1
|
Shiba S, Trauernicht C, Robar JL. Treatment plan quality for stereotactic treatment of multiple cranial metastases: Comparison of C-arm and O-ring treatment platforms. Med Dosim 2024; 50:47-56. [PMID: 39232899 DOI: 10.1016/j.meddos.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
C-arm linacs have been used widely to treat multiple cranial metastases using stereotactic radiosurgery (SRS). A new generation of O-ring linacs offer several workflow advantages when compared to C-arm platforms. However, O-ring linacs are not able to employ couch rotations for noncoplanar beams used in SRS treatments. This study was conducted in order to simulate further possible developments of O-ring treatment units by assessing their geometrical efficiency. In this work we compare the plan quality for C-arm versus an O-ring platform including metrics that are relevant to SRS for multiple metastases. The comparison is conducted by incorporating tilted arcs on the O-ring platform therefore introducing noncoplanarity. Total 40 patients previously treated for SRS with 20 Gy single fraction were replanned for C-arm with a standard noncoplanar 5-arc arrangement and O-ring with both coplanar and noncoplanar beams. For the O-ring plans, we considered a default 3-arc coplanar arrangement, as well as 3- and 5-arc arrangements with arcs tipped up to 10 degrees from the axial plane. Target coverage, organ-at-risk (OAR) doses, monitor unit (MU) efficiency, conformity and gradient indices were assessed for all plans. For most metrics the O-ring geometries, even the coplanar arrangement, produced statistically comparable results to the C-arm. Small but significant differences were found for the 3 arc O-ring for PTV: D90%, D2% and MU/Gy and for the 5 arc O-ring at D2% when both were compared to the C-arm. Cumulative dose volume histograms (DVHs) for normal brain showed a cross-over between the C-arm and coplanar O-ring geometry at a low dose (2.3 ± 1.8 Gy), with O-ring associated with higher volumes above this cross-over dose. However, no statistical difference was seen in the brainstem, optic pathway and volumes of normal brain receiving 12 Gy or 20 Gy. This study has found that O-ring geometry linacs can produce SRS plans of comparable quality to those from a C-arm for multiple cranial metastases.
Collapse
Affiliation(s)
- S Shiba
- Department of Medical Physics, Stellenbosch University, Stellenbosch, South Africa; Yenzakahle Medical Physics Inc, Hilton, South Africa
| | - C Trauernicht
- Department of Medical Physics, Stellenbosch University, Stellenbosch, South Africa
| | - J L Robar
- Nova Scotia Health, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Eichner M, Hellerbach A, Hoevels M, Luyken K, Judge M, Rueß D, Ruge M, Kocher M, Hunsche S, Treuer H. Use of dose-area product to assess plan quality in robotic radiosurgery. Z Med Phys 2024; 34:428-435. [PMID: 36717311 PMCID: PMC11384082 DOI: 10.1016/j.zemedi.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/04/2022] [Accepted: 01/03/2023] [Indexed: 01/30/2023]
Abstract
PURPOSE In robotic stereotactic radiosurgery (SRS), optimal selection of collimators from a set of fixed cones must be determined manually by trial and error. A unique and uniformly scaled metric to characterize plan quality could help identify Pareto-efficient treatment plans. METHODS The concept of dose-area product (DAP) was used to define a measure (DAPratio) of the targeting efficiency of a set of beams by relating the integral DAP of the beams to the mean dose achieved in the target volume. In a retrospective study of five clinical cases of brain metastases with representative target volumes (range: 0.5-5.68 ml) and 121 treatment plans with all possible collimator choices, the DAPratio was determined along with other plan metrics (conformity index CI, gradient index R50%, treatment time, total number of monitor units TotalMU, radiotoxicity index f12, and energy efficiency index η50%), and the respective Spearman's rank correlation coefficients were calculated. The ability of DAPratio to determine Pareto efficiency for collimator selection at DAPratio < 1 and DAPratio < 0.9 was tested using scatter plots. RESULTS The DAPratio for all plans was on average 0.95 ± 0.13 (range: 0.61-1.31). Only the variance of the DAPratio was strongly dependent on the number of collimators. For each target, there was a strong or very strong correlation of DAPratio with all other metrics of plan quality. Only for R50% and η50% was there a moderate correlation with DAPratio for the plans of all targets combined, as R50% and η50% strongly depended on target size. Optimal treatment plans with CI, R50%, f12, and η50% close to 1 were clearly associated with DAPratio < 1, and plans with DAPratio < 0.9 were even superior, but at the cost of longer treatment times and higher total monitor units. CONCLUSIONS The newly defined DAPratio has been demonstrated to be a metric that characterizes the target efficiency of a set of beams in robotic SRS in one single and uniformly scaled number. A DAPratio < 1 indicates Pareto efficiency. The trade-off between plan quality on the one hand and short treatment time or low total monitor units on the other hand is also represented by DAPratio.
Collapse
Affiliation(s)
- Markus Eichner
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Alexandra Hellerbach
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Mauritius Hoevels
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Klaus Luyken
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Michael Judge
- Department of Radiation Oncology, Cyberknife and Radiation Therapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Daniel Rueß
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Maximilian Ruge
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Martin Kocher
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Stefan Hunsche
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Harald Treuer
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| |
Collapse
|
3
|
Heinzelmann F, Budde M, Adamietz IA, Kröninger K, Boström JP. Evaluation of a new inverse, globally convex TPS algorithm for Gamma Knife® radiosurgery within a prospective trial - advantages and disadvantages in practical application. Adv Radiat Oncol 2022; 7:101006. [PMID: 36060632 PMCID: PMC9436708 DOI: 10.1016/j.adro.2022.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/25/2022] [Indexed: 11/15/2022] Open
Abstract
Purpose A new inverse planning software called IntuitivePlan (IP) based on a global convex optimization algorithm was adopted for the Gamma Knife radiation surgery. We investigated IP's suitability for daily clinical use and its applicability for different cerebral entities. Methods and Materials For 230 target volumes, IP was tested in a prospective trial. The computed treatment plans were compared with conventional expert preplans, which included forward planning by the expert and local internal optimization. Based on the same dose constraints, we used the default settings for the inverse calculation of the treatment plans. Plan quality metrics such as the Paddick conformity index were compared for both planning techniques with additional subdivisions into the 3 selectable IP planning strategies and different entity groups. Results IP calculated treatment plans of quality similar to that of preplans created by expert planners. Some plan quality metrics, especially those related to conformity and dose gradient, attained statistically significantly higher scores combined with high coverage for the inversely generated plans except for the selectivity optimizing strategy. Normal brain volume receiving 10 Gy or 12 Gy or higher (V10Gy or V12Gy) did not show significant differences for the coverage optimizing strategies. The IP software demonstrated significantly shorter planning times versus manual planning as well as greater numbers of isocenters, often associated with longer treatment times. In terms of total time, these differences almost balanced out again. Conclusions Our results suggest that IP is advantageous for complex tumors. We observed general clinical significance for conformity and superiority for the selectivity optimizing strategy. In addition, the high-quality calculation from IP enables novices in the profession to achieve pre-treatment plans of a quality similar to that of expert planners. IP allows for optimizing the sparing of surrounding tissue and conformity for benign tumors within a short time. Thus, IP forms a solid basis for further planning on the treatment day.
Collapse
Affiliation(s)
| | - Moritz Budde
- Marien Hospital Herne, University Hospital at Ruhr-Universität Bochum, Clinic for Radiotherapy and Radiation Oncology, Herne, Germany
| | - Irenäus A. Adamietz
- University Hospital at Ruhr-Universität Bochum, Gamma Knife Zentrum, Bochum, Germany
- Marien Hospital Herne, University Hospital at Ruhr-Universität Bochum, Clinic for Radiotherapy and Radiation Oncology, Herne, Germany
| | - Kevin Kröninger
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Jan P. Boström
- University Hospital at Ruhr-Universität Bochum, Gamma Knife Zentrum, Bochum, Germany
- Marien Hospital Herne, University Hospital at Ruhr-Universität Bochum, Clinic for Radiotherapy and Radiation Oncology, Herne, Germany
- Corresponding author
| |
Collapse
|
4
|
Hellerbach A, Eichner M, Rueß D, Luyken K, Hoevels M, Judge M, Baues C, Ruge M, Kocher M, Treuer H. Impact of prescription isodose level and collimator selection on dose homogeneity and plan quality in robotic radiosurgery. Strahlenther Onkol 2021; 198:484-496. [PMID: 34888732 PMCID: PMC9038902 DOI: 10.1007/s00066-021-01872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/17/2021] [Indexed: 11/28/2022]
Abstract
Purpose In stereotactic radiosurgery (SRS), prescription isodoses and resulting dose homogeneities vary widely across different platforms and clinical entities. Our goal was to investigate the physical limitations of generating dose distributions with an intended level of homogeneity in robotic SRS. Methods Treatment plans for non-isocentric irradiation of 4 spherical phantom targets (volume 0.27–7.70 ml) and 4 clinical targets (volume 0.50–5.70 ml) were calculated using Sequential (phantom) or VOLOTM (clinical) optimizers (Accuray, Sunnyvale, CA, USA). Dose conformity, volume of 12 Gy isodose (V12Gy) as a measure for dose gradient, and treatment time were recorded for different prescribed isodose levels (PILs) and collimator settings. In addition, isocentric irradiation of phantom targets was examined, with dose homogeneity modified by using different collimator sizes. Results Dose conformity was generally high (nCI ≤ 1.25) and varied little with PIL. For all targets and collimator sets, V12Gy was highest for PIL ≥ 80% and lowest for PIL ≤ 65%. The impact of PIL on V12Gy was highest for isocentric irradiation and lowest for clinical targets (VOLOTM optimization). The variability of V12Gy as a function of collimator selection was significantly higher than that of PIL. V12Gy and treatment time were negatively correlated. Plans utilizing a single collimator with a diameter in the range of 70–80% of the target diameter were fastest, but showed the strongest dependence on PIL. Conclusion Inhomogeneous dose distributions with PIL ≤ 70% can be used to minimize dose to normal tissue. PIL ≥ 90% is associated with a marked and significant increase in off-target dose exposure. Careful selection of collimators during planning is even more important. Supplementary Information The online version of this article (10.1007/s00066-021-01872-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Hellerbach
- Faculty of Medicine and University Hospital Cologne, Department of Stereotaxy and Functional Neurosurgery, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
| | - Markus Eichner
- Faculty of Medicine and University Hospital Cologne, Department of Stereotaxy and Functional Neurosurgery, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Daniel Rueß
- Faculty of Medicine and University Hospital Cologne, Department of Stereotaxy and Functional Neurosurgery, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Klaus Luyken
- Faculty of Medicine and University Hospital Cologne, Department of Stereotaxy and Functional Neurosurgery, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Mauritius Hoevels
- Faculty of Medicine and University Hospital Cologne, Department of Stereotaxy and Functional Neurosurgery, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Michael Judge
- Faculty of Medicine and University Hospital Cologne, Institute of Radiation Oncology, University of Cologne, Cologne, Germany
| | - Christian Baues
- Faculty of Medicine and University Hospital Cologne, Institute of Radiation Oncology, University of Cologne, Cologne, Germany
| | - Maximilian Ruge
- Faculty of Medicine and University Hospital Cologne, Department of Stereotaxy and Functional Neurosurgery, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Martin Kocher
- Faculty of Medicine and University Hospital Cologne, Department of Stereotaxy and Functional Neurosurgery, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Harald Treuer
- Faculty of Medicine and University Hospital Cologne, Department of Stereotaxy and Functional Neurosurgery, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| |
Collapse
|
5
|
[Macroscopic and microscopic changes of the vestibulocochlear nerve after Gamma Knife treatment]. HNO 2021; 70:396-400. [PMID: 34468776 PMCID: PMC9038872 DOI: 10.1007/s00106-021-01104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Wir berichten über einen Fall, bei dem makroskopische und mikroskopische Veränderungen des Verstibularnervs nach radiochirurgischer Behandlung eines intrameatalen Vestibularisschwannoms beobachtet wurden. Der Fallbericht zeigt das erste Mal ein morphologisches Korrelat der unerwünschten Effekte der Gamma-Knife-Therapie von Vestibularisschwannomen und unterstreicht, dass trotz eines deutlichen Abstands zum bestehenden Tumor degenerative Veränderungen der neuralen Strukturen erwartet werden können.
Collapse
|
6
|
Wilhelm ML, Chan MKH, Abel B, Cremers F, Siebert FA, Wurster S, Krug D, Wolff R, Dunst J, Hildebrandt G, Schweikard A, Rades D, Ernst F, Blanck O. Tumor-dose-rate variations during robotic radiosurgery of oligo and multiple brain metastases. Strahlenther Onkol 2020; 197:581-591. [PMID: 32588102 PMCID: PMC8219559 DOI: 10.1007/s00066-020-01652-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
Purpose For step-and-shoot robotic stereotactic radiosurgery (SRS) the dose delivered over time, called local tumor-dose-rate (TDR), may strongly vary during treatment of multiple lesions. The authors sought to evaluate technical parameters influencing TDR and correlate TDR to clinical outcome. Material and methods A total of 23 patients with 162 oligo (1–3) and multiple (>3) brain metastases (OBM/MBM) treated in 33 SRS sessions were retrospectively analyzed. Median PTV were 0.11 cc (0.01–6.36 cc) and 0.50 cc (0.12–3.68 cc) for OBM and MBM, respectively. Prescription dose ranged from 16 to 20 Gy prescribed to the median 70% isodose line. The maximum dose-rate for planning target volume (PTV) percentage p in time span s during treatment (TDRs,p) was calculated for various p and s based on treatment log files and in-house software. Results TDR60min,98% was 0.30 Gy/min (0.23–0.87 Gy/min) for OBM and 0.22 Gy/min (0.12–0.63 Gy/min) for MBM, respectively, and increased by 0.03 Gy/min per prescribed Gy. TDR60min,98% strongly correlated with treatment time (ρ = −0.717, p < 0.001), monitor units (MU) (ρ = −0.767, p < 0.001), number of beams (ρ = −0.755, p < 0.001) and beam directions (ρ = −0.685, p < 0.001) as well as lesions treated per collimator (ρ = −0.708, P < 0.001). Median overall survival (OS) was 20 months and 1‑ and 2‑year local control (LC) was 98.8% and 90.3%, respectively. LC did not correlate with any TDR, but tumor response (partial response [PR] or complete response [CR]) correlated with all TDR in univariate analysis (e.g., TDR60min,98%: hazard ration [HR] = 0.974, confidence interval [CI] = 0.952–0.996, p = 0.019). In multivariate analysis only concomitant targeted therapy or immunotherapy and breast cancer tumor histology remained a significant factor for tumor response. Local grade ≥2 radiation-induced tissue reactions were noted in 26.3% (OBM) and 5.2% (MBM), respectively, mainly influenced by tumor volume (p < 0.001). Conclusions Large TDR variations are noted during MBM-SRS which mainly arise from prolonged treatment times. Clinically, low TDR corresponded with decreased local tumor responses, although the main influencing factor was concomitant medication.
Collapse
Affiliation(s)
- Maria-Lisa Wilhelm
- Department of Radiation Oncology, University Medicine Rostock, Rostock, Germany.,Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany
| | - Mark K H Chan
- Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany.,Strahlenklinik, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Benedikt Abel
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Florian Cremers
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Luebeck, Germany
| | - Frank-Andre Siebert
- Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany
| | - Stefan Wurster
- Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany.,Department of Radiation Oncology, University Medicine Greifswald, Greifswald, Germany
| | - David Krug
- Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany.,Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany
| | - Robert Wolff
- Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany.,Department of Neurosurgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany
| | - Guido Hildebrandt
- Department of Radiation Oncology, University Medicine Rostock, Rostock, Germany
| | - Achim Schweikard
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Luebeck, Germany
| | - Floris Ernst
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Oliver Blanck
- Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany. .,Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany.
| |
Collapse
|
7
|
Schmitt D, Blanck O, Gauer T, Fix MK, Brunner TB, Fleckenstein J, Loutfi-Krauss B, Manser P, Werner R, Wilhelm ML, Baus WW, Moustakis C. Technological quality requirements for stereotactic radiotherapy : Expert review group consensus from the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. Strahlenther Onkol 2020; 196:421-443. [PMID: 32211939 PMCID: PMC7182540 DOI: 10.1007/s00066-020-01583-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 12/25/2022]
Abstract
This review details and discusses the technological quality requirements to ensure the desired quality for stereotactic radiotherapy using photon external beam radiotherapy as defined by the DEGRO Working Group Radiosurgery and Stereotactic Radiotherapy and the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. The covered aspects of this review are 1) imaging for target volume definition, 2) patient positioning and target volume localization, 3) motion management, 4) collimation of the irradiation and beam directions, 5) dose calculation, 6) treatment unit accuracy, and 7) dedicated quality assurance measures. For each part, an expert review for current state-of-the-art techniques and their particular technological quality requirement to reach the necessary accuracy for stereotactic radiotherapy divided into intracranial stereotactic radiosurgery in one single fraction (SRS), intracranial fractionated stereotactic radiotherapy (FSRT), and extracranial stereotactic body radiotherapy (SBRT) is presented. All recommendations and suggestions for all mentioned aspects of stereotactic radiotherapy are formulated and related uncertainties and potential sources of error discussed. Additionally, further research and development needs in terms of insufficient data and unsolved problems for stereotactic radiotherapy are identified, which will serve as a basis for the future assignments of the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. The review was group peer-reviewed, and consensus was obtained through multiple working group meetings.
Collapse
Affiliation(s)
- Daniela Schmitt
- Klinik für Radioonkologie und Strahlentherapie, National Center for Radiation Research in Oncology (NCRO), Heidelberger Institut für Radioonkologie (HIRO), Universitätsklinikum Heidelberg, Heidelberg, Germany.
| | - Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Tobias Gauer
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Michael K Fix
- Abteilung für Medizinische Strahlenphysik und Universitätsklinik für Radio-Onkologie, Inselspital-Universitätsspital Bern, Universität Bern, Bern, Switzerland
| | - Thomas B Brunner
- Universitätsklinik für Strahlentherapie, Universitätsklinikum Magdeburg, Magdeburg, Germany
| | - Jens Fleckenstein
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Britta Loutfi-Krauss
- Klinik für Strahlentherapie und Onkologie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Peter Manser
- Abteilung für Medizinische Strahlenphysik und Universitätsklinik für Radio-Onkologie, Inselspital-Universitätsspital Bern, Universität Bern, Bern, Switzerland
| | - Rene Werner
- Institut für Computational Neuroscience, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Maria-Lisa Wilhelm
- Klinik für Strahlentherapie, Universitätsmedizin Rostock, Rostock, Germany
| | - Wolfgang W Baus
- Klinik für Radioonkologie, CyberKnife- und Strahlentherapie, Universitätsklinikum Köln, Cologne, Germany
| | - Christos Moustakis
- Klinik für Strahlentherapie-Radioonkologie, Universitätsklinikum Münster, Münster, Germany
| |
Collapse
|
8
|
Mangesius J, Seppi T, Weigel R, Arnold CR, Vasiljevic D, Goebel G, Lukas P, Ganswindt U, Nevinny-Stickel M. Intrafractional 6D head movement increases with time of mask fixation during stereotactic intracranial RT-sessions. Radiat Oncol 2019; 14:231. [PMID: 31852497 PMCID: PMC6921566 DOI: 10.1186/s13014-019-1425-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/22/2019] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The present study investigates the intrafractional accuracy of a frameless thermoplastic mask used for head immobilization during stereotactic radiotherapy. Non-invasive masks cannot completely prohibit head movements. Previous studies attempted to estimate the magnitude of intrafractional inaccuracy by means of pre- and postfractional measurements only. However, this might not be sufficient to accurately map also intrafractional head movements. MATERIALS AND METHODS Intrafractional deviation of mask-fixed head positions was measured in five patients during a total of 94 fractions by means of close-meshed repeated ExacTrac measurements (every 1.4 min) conducted during the entire treatment session. A median of six (range: 4 to 11) measurements were recorded per fraction, delivering a dataset of 453 measurements. RESULTS Random errors (SD) for the x, y and z axes were 0.27 mm, 0.29 mm and 0.29 mm, respectively. Median 3D deviation was 0.29 mm. Of all 3D intrafractional motions, 5.5 and 0.4% exceeded 1 mm and 2 mm, respectively. A moderate correlation between treatment duration and mean 3D displacement was determined (rs = 0.45). Mean 3D deviation increased from 0.21 mm (SD = 0.26 mm) in the first 2 min to a maximum of 0.53 mm (SD = 0.31 mm) after 10 min of treatment time. CONCLUSION Pre- and post-treatment measurement is not sufficient to adequately determine the range of intrafractional head motion. Thermoplastic masks provide both reliable interfractional and intrafractional immobilization for image-guided stereotactic hypofractionated radiotherapy. Greater positioning accuracy may be obtained by reducing treatment duration (< 6 min) and applying intrafractional correction. TRIAL REGISTRATION Clinicaltrials.gov, NCT03896555, Registered 01 April 2019 - retrospectively registered.
Collapse
Affiliation(s)
- Julian Mangesius
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Thomas Seppi
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Rocco Weigel
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Christoph Reinhold Arnold
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Danijela Vasiljevic
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Georg Goebel
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Lukas
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Ute Ganswindt
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Meinhard Nevinny-Stickel
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| |
Collapse
|
9
|
Wösle M. The superficially averaged dose gradient at the target volume's boundary: A two-dimensional formulation and solution of anisotropic dose gradient problems. Z Med Phys 2019; 30:70-86. [PMID: 31843265 DOI: 10.1016/j.zemedi.2019.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE Dose conformity and steepness of dose fall-off at a target volume's boundary are important quality criteria in treatment planning to predict complication rates in normal tissue and critical structures. Several dose gradient measures are in use; ICRU Report 91 recommends one of two gradient metrics for reporting. All of the common gradient indices are one-dimensional, although dose gradient problems are at least two-dimensional and anisotropic. Four of ten investigated gradient indices show false characteristics on the mean value of the physical dose gradients. Anisotropic dose gradient measures can be the basis of clinical therapeutic decisions if tumours are surrounded by organs at risk with various tolerance dose values. To close this information gap, the author presents a mathematical description and solution of anisotropic dose gradient problems. MATERIALS AND METHODS The new two-dimensional dose gradient measure is called the superficially averaged dose gradient (SADG). The particular informative content of the ten common dose gradient indices was assessed by classification and analysing their properties. The correlations between all of the dose gradient measures were investigated for linac-based stereotactic radiosurgery of 13 brain metastases. RESULTS From all of the one-dimensional dose gradient indices, the approximated SADG* showed the best correlation on the SADG. Here, Pearson's correlation coefficient was 1.000 and the relative errors were in a range of -0.2 to 2.9%. Distributions of anisotropic dose gradients were graphically represented by dose gradient-solid angle histograms. CONCLUSIONS Two-dimensional dose gradient measures such as the SADG are urgently required for lesions that are located in non-homogeneous normal tissue. The quality of each present and future dose gradient measure concerning the description of anisotropic dose gradient problems is now verifiable by use of the SADG. Through the SADG, the influences of collimation types on the dose fall-off at the target volume's boundary can be investigated. The algorithm for determining the SADG should be implemented in treatment planning systems to utilise the formalism for all users. The dose gradient indices recommended in ICRU Report 91 overestimate and underestimate physical dose gradients, respectively.
Collapse
Affiliation(s)
- Markus Wösle
- Klinik für Strahlentherapie und Radioonkologie, Städtisches Klinikum Dessau, Dessau-Roßlau, Germany.
| |
Collapse
|
10
|
Han EY, Kim GY, Rebueno N, Yeboa DN, Briere TM. End-to-end testing of automatic plan optimization using RayStation scripting for hypofractionated multimetastatic brain stereotactic radiosurgery. Med Dosim 2019; 44:e44-e50. [PMID: 30655170 DOI: 10.1016/j.meddos.2018.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/16/2018] [Accepted: 12/27/2018] [Indexed: 11/29/2022]
Abstract
For external beam stereotactic radiosurgery of multiple brain metastatic lesions, it is difficult to select optimal treatment isocenters because the orientation and volume of each planning target volume (PTV) and its proximity to critical structures are unique for each patient. The RayStation treatment planning system offers Python-based scripting to optimize the placement of the treatment isocenter by comparing scenario-based plans. This can improve the plan quality by reducing the dose to the normal brain and increasing planning efficiency. The purpose of the current study was to compare the isocenter-optimized plans generated by RayStation with clinical plans created by the Pinnacle treatment planning system and to validate the RayStation treatment planning and delivery with end-to-end testing. Ten patient plans were automatically regenerated using the script in RayStation. For each patient, 4 plans with 4 different types of isocenters were generated: (1) 2 separate isocenters at the PTV centroids, (2) a single isocenter at the mid-point of 2 centroids, (3) a single isocenter at PTV1, and (4) a single isocenter at PTV2. The best plans were compared with paired Pinnacle plans using plan quality parameters, including normal brain volume excluding PTVs receiving 4 Gy (V4Gy), normal brain volume excluding PTVs receiving 12 Gy (V12Gy), maximum dose to the brainstem, homogeneity index, conformity indices, gradient index of each PTV, and monitor units per fraction. All plans were verified with a cylindrical quality assurance phantom, and end-to-end testing was performed with an anthropomorphic head phantom with a radiochromic film. The script was executed within 5-6 minutes to generate 4 scenario-based automatic plans. The homogeneity index and conformity indices showed small but statistically significant improvement with the RayStation plans. The gradient index (3.9 ± 0.9 for Pinnacle and 3.5 ± 0.6 for RayStation, p = 0.04) was also more favorable in the RayStation plans. V12Gy was significantly reduced by 13% and V4Gy was reduced by 5%. The total monitor units per fraction was significantly reduced by 20% for the RayStation plans. Plan optimization time using RayStation was reduced by 64%. The measured doses at each PTV centroid agreed within 3%, and all RayStation plans passed quality assurance verification tests. Scenario-based automatic plan generation using Python scripting helps identify an optimal treatment isocenter to reduce the dose to the normal brain and improve planning efficiency. RayStation plans provided better plan quality, especially lower doses to the normal brain, than Pinnacle plans. Thus, RayStation is a suitable planning modality for hypofractionated stereotactic radiosurgery for multiple brain metastases.
Collapse
Affiliation(s)
- Eun Young Han
- Department of Radiation Physics, Unit 94, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Gwe-Ya Kim
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Neal Rebueno
- Department of Radiation Physics, Unit 94, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Debra N Yeboa
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tina M Briere
- Department of Radiation Physics, Unit 94, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Bratengeier K, Holubyev K, Wegener S. Steeper dose gradients resulting from reduced source to target distance-a planning system independent study. J Appl Clin Med Phys 2018; 20:89-100. [PMID: 30412346 PMCID: PMC6333151 DOI: 10.1002/acm2.12490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/26/2018] [Accepted: 10/06/2018] [Indexed: 11/17/2022] Open
Abstract
Purpose To quantify the contribution of penumbra in the improvement of healthy tissue sparing at reduced source‐to‐axis distance (SAD) for simple spherical target and different prescription isodoses (PI). Method A TPS‐independent method was used to estimate three‐dimensional (3D) dose distribution for stereotactic treatment of spherical targets of 0.5 cm radius based on single beam two‐dimensional (2D) film dosimetry measurements. 1 cm target constitutes the worst case for the conformation with standard Multi‐Leaf Collimator (MLC) with 0.5 cm leaf width. The measured 2D transverse dose cross‐sections and the profiles in leaf and jaw directions were used to calculate radial dose distribution from isotropic beam arrangement, for both quadratic and circular beam openings, respectively. The results were compared for standard (100 cm) and reduced SAD 70 and 55 cm for different PI. Results For practical reduction of SAD using quadratic openings, the improvement of healthy tissue sparing (HTS) at distances up to 3 times the PTV radius was at least 6%–12%; gradient indices (GI) were reduced by 3–39% for PI between 40% and 90%. Except for PI of 80% and 90%, quadratic apertures at SAD 70 cm improved the HTS by up to 20% compared to circular openings at 100 cm or were at least equivalent; GI were 3%–33% lower for reduced SAD in the PI range 40%–70%. For PI = 80% and 90% the results depend on the circular collimator model. Conclusion Stereotactic treatments of spherical targets delivered at reduced SAD of 70 or 55 cm using MLC spare healthy tissue around the target at least as good as treatments at SAD 100 cm using circular collimators. The steeper beam penumbra at reduced SAD seems to be as important as perfect target conformity. The authors argue therefore that the beam penumbra width should be addressed in the stereotactic studies.
Collapse
Affiliation(s)
- Klaus Bratengeier
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Kostyantyn Holubyev
- Abt. Medizinische Physik, University of Freiburg, Klinik für Strahlenheilkunde, Freiburg, Germany
| | - Sonja Wegener
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| |
Collapse
|