1
|
Taasti VT, Kneepkens E, van der Stoep J, Velders M, Cobben M, Vullings A, Buck J, Visser F, van den Bosch M, Hattu D, Mannens J, 't Ven LI, de Ruysscher D, van Loon J, Peeters S, Unipan M, Rinaldi I. Proton therapy of lung cancer patients - Treatment strategies and clinical experience from a medical physicist's perspective. Phys Med 2025; 130:104890. [PMID: 39799813 DOI: 10.1016/j.ejmp.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/21/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
PURPOSE Proton therapy of moving targets is considered a challenge. At Maastro, we started treating lung cancer patients with proton therapy in October 2019. In this work, we summarise the developed treatment strategies and gained clinical experience from a physics point of view. METHODS We report on our clinical approaches to treat lung cancer patients with the Mevion Hyperscan S250i proton machine. We classify lung cancer patients as small movers (tumour movement ≤ 5 mm) or large movers (tumour movement > 5 mm). The preferred beam configuration has evolved over the years of clinical treatment, and currently mostly two or three beam directions are used. All patients are treated with robustly optimised plans (5 mm setup and 3% range uncertainty). Small movers are planned based on a clinical target volume (CTV) with a 3 mm isotropic margin expansion to account for motion, while large movers are planned based on an internal target volume (ITV). All patients are treated in free-breathing. RESULTS Between October 2019 and December 2023, 379 lung cancer patients have been treated, of which 130 were large movers. The adaptation rate was 28%. The median treatment time has been reduced from 30 to 23 min. The mean dose to the heart, oesophagus, and lungs was on average 4.3, 15.4, and 11.0 Gy, respectively. CONCLUSIONS Several treatment planning and workflow improvements have been introduced over the years, resulting in an increase of treatment quality and number of treated patients, as well as reduction of planning and treatment time.
Collapse
Affiliation(s)
- Vicki Trier Taasti
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Esther Kneepkens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Judith van der Stoep
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Marije Velders
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Maud Cobben
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Anouk Vullings
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Janou Buck
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Femke Visser
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Maud van den Bosch
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Djoya Hattu
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jolein Mannens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Lieke In 't Ven
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Dirk de Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Judith van Loon
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Stephanie Peeters
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Jenny T, Duetschler A, Giger A, Pusterla O, Safai S, Weber DC, Lomax AJ, Zhang Y. Technical note: Towards more realistic 4DCT(MRI) numerical lung phantoms. Med Phys 2024; 51:579-590. [PMID: 37166067 DOI: 10.1002/mp.16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Numerical 4D phantoms, together with associated ground truth motion, offer a flexible and comprehensive data set for realistic simulations in radiotherapy and radiology in target sites affected by respiratory motion. PURPOSE We present an openly available upgrade to previously reported methods for generating realistic 4DCT lung numerical phantoms, which now incorporate respiratory ribcage motion and improved lung density representation throughout the breathing cycle. METHODS Density information of reference CTs, toget her with motion from multiple breathing cycle 4DMRIs have been combined to generate synthetic 4DCTs (4DCT(MRI)s). Inter-subject correspondence between the CT and MRI anatomy was first established via deformable image registration (DIR) of binary masks of the lungs and ribcage. Ribcage and lung motions were extracted independently from the 4DMRIs using DIR and applied to the corresponding locations in the CT after post-processing to preserve sliding organ motion. In addition, based on the Jacobian determinant of the resulting deformation vector fields, lung densities were scaled on a voxel-wise basis to more accurately represent changes in local lung density. For validating this process, synthetic 4DCTs, referred to as 4DCT(CT)s, were compared to the originating 4DCTs using motion extracted from the latter, and the dosimetric impact of the new features of ribcage motion and density correction were analyzed using pencil beam scanned proton 4D dose calculations. RESULTS Lung density scaling led to a reduction of maximum mean lung Hounsfield units (HU) differences from 45 to 12 HU when comparing simulated 4DCT(CT)s to their originating 4DCTs. Comparing 4D dose distributions calculated on the enhanced 4DCT(CT)s to those on the original 4DCTs yielded 2%/2 mm gamma pass rates above 97% with an average improvement of 1.4% compared to previously reported phantoms. CONCLUSIONS A previously reported 4DCT(MRI) workflow has been successfully improved and the resulting numerical phantoms exhibit more accurate lung density representations and realistic ribcage motion.
Collapse
Affiliation(s)
- Timothy Jenny
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | - Alisha Duetschler
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | - Alina Giger
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Center for Medical Image Analysis & Navigation, University of Basel, Basel, Switzerland
| | - Orso Pusterla
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, Zürich, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
3
|
Stengl C, Panow K, Arbes E, Muñoz ID, Christensen JB, Neelsen C, Dinkel F, Weidner A, Runz A, Johnen W, Liermann J, Echner G, Vedelago J, Jäkel O. A phantom to simulate organ motion and its effect on dose distribution in carbon ion therapy for pancreatic cancer. Phys Med Biol 2023; 68:245013. [PMID: 37918022 DOI: 10.1088/1361-6560/ad0902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Objective. Carbon ion radiotherapy is a promising radiation technique for malignancies like pancreatic cancer. However, organs' motion imposes challenges for achieving homogeneous dose delivery. In this study, an anthropomorphicPancreasPhantom forIon-beamTherapy (PPIeT) was developed to simulate breathing and gastrointestinal motion during radiotherapy.Approach. The developed phantom contains a pancreas, two kidneys, a duodenum, a spine and a spinal cord. The shell of the organs was 3D printed and filled with agarose-based mixtures. Hounsfield Units (HU) of PPIeTs' organs were measured by CT. The pancreas motion amplitude in cranial-caudal (CC) direction was evaluated from patients' 4D CT data. Motions within the obtained range were simulated and analyzed in PPIeT using MRI. Additionally, GI motion was mimicked by changing the volume of the duodenum and quantified by MRI. A patient-like treatment plan was calculated for carbon ions, and the phantom was irradiated in a static and moving condition. Dose measurements in the organs were performed using an ionization chamber and dosimetric films.Main results. PPIeT presented tissue equivalent HU and reproducible breathing-induced CC displacements of the pancreas between (3.98 ± 0.36) mm and a maximum of (18.19 ± 0.44) mm. The observed maximum change in distance of (14.28 ± 0.12) mm between pancreas and duodenum was consistent with findings in patients. Carbon ion irradiation revealed homogenous coverage of the virtual tumor at the pancreas in static condition with a 1% deviation from the treatment plan. Instead, the dose delivery during motion with the maximum amplitude yielded an underdosage of 21% at the target and an increased uncertainty by two orders of magnitude.Significance. A dedicated phantom was designed and developed for breathing motion assessment of dose deposition during carbon ion radiotherapy. PPIeT is a unique tool for dose verification in the pancreas and its organs at risk during end-to-end tests.
Collapse
Affiliation(s)
- Christina Stengl
- Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, Heidelberg D-69120, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Kathrin Panow
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Eric Arbes
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Department for Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 226, Heidelberg D-69120, Germany
| | - Iván D Muñoz
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department for Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 226, Heidelberg D-69120, Germany
| | - Jeppe B Christensen
- Department of Radiation Safety and Security, Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen PSI 5232, Switzerland
| | - Christian Neelsen
- Department of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Department of Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Department of Radiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin D-10117, Germany
| | - Fabian Dinkel
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Artur Weidner
- Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, Heidelberg D-69120, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Armin Runz
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Wibke Johnen
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Jakob Liermann
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, Heidelberg D-69120, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, Heidelberg D-69120, Germany
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany
| | - Gernot Echner
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - José Vedelago
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, Heidelberg D-69120, Germany
| | - Oliver Jäkel
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, Heidelberg D-69120, Germany
| |
Collapse
|
4
|
Ates O, Uh J, Pirlepesov F, Hua CH, Triplett B, Qudeimat A, Sharma A, Merchant TE, Lucas JT. Interplay Effect of Splenic Motion for Total Lymphoid Irradiation in Pediatric Proton Therapy. Cancers (Basel) 2023; 15:5161. [PMID: 37958335 PMCID: PMC10650483 DOI: 10.3390/cancers15215161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
(1) Background: The most significant cause of an unacceptable deviation from the planned dose during respiratory motion is the interplay effect. We examined the correlation between the magnitude of splenic motion and its impact on plan quality for total lymphoid irradiation (TLI); (2) Methods: Static and 4D CT images from ten patients were used for interplay effect simulations. Patients' original plans were optimized based on the average CT extracted from the 4D CT and planned with two posterior beams using scenario-based optimization (±3 mm of setup and ±3% of range uncertainty) and gradient matching at the level of mid-spleen. Dynamically accumulated 4D doses (interplay effect dose) were calculated based on the time-dependent delivery sequence of radiation fluence across all phases of the 4D CT. Dose volume parameters for each simulated treatment delivery were evaluated for plan quality; (3) Results: Peak-to-peak splenic motion (≤12 mm) was measured from the 4D CT of ten patients. Interplay effect simulations revealed that the ITV coverage of the spleen remained within the protocol tolerance for splenic motion, ≤8 mm. The D100% coverage for ITV spleen decreased from 95.0% (nominal plan) to 89.3% with 10 mm and 87.2% with 12 mm of splenic motion; (4) Conclusions: 4D plan evaluation and robust optimization may overcome problems associated with respiratory motion in proton TLI treatments. Patient-specific respiratory motion evaluations are essential to confirming adequate dosimetric coverage when proton therapy is utilized.
Collapse
Affiliation(s)
- Ozgur Ates
- St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (F.P.); (C.-h.H.); (B.T.); (A.Q.); (A.S.); (T.E.M.); (J.T.L.J.)
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hiroshima Y, Kondo M, Sawada T, Hoshi S, Okubo R, Iizumi T, Numajiri H, Okumura T, Sakurai H. Analysis of the cost-effectiveness of proton beam therapy for unresectable pancreatic cancer in Japan. Cancer Med 2023; 12:20450-20458. [PMID: 37795771 PMCID: PMC10652344 DOI: 10.1002/cam4.6611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/28/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Proton beam therapy (PBT) has recently been included in Japan's social health insurance benefits package. This study aimed to determine the cost-effectiveness of PBT for unresectable, locally advanced pancreatic cancer (LAPC) as a replacement for conventional photon radiotherapy (RT). METHODS We estimated the incremental cost-effectiveness ratio (ICER) of PBT as a replacement for three-dimensional conformal RT (3DCRT), a conventional photon RT, using clinical evidence in the literature and expense complemented by expert opinions. We used a decision tree and an economic and Markov model to illustrate the disease courses followed by LAPC patients. Effectiveness was estimated as quality-adjusted life years (QALY) using utility weights for the health state. Social insurance fees were calculated as the costs. The stability of the ICER against the assumptions made was appraised using sensitivity analyses. RESULTS The effectiveness of PBT and 3DCRT was 1.67610615 and 0.97181271 QALY, respectively. The ICER was estimated to be ¥5,376,915 (US$46,756) per QALY. According to the suggested threshold for anti-cancer therapy from the Japanese authority of ¥7,500,000 (US$65,217) per QALY gain, such a replacement would be considered cost-effective. The one-way and probabilistic sensitivity analyses demonstrated stability of the base-case ICER. CONCLUSION PBT, as a replacement for conventional photon radiotherapy, is cost-effective and justifiable as an efficient use of finite healthcare resources. Making it a standard treatment option and available to every patient in Japan is socially acceptable from the perspective of health economics.
Collapse
Affiliation(s)
- Yuichi Hiroshima
- Department of Radiation Oncology & Proton Medical Research Center, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
- QST hospital, National Institutes for Quantum and Radiological Sciences and TechnologyChibaChibaJapan
- Department of Radiation Oncology, Ibaraki Prefectural Central HospitalKasamaIbarakiJapan
| | - Masahide Kondo
- Department of Health Care Policy and Health Economics, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Takuya Sawada
- Department of Radiation Oncology & Proton Medical Research Center, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Shu‐ling Hoshi
- Department of Health Care Policy and Health Economics, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Reiko Okubo
- Department of Health Care Policy and Health Economics, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
- Department of Clinical Laboratory MedicineUniversity of Tsukuba HospitalTsukubaIbarakiJapan
- Department of Nephrology, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Takashi Iizumi
- Department of Radiation Oncology & Proton Medical Research Center, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Haruko Numajiri
- Department of Radiation Oncology & Proton Medical Research Center, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Toshiyuki Okumura
- Department of Radiation Oncology & Proton Medical Research Center, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
- Department of Radiation Oncology, Ibaraki Prefectural Central HospitalKasamaIbarakiJapan
| | - Hideyuki Sakurai
- Department of Radiation Oncology & Proton Medical Research Center, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| |
Collapse
|
6
|
Lecoeur B, Barbone M, Gough J, Oelfke U, Luk W, Gaydadjiev G, Wetscherek A. Accelerating 4D image reconstruction for magnetic resonance-guided radiotherapy. Phys Imaging Radiat Oncol 2023; 27:100484. [PMID: 37664799 PMCID: PMC10474606 DOI: 10.1016/j.phro.2023.100484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Background and purpose Physiological motion impacts the dose delivered to tumours and vital organs in external beam radiotherapy and particularly in particle therapy. The excellent soft-tissue demarcation of 4D magnetic resonance imaging (4D-MRI) could inform on intra-fractional motion, but long image reconstruction times hinder its use in online treatment adaptation. Here we employ techniques from high-performance computing to reduce 4D-MRI reconstruction times below two minutes to facilitate their use in MR-guided radiotherapy. Material and methods Four patients with pancreatic adenocarcinoma were scanned with a radial stack-of-stars gradient echo sequence on a 1.5T MR-Linac. Fast parallelised open-source implementations of the extra-dimensional golden-angle radial sparse parallel algorithm were developed for central processing unit (CPU) and graphics processing unit (GPU) architectures. We assessed the impact of architecture, oversampling and respiratory binning strategy on 4D-MRI reconstruction time and compared images using the structural similarity (SSIM) index against a MATLAB reference implementation. Scaling and bottlenecks for the different architectures were studied using multi-GPU systems. Results All reconstructed 4D-MRI were identical to the reference implementation (SSIM > 0.99). Images reconstructed with overlapping respiratory bins were sharper at the cost of longer reconstruction times. The CPU + GPU implementation was over 17 times faster than the reference implementation, reconstructing images in 60 ± 1 s and hyper-scaled using multiple GPUs. Conclusion Respiratory-resolved 4D-MRI reconstruction times can be reduced using high-performance computing methods for online workflows in MR-guided radiotherapy with potential applications in particle therapy.
Collapse
Affiliation(s)
- Bastien Lecoeur
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Rd, London SM2 5NG, United Kingdom
- Department of Computing, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, United Kingdom
| | - Marco Barbone
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Rd, London SM2 5NG, United Kingdom
- Department of Computing, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, United Kingdom
| | - Jessica Gough
- Department of Radiotherapy at the Royal Marsden NHS Foundation Trust, Downs Rd, London SM2 5PT, United Kingdom
| | - Uwe Oelfke
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Rd, London SM2 5NG, United Kingdom
| | - Wayne Luk
- Department of Computing, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, United Kingdom
| | - Georgi Gaydadjiev
- Department of Computing, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, United Kingdom
- Bernoulli Institute, University of Groningen, Nijenborgh 9, Groningen 9747 AG, The Netherlands
| | - Andreas Wetscherek
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Rd, London SM2 5NG, United Kingdom
| |
Collapse
|
7
|
Nankali S, Worm ES, Thomsen JB, Stick LB, Bertholet J, Høyer M, Weber B, Mortensen HR, Poulsen PR. Intrafraction tumor motion monitoring and dose reconstruction for liver pencil beam scanning proton therapy. Front Oncol 2023; 13:1112481. [PMID: 36937392 PMCID: PMC10019817 DOI: 10.3389/fonc.2023.1112481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Pencil beam scanning (PBS) proton therapy can provide highly conformal target dose distributions and healthy tissue sparing. However, proton therapy of hepatocellular carcinoma (HCC) is prone to dosimetrical uncertainties induced by respiratory motion. This study aims to develop intra-treatment tumor motion monitoring during respiratory gated proton therapy and combine it with motion-including dose reconstruction to estimate the delivered tumor doses for individual HCC treatment fractions. Methods Three HCC-patients were planned to receive 58 GyRBE (n=2) or 67.5 GyRBE (n=1) of exhale respiratory gated PBS proton therapy in 15 fractions. The treatment planning was based on the exhale phase of a 4-dimensional CT scan. Daily setup was based on cone-beam CT (CBCT) imaging of three implanted fiducial markers. An external marker block (RPM) on the patient's abdomen was used for exhale gating in free breathing. This study was based on 5 fractions (patient 1), 1 fraction (patient 2) and 6 fractions (patient 3) where a post-treatment control CBCT was available. After treatment, segmented 2D marker positions in the post-treatment CBCT projections provided the estimated 3D motion trajectory during the CBCT by a probability-based method. An external-internal correlation model (ECM) that estimated the tumor motion from the RPM motion was built from the synchronized RPM signal and marker motion in the CBCT. The ECM was then used to estimate intra-treatment tumor motion. Finally, the motion-including CTV dose was estimated using a dose reconstruction method that emulates tumor motion in beam's eye view as lateral spot shifts and in-depth motion as changes in the proton beam energy. The CTV homogeneity index (HI) The CTV homogeneity index (HI) was calculated as D 2 % - D 98 % D 50 % × 100 % . Results The tumor position during spot delivery had a root-mean-square error of 1.3 mm in left-right, 2.8 mm in cranio-caudal and 1.7 mm in anterior-posterior directions compared to the planned position. On average, the CTV HI was larger than planned by 3.7%-points (range: 1.0-6.6%-points) for individual fractions and by 0.7%-points (range: 0.3-1.1%-points) for the average dose of 5 or 6 fractions. Conclusions A method to estimate internal tumor motion and reconstruct the motion-including fraction dose for PBS proton therapy of HCC was developed and demonstrated successfully clinically.
Collapse
Affiliation(s)
- Saber Nankali
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- *Correspondence: Saber Nankali,
| | | | - Jakob Borup Thomsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Britta Weber
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Per Rugaard Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Duetschler A, Prendi J, Safai S, Weber DC, Lomax AJ, Zhang Y. Limitations of phase-sorting based pencil beam scanned 4D proton dose calculations under irregular motion. Phys Med Biol 2022; 68. [PMID: 36571234 DOI: 10.1088/1361-6560/aca9b6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Objective.4D dose calculation (4DDC) for pencil beam scanned (PBS) proton therapy is typically based on phase-sorting of individual pencil beams onto phases of a single breathing cycle 4DCT. Understanding the dosimetric limitations and uncertainties of this approach is essential, especially for the realistic treatment scenario with irregular free breathing motion.Approach.For three liver and three lung cancer patient CTs, the deformable multi-cycle motion from 4DMRIs was used to generate six synthetic 4DCT(MRI)s, providing irregular motion (11/15 cycles for liver/lung; tumor amplitudes ∼4-18 mm). 4DDCs for two-field plans were performed, with the temporal resolution of the pencil beam delivery (4-200 ms) or with 8 phases per breathing cycle (500-1000 ms). For the phase-sorting approach, the tumor center motion was used to determine the phase assignment of each spot. The dose was calculated either using the full free breathing motion or individually repeating each single cycle. Additionally, the use of an irregular surrogate signal prior to 4DDC on a repeated cycle was simulated. The CTV volume with absolute dose differences >5% (Vdosediff>5%) and differences in CTVV95%andD5%-D95%compared to the free breathing scenario were evaluated.Main results.Compared to 4DDC considering the full free breathing motion with finer spot-wise temporal resolution, 4DDC based on a repeated single 4DCT resulted inVdosediff>5%of on average 34%, which resulted in an overestimation ofV95%up to 24%. However, surrogate based phase-sorting prior to 4DDC on a single cycle 4DCT, reduced the averageVdosediff>5%to 16% (overestimationV95%up to 19%). The 4DDC results were greatly influenced by the choice of reference cycle (Vdosediff>5%up to 55%) and differences due to temporal resolution were much smaller (Vdosediff>5%up to 10%).Significance.It is important to properly consider motion irregularity in 4D dosimetric evaluations of PBS proton treatments, as 4DDC based on a single 4DCT can lead to an underestimation of motion effects.
Collapse
Affiliation(s)
- A Duetschler
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - J Prendi
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Physics, University of Basel, 4056 Basel, CH, Switzerland
| | - S Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - D C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, CH, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, CH, Switzerland
| | - A J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| |
Collapse
|
9
|
Kobeissi JM, Simone CB, Lin H, Hilal L, Hajj C. Proton Therapy in the Management of Pancreatic Cancer. Cancers (Basel) 2022; 14:2789. [PMID: 35681769 PMCID: PMC9179382 DOI: 10.3390/cancers14112789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Radiation therapy plays a central role in the treatment of pancreatic cancer. While generally shown to be feasible, proton irradiation, particularly when an ablative dose is planned, remains a challenge, especially due to tumor motion and the proximity to organs at risk, like the stomach, duodenum, and bowel. Clinically, standard doses of proton radiation treatment have not been shown to be statistically different from photon radiation treatment in terms of oncologic outcomes and toxicity rates as per non-randomized comparative studies. Fractionation schedules and concurrent chemotherapy combinations are yet to be optimized for proton therapy and are the subject of ongoing trials.
Collapse
Affiliation(s)
- Jana M. Kobeissi
- Department of Radiation Oncology, School of Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (J.M.K.); (L.H.)
| | - Charles B. Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA; (C.B.S.II); (H.L.)
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Haibo Lin
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA; (C.B.S.II); (H.L.)
| | - Lara Hilal
- Department of Radiation Oncology, School of Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (J.M.K.); (L.H.)
| | - Carla Hajj
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA; (C.B.S.II); (H.L.)
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| |
Collapse
|
10
|
Pakela JM, Knopf A, Dong L, Rucinski A, Zou W. Management of Motion and Anatomical Variations in Charged Particle Therapy: Past, Present, and Into the Future. Front Oncol 2022; 12:806153. [PMID: 35356213 PMCID: PMC8959592 DOI: 10.3389/fonc.2022.806153] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
The major aim of radiation therapy is to provide curative or palliative treatment to cancerous malignancies while minimizing damage to healthy tissues. Charged particle radiotherapy utilizing carbon ions or protons is uniquely suited for this task due to its ability to achieve highly conformal dose distributions around the tumor volume. For these treatment modalities, uncertainties in the localization of patient anatomy due to inter- and intra-fractional motion present a heightened risk of undesired dose delivery. A diverse range of mitigation strategies have been developed and clinically implemented in various disease sites to monitor and correct for patient motion, but much work remains. This review provides an overview of current clinical practices for inter and intra-fractional motion management in charged particle therapy, including motion control, current imaging and motion tracking modalities, as well as treatment planning and delivery techniques. We also cover progress to date on emerging technologies including particle-based radiography imaging, novel treatment delivery methods such as tumor tracking and FLASH, and artificial intelligence and discuss their potential impact towards improving or increasing the challenge of motion mitigation in charged particle therapy.
Collapse
Affiliation(s)
- Julia M. Pakela
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Antje Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department I of Internal Medicine, Center for Integrated Oncology Cologne, University Hospital of Cologne, Cologne, Germany
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Antoni Rucinski
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Kawashima M, Tashiro M, Varnava M, Shiba S, Matsui T, Okazaki S, Li Y, Komatsu S, Kawamura H, Okamoto M, Ohno T. An adaptive planning strategy in carbon ion therapy of pancreatic cancer involving beam angle selection. Phys Imaging Radiat Oncol 2022; 21:35-41. [PMID: 35198743 PMCID: PMC8850338 DOI: 10.1016/j.phro.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Motohiro Kawashima
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
- Corresponding author at: 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511, Japan.
| | - Mutsumi Tashiro
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Maria Varnava
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Shintaro Shiba
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Toshiaki Matsui
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Shohei Okazaki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Yang Li
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Shuichiro Komatsu
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Masahiko Okamoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| |
Collapse
|
12
|
Rabe M, Paganelli C, Riboldi M, Bondesson D, Jörg Schneider M, Chmielewski T, Baroni G, Dinkel J, Reiner M, Landry G, Parodi K, Belka C, Kamp F, Kurz C. Porcine lung phantom-based validation of estimated 4D-MRI using orthogonal cine imaging for low-field MR-Linacs. Phys Med Biol 2021; 66:055006. [PMID: 33171458 DOI: 10.1088/1361-6560/abc937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Real-time motion monitoring of lung tumors with low-field magnetic resonance imaging-guided linear accelerators (MR-Linacs) is currently limited to sagittal 2D cine magnetic resonance imaging (MRI). To provide input data for improved intrafractional and interfractional adaptive radiotherapy, the 4D anatomy has to be inferred from data with lower dimensionality. The purpose of this study was to experimentally validate a previously proposed propagation method that provides continuous time-resolved estimated 4D-MRI based on orthogonal cine MRI for a low-field MR-Linac. Ex vivo porcine lungs were injected with artificial nodules and mounted in a dedicated phantom that allows for the simulation of periodic and reproducible breathing motion. The phantom was scanned with a research version of a commercial 0.35 T MR-Linac. Respiratory-correlated 4D-MRI were reconstructed and served as ground truth images. Series of interleaved orthogonal slices in sagittal and coronal orientation, intersecting the injected targets, were acquired at 7.3 Hz. Estimated 4D-MRI at 3.65 Hz were created in post-processing using the propagation method and compared to the ground truth 4D-MRI. Eight datasets at different breathing frequencies and motion amplitudes were acquired for three porcine lungs. The overall median (95[Formula: see text] percentile) deviation between ground truth and estimated deformation vector fields was 2.3 mm (5.7 mm), corresponding to 0.7 (1.6) times the in-plane imaging resolution (3.5 × 3.5 mm2). Median (95[Formula: see text] percentile) estimated nodule position errors were 1.5 mm (3.8 mm) for nodules intersected by orthogonal slices and 2.1 mm (7.1 mm) for nodules located more than 2 cm away from either of the orthogonal slices. The estimation error depended on the breathing phase, the motion amplitude and the location of the estimated position with respect to the orthogonal slices. By using the propagation method, the 4D motion within the porcine lung phantom could be accurately and robustly estimated. The method could provide valuable information for treatment planning, real-time motion monitoring, treatment adaptation, and post-treatment evaluation of MR-guided radiotherapy treatments.
Collapse
Affiliation(s)
- Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Chiara Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - David Bondesson
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | - Moritz Jörg Schneider
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | | | - Guido Baroni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.,Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| |
Collapse
|
13
|
Shan J, Yang Y, Schild SE, Daniels TB, Wong WW, Fatyga M, Bues M, Sio TT, Liu W. Intensity-modulated proton therapy (IMPT) interplay effect evaluation of asymmetric breathing with simultaneous uncertainty considerations in patients with non-small cell lung cancer. Med Phys 2020; 47:5428-5440. [PMID: 32964474 DOI: 10.1002/mp.14491] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Intensity-modulated proton therapy (IMPT) is sensitive to uncertainties from patient setup and proton beam range, as well as interplay effect. In addition, respiratory motion may vary from cycle to cycle, and also from day to day. These uncertainties can severely degrade the original plan quality and potentially affect patient's outcome. In this work, we developed a new tool to comprehensively consider the impact of all these uncertainties and provide plan robustness evaluation under them. METHODS We developed a comprehensive plan robustness evaluation tool that considered both uncertainties from patient setup and proton beam range, as well as respiratory motion simultaneously. To mimic patients' respiratory motion, the time spent in each phase was randomly sampled based on patient-specific breathing pattern parameters as acquired during the four-dimensional (4D)-computed tomography (CT) simulation. Spots were then assigned to one specific phase according to the temporal relationship between spot delivery sequence and patients' respiratory motion. Dose in each phase was calculated by summing contributions from all the spots delivered in that phase. The final 4D dynamic dose was obtained by deforming all doses in each phase to the maximum exhalation phase. Three hundred (300) scenarios (10 different breathing patterns with 30 different setup and range uncertainty scenario combinations) were calculated for each plan. The dose-volume histograms (DVHs) band method was used to assess plan robustness. Benchmarking the tool as an application's example, we compared plan robustness under both three-dimensional (3D) and 4D robustly optimized IMPT plans for 10 nonrandomly selected patients with non-small cell lung cancer. RESULTS The developed comprehensive plan robustness tool had been successfully applied to compare the plan robustness between 3D and 4D robustly optimized IMPT plans for 10 lung cancer patients. In the presence of interplay effect with uncertainties considered simultaneously, 4D robustly optimized plans provided significantly better CTV coverage (D95% , P = 0.002), CTV homogeneity (D5% -D95% , P = 0.002) with less target hot spots (D5% , P = 0.002), and target coverage robustness (CTV D95% bandwidth, P = 0.004) compared to 3D robustly optimized plans. Superior dose sparing of normal lung (lung Dmean , P = 0.020) favoring 4D plans and comparable normal tissue sparing including esophagus, heart, and spinal cord for both 3D and 4D plans were observed. The calculation time for all patients included in this study was 11.4 ± 2.6 min. CONCLUSION A comprehensive plan robustness evaluation tool was successfully developed and benchmarked for plan robustness evaluation in the presence of interplay effect, setup and range uncertainties. The very high efficiency of this tool marks its clinical adaptation, highly practical and versatile nature, including possible real-time intra-fractional interplay effect evaluation as a potential application for future use.
Collapse
Affiliation(s)
- Jie Shan
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Yunze Yang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Thomas B Daniels
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| |
Collapse
|
14
|
Comparison of clinical outcomes between passive scattering versus pencil-beam scanning proton beam therapy for hepatocellular carcinoma. Radiother Oncol 2020; 146:187-193. [PMID: 32179362 DOI: 10.1016/j.radonc.2020.02.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/22/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Our study aimed to compare the oncologic outcomes and toxicities between passive scattering (PS) proton beam therapy (PBT) and pencil-beam scanning (PBS) PBT for primary hepatocellular carcinoma (HCC). MATERIALS AND METHODS The multidisciplinary team for liver cancer identified the PBT candidates who were ineligible for resection or radiofrequency ablation. We retrospectively analyzed 172 patients who received PBT for primary HCC from January 2016 to December 2017. The PS with wobbling method was applied with both breath-hold and regular breathing techniques, while the PBS method was utilized only for regular breathing techniques covering the full amplitude of respiration. To maintain the balance of the variables between the PS and PBS groups, we performed propensity score matching. RESULTS The median follow-up duration for the total cohort was 14 months (range, 1-31 months). After propensity score matching, a total of 103 patients (70 in the PS group and 33 in the PBS group) were included in analysis. There were no significant differences in the rates of overall survival (OS), in-field local control (IFLC), out-field intrahepatic control (OFIHC), extrahepatic progression-free survival (EHPFS), and complete response (CR) between the matched groups. In the subgroup analyses, no subgroup showed a significant difference in IFLC between the PS and PBS groups. There was also no significant difference in the toxicity profiles between the groups. CONCLUSION There are no differences in oncologic outcomes, including OS, IFLC, OFIHC, EHPFS, and CR rates, or in the toxicity profiles between PS and PBS PBT for primary HCC.
Collapse
|
15
|
Ziegler M, Brandt T, Lettmaier S, Fietkau R, Bert C. Method for a motion model based automated 4D dose calculation. Phys Med Biol 2019; 64:225002. [PMID: 31618719 DOI: 10.1088/1361-6560/ab4e51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Vero system can treat intra-fractionally moving tumors with gimbaled dynamic tumor tracking (DTT) by rotating the treatment beam so that it follows the motion of the tumor. However, the changes in the beam geometry and the constant breathing motion of the patient influence the dose applied to the patient. This study aims to perform a full 4D dose reconstruction for thirteen patients treated with DTT at the Vero system at the Universitätsklinikum Erlangen and investigates the temporal resolution required to perform an accurate 4D dose reconstruction. For all patients, a 4DCT was used to train a 4D motion model, which is able to calculate pseudo-CT images for arbitrary breathing phases. A new CT image was calculated for every 100 ms of treatment and a dose calculation was performed according to the current beam geometry (i.e. the rotation of the treatment beam at this moment in time) by rotating according to the momentary beam rotation, which is extracted from log-files. The resulting dose distributions were accumulated on the planning CT and characteristic parameters were extracted and compared. [Formula: see text]-evaluations of dose accumulations with different spatial-temporal resolutions were performed to determine the minimal required resolution. In total 173 700 dose calculations were performed. The accumulated 4D dose distributions show a reduced mean GTV dose of 0.77% compared to the static treatment plan. For some patients larger deviations were observed, especially in the presence of a poor 4DCT quality. The [Formula: see text]-evaluation showed that a temporal resolution of 500 ms is sufficient for an accurate dose reconstruction. If the tumor motion is regarded as well, a spatial-temporal sampling of 1400 ms and 2 mm yields accurate results, which reduces the workload by 84%.
Collapse
Affiliation(s)
- Marc Ziegler
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
16
|
Li G, Liu Y, Nie X. Respiratory-Correlated (RC) vs. Time-Resolved (TR) Four-Dimensional Magnetic Resonance Imaging (4DMRI) for Radiotherapy of Thoracic and Abdominal Cancer. Front Oncol 2019; 9:1024. [PMID: 31681573 PMCID: PMC6798178 DOI: 10.3389/fonc.2019.01024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/23/2019] [Indexed: 12/25/2022] Open
Abstract
Recent technological and clinical advancements of both respiratory-correlated (RC) and time-resolved (TR) four-dimensional magnetic resonance imaging (4DMRI) techniques are reviewed in light of tumor/organ motion simulation, monitoring, and assessment in radiotherapy. For radiotherapy of thoracic and abdominal cancer, respiratory-induced tumor motion, and motion variation due to breathing irregularities are the major uncertainties in treatment. RC-4DMRI is developed to assess tumor motion for treatment planning, whereas TR-4DMRI is developed to assess both motion and motion variation for treatment planning, delivery and assessment. RC-4DMRI is reconstructed to provide one-breathing-cycle motion, similar to 4D computed tomography (4DCT), the current clinical standard, but with higher soft-tissue contrast, no ionizing radiation, and less binning artifacts due to the use of an internal respiratory surrogate. Recent studies have shown that its spatial resolution has reached or exceeded that of 4DCT and scanning time becomes clinically acceptable. TR-4DMRI is recently developed with an adequate spatiotemporal resolution to assess tumor motion and motion variations for treatment simulation, delivery and assessment. The super-resolution approach is most promising since it can image any organ/body motion, whereas RC-4D MRI are limited to resolve only respiration-induced motion and some TR-4DMRI approaches may more or less depend on RC-4DMRI. TR-4DMRI provides multi-breath motion data that are useful not only in MR-guided radiotherapy but also for building a patient-specific motion model to guide radiotherapy treatment using an non-MR-equipped linear accelerator. Based on 4DMRI motion data, motion-corrected dynamic contrast imaging and diffusion-weighted imaging have also been reported, aiming to facilitate tumor delineation for more accurate radiotherapy targeting. Both RC- and TR-4DMRI have been evaluated for potential clinical applications, such as delineation of tumor volumes, where sufficiently high spatial resolution and large field-of-view are required. The 4DMRI techniques are promising to play a role in motion assessment in radiotherapy treatment planning, delivery, assessment, and adaptation.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | | |
Collapse
|
17
|
Blakely EA, Faddegon B, Tinkle C, Bloch C, Dominello M, Griffin RJ, Joiner MC, Burmeister J. Three discipline collaborative radiation therapy (3DCRT) special debate: The United States needs at least one carbon ion facility. J Appl Clin Med Phys 2019; 20:6-13. [PMID: 31573146 PMCID: PMC6839391 DOI: 10.1002/acm2.12727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 01/07/2023] Open
Affiliation(s)
| | - Bruce Faddegon
- Department of Radiation OncologyUniversity of California – San FranciscoSan FranciscoCAUSA
| | - Christopher Tinkle
- Department of Radiation OncologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Charles Bloch
- Department of Radiation OncologyUniversity of WashingtonSeattleWAUSA
| | - Michael Dominello
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Robert J Griffin
- Department of OncologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Michael C Joiner
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Jay Burmeister
- Department of OncologyWayne State University School of MedicineDetroitMIUSA,Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMIUSA
| |
Collapse
|
18
|
Dolde K, Schneider S, Stefanowicz S, Alimusaj M, Flügel B, Saito N, Troost EGC, Pfaffenberger A, Hoffmann AL. Comparison of pancreatic respiratory motion management with three abdominal corsets for particle radiation therapy: Case study. J Appl Clin Med Phys 2019; 20:111-119. [PMID: 31120639 PMCID: PMC6560237 DOI: 10.1002/acm2.12613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 01/10/2023] Open
Abstract
Background and purpose Abdominal organ motion seriously compromises the targeting accuracy for particle therapy in patients with pancreatic adenocarcinoma. This study compares three different abdominal corsets regarding their ability to reduce pancreatic motion and their potential usability in particle therapy. Materials and methods A patient‐individualized polyurethane (PU), a semi‐individualized polyethylene (PE), and a patient‐individualized three‐dimensional‐scan based polyethylene (3D‐PE) corset were manufactured for one healthy volunteer. Time‐resolved volumetric four‐dimensional‐magnetic resonance imaging (4D‐MRI) and single‐slice two‐dimensional (2D) cine‐MRI scans were acquired on two consecutive days to compare free‐breathing motion patterns with and without corsets. The corset material properties, such as thickness variance, material homogeneity in Hounsfield units (HU) on computed tomography (CT) scans, and manufacturing features were compared. The water equivalent ratio (WER) of corset material samples was measured using a multi‐layer ionization chamber for proton energies of 150 and 200 MeV. Results All corsets reduced the pancreatic motion on average by 9.6 mm in inferior–superior and by 3.2 mm in anterior‐posterior direction. With corset, the breathing frequency was approximately doubled and the day‐to‐day motion variations were reduced. The WER measurements showed an average value of 0.993 and 0.956 for the PE and 3DPE corset, respectively, and of 0.298 for the PU corset. The PE and 3DPE corsets showed a constant thickness of 2.8 ± 0.2 and 3.8 ± 0.2 mm, respectively and a homogeneous material composition with a standard deviation (SD) of 31 and 32 HU, respectively. The PU corset showed a variable thickness of 4.2 − 25.6 mm and a heterogeneous structure with air inclusions with an SD of 113 HU. Conclusion Abdominal corsets may be effective devices to reduce pancreatic motion. For particle therapy, PE‐based corsets are preferred over PU‐based corset due to their material homogeneity and constant thickness.
Collapse
Affiliation(s)
- Kai Dolde
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology, Heidelberg Institute for Radiooncology, Heidelberg, Germany.,Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Sergej Schneider
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, OncoRay - National Center for Radiation Research in Oncology, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Sarah Stefanowicz
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, OncoRay - National Center for Radiation Research in Oncology, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Merkur Alimusaj
- Center for Orthopedic and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Beate Flügel
- Center for Orthopedic and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nami Saito
- Department of Radiation Oncology, University Clinic Heidelberg, Heidelberg, Germany
| | - Esther G C Troost
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, OncoRay - National Center for Radiation Research in Oncology, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden Germany
| | - Asja Pfaffenberger
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology, Heidelberg Institute for Radiooncology, Heidelberg, Germany
| | - Aswin L Hoffmann
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, OncoRay - National Center for Radiation Research in Oncology, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
19
|
Dolde K, Naumann P, Dávid C, Kachelriess M, Lomax AJ, Weber DC, Saito N, Burigo LN, Pfaffenberger A, Zhang Y. Comparing the effectiveness and efficiency of various gating approaches for PBS proton therapy of pancreatic cancer using 4D-MRI datasets. Phys Med Biol 2019; 64:085011. [PMID: 30893660 DOI: 10.1088/1361-6560/ab1175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abdominal organ motion may lead to considerable uncertainties in pencil-beam scanning (PBS) proton therapy of pancreatic cancer. Beam gating, where irradiation only occurs in certain breathing phases in which the gating conditions are fulfilled, may be an option to reduce the interplay effect between tumor motion and the scanning beam. This study aims to, first, determine suitable gating windows with respect to effectiveness (low interplay effect) and efficiency (high duty cycles). Second, it investigates whether beam gating allows for a better mitigation of the interplay effect along the treatment course than free-breathing irradiations. Based on synthetic 4D-CTs, generated by warping 3D-CTs with vector fields extracted from time-resolved magnetic resonance imaging (4D-MRI) for 8 pancreatic cancer patients, 4D dose calculations (4DDC) were performed to analyze the duty cycle and homogeneity index HI = d5/d95 for four different gating scenarios. These were based on either fixed threshold values of CTV (clinical target volume) mean or maximum motion amplitudes (5 mm), relative CTV motion amplitudes (30%) or CTV overlap criteria (95%), respectively. 4DDC for 28-fractions treatment courses were performed with fixed and variable initial breathing phases to investigate the fractionation-induced mitigation of the interplay effect. Gating criteria, based on patient-specific relative 30% CTV motion amplitudes, showed the significantly best HI values with sufficient duty cycles, in contrast to inferior results by either fixed gating thresholds or overlap criteria. For gated treatments with 28 fractions, less fractionation-induced mitigation of the interplay effect was observed for gating criteria with gating windows ⩾30%, compared to free-breathing treatments. The gating effectiveness for multiple fractions was improved by allowing a variable initial breathing phase. Gating with relative amplitude thresholds are effective for proton therapy of pancreatic cancer. By combining beam gating with variable initial breathing phases, a pronounced mitigation of the interplay effect by fractionation can be achieved.
Collapse
Affiliation(s)
- Kai Dolde
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Heidelberg, Germany. Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | |
Collapse
|