Laboratory for Experimental Oncology and Radiobiology), Academic Medical Center, Amsterdam, The Netherlands
| | - Marc G H Besselink
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Johanna W Wilmink
- Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Maarten C C M Hulshof
- Department of Radiation Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|