1
|
Casali A, Ramos RL, Ballarini F, Carante MP. Prediction of normal tissue complication probability for rat spinal cord tolerance following ion irradiations. Phys Med Biol 2024; 69:245012. [PMID: 39612584 DOI: 10.1088/1361-6560/ad98e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
Objective.Currently, treatment planning in cancer hadrontherapy relies on dose-volume criteria and physical quantities constraints. However, incorporating biologically related models of tumor control probability and of normal tissue complication probability (NTCP) would help further minimizing adverse tissue reactions, and would allow achieving a more patient-specific strategy. The aim of this work was therefore the development of a mechanistic approach to predict NTCP for late tissue reactions following ion irradiation.Approach.A dataset on the tolerance of the rat spinal cord was considered, providing NTCP (for paresis of at least grade II) experimental data following irradiation by photons, protons, helium and carbon ions, under different fractionation schemes. The photon data were fit by a mechanistic NTCP model with four parameters, called Critical Element Model; this allowed fixing the two parameters that only depend on the tissue features. Afterwards, the two parameters depending on radiation quality were predicted by applying the BIophysical ANalysis of Cell death and chromosome Aberrations biophysical model, for each ion type and dose-averaged linear energy transfer value.Main results.The predicted NTCP curves for ion irradiation were tested against the ion experimental data, by Chi-Square andp-value calculations. The model passed a significance test at 1% for all the datasets, and 5% for 13 out of 16 datasets, thus showing a good predictive power. The Relative biological effectiveness (RBE) was also calculated and compared with the data for the endpoint of NTCP equal to 50%, and a considerable discrepancy with the commonly calculated RBE for cell survival was shown.Significance.This study highlights the importance of considering the endpoint of interest when computing the RBE, through the application of a NTCP model, and it represents a first step towards the development of an approach to improve treatment plan optimization in therapy. To this aim, the approach needs to be extended to other endpoints and to be applied to patients' data.
Collapse
Affiliation(s)
- Alice Casali
- Physics Department, University of Pavia, Pavia I-27100 PV, Italy
- Section of Pavia, INFN, Pavia I-27100 PV, Italy
| | | | - Francesca Ballarini
- Physics Department, University of Pavia, Pavia I-27100 PV, Italy
- Section of Pavia, INFN, Pavia I-27100 PV, Italy
| | - Mario Pietro Carante
- Physics Department, University of Pavia, Pavia I-27100 PV, Italy
- Section of Pavia, INFN, Pavia I-27100 PV, Italy
| |
Collapse
|
2
|
Welzel T, Saager M, Peschke P, Debus J, Karger CP. Effects of Photon versus Carbon-Ion Irradiation in the Rat Cervical Spinal Cord - a Serial T2 and Diffusion-weighted Magnetic Resonance Imaging Study. Radiat Res 2024; 202:11-15. [PMID: 38724886 DOI: 10.1667/rade-23-00151.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/23/2024] [Indexed: 07/09/2024]
Abstract
Carbon-ion irradiation is increasingly used at the skull base and spine near the radiation-sensitive spinal cord. To better characterize the in vivo radiation response of the cervical spinal cord, radiogenic changes in the high-dose area were measured in rats using magnetic resonance imaging (MRI) diffusion measurements in comparison to conventional photon irradiations. In this longitudinal MRI study, we examined the gray matter (GM) of the cervical spinal cord in 16 female Sprague-Dawley rats after high-dose photon (n = 8) or carbon-ion (12C) irradiation (n = 8) and in 6 sham-exposed rats until myelopathy occurred. The differences in the diffusion pattern of the GM of the cervical spinal cord were examined until the endpoint of the study, occurrence of paresis grade II of both forelimbs was reached. In both radiation techniques, the same order of the occurrence of MR-morphological pathologies was observed - from edema formation to a blood spinal cord barrier (BSCB) disruption to paresis grade II of both forelimbs. However, carbon-ion irradiation showed a significant increase of the mean apparent diffusion coefficient (ADC; P = 0.031) with development of a BSCB disruption in the GM. Animals with paresis grade II as a late radiation response had a highly significant increase in mean ADC (P = 0.0001) after carbon-ion irradiation. At this time, a tendency was observed for higher mean ADC values in the GM after 12C irradiation as compared to photon irradiation (P = 0.059). These findings demonstrated that carbon-ion irradiation leads to greater structural damage to the GM of the rat cervical spinal cord than photon irradiation due to its higher linear energy transfer (LET) value.
Collapse
Affiliation(s)
- Thomas Welzel
- Department of Radiation Oncology and Radiotherapy, University of Heidelberg (Germany) Medical School, 69120 Heidelberg Germany
- Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO) 69120 Heidelberg, Germany
- Heidelberger Ion Beam Therapy Center (HIT), 69120 Heidelberg, Germany
| | - Maria Saager
- Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO) 69120 Heidelberg, Germany
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO) 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Radiotherapy, University of Heidelberg (Germany) Medical School, 69120 Heidelberg Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO) 69120 Heidelberg, Germany
- Heidelberger Ion Beam Therapy Center (HIT), 69120 Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO) 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Glowa C, Saager M, Hintz L, Euler-Lange R, Peschke P, Brons S, Scholz M, Mein S, Mairani A, Karger CP. Relative biological effectiveness of oxygen ion beams in the rat spinal cord: Dependence on linear energy transfer and dose and comparison with model predictions. Phys Imaging Radiat Oncol 2024; 30:100581. [PMID: 38711920 PMCID: PMC11070926 DOI: 10.1016/j.phro.2024.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Background and purpose Ion beams exhibit an increased relative biological effectiveness (RBE) with respect to photons. This study determined the RBE of oxygen ion beams as a function of linear energy transfer (LET) and dose in the rat spinal cord. Materials and methods The spinal cord of rats was irradiated at four different positions of a 6 cm spread-out Bragg-peak (LET: 26, 66, 98 and 141 keV/µm) using increasing levels of single and split oxygen ion doses. Dose-response curves were established for the endpoint paresis grade II and based on ED50 (dose at 50 % effect probability), the RBE was determined and compared to model predictions. Results When LET increased from 26 to 98 keV/µm, ED50 decreased from 17.2 ± 0.3 Gy to 13.5 ± 0.4 Gy for single and from 21.7 ± 0.4 Gy to 15.5 ± 0.5 Gy for split doses, however, at 141 keV/µm, ED50 rose again to 15.8 ± 0.4 Gy and 17.2 ± 0.4 Gy, respectively. As a result, the RBE increased from 1.43 ± 0.05 to 1.82 ± 0.08 (single dose) and from 1.58 ± 0.04 to 2.21 ± 0.08 (split dose), respectively, before declining again to 1.56 ± 0.06 for single and 1.99 ± 0.06 for split doses at the highest LET. Deviations from RBE-predictions were model-dependent. Conclusion This study established first RBE data for the late reacting central nervous system after single and split doses of oxygen ions. The data was used to validate the RBE-dependence on LET and dose of three RBE-models. This study extends the existing data base for protons, helium and carbon ions and provides important information for future patient treatments with oxygen ions.
Collapse
Affiliation(s)
- Christin Glowa
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Germany
| | - Maria Saager
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Lisa Hintz
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Rosemarie Euler-Lange
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stephan Brons
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| | - Michael Scholz
- Department of Biophysics, Helmholtz Center for Heavy Ion Research (GSI), Darmstadt, Germany
| | - Stewart Mein
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mairani
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
- National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | - Christian P. Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
4
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
5
|
Cammarata FP, Torrisi F, Vicario N, Bravatà V, Stefano A, Salvatorelli L, D'Aprile S, Giustetto P, Forte GI, Minafra L, Calvaruso M, Richiusa S, Cirrone GAP, Petringa G, Broggi G, Cosentino S, Scopelliti F, Magro G, Porro D, Libra M, Ippolito M, Russo G, Parenti R, Cuttone G. Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model. Commun Biol 2023; 6:388. [PMID: 37031346 PMCID: PMC10082834 DOI: 10.1038/s42003-023-04770-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Despite aggressive therapeutic regimens, glioblastoma (GBM) represents a deadly brain tumor with significant aggressiveness, radioresistance and chemoresistance, leading to dismal prognosis. Hypoxic microenvironment, which characterizes GBM, is associated with reduced therapeutic effectiveness. Moreover, current irradiation approaches are limited by uncertain tumor delineation and severe side effects that comprehensively lead to unsuccessful treatment and to a worsening of the quality of life of GBM patients. Proton beam offers the opportunity of reduced side effects and a depth-dose profile, which, unfortunately, are coupled with low relative biological effectiveness (RBE). The use of radiosensitizing agents, such as boron-containing molecules, enhances proton RBE and increases the effectiveness on proton beam-hit targets. We report a first preclinical evaluation of proton boron capture therapy (PBCT) in a preclinical model of GBM analyzed via μ-positron emission tomography/computed tomography (μPET-CT) assisted live imaging, finding a significant increased therapeutic effectiveness of PBCT versus proton coupled with an increased cell death and mitophagy. Our work supports PBCT and radiosensitizing agents as a scalable strategy to treat GBM exploiting ballistic advances of proton beam and increasing therapeutic effectiveness and quality of life in GBM patients.
Collapse
Affiliation(s)
- Francesco Paolo Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Filippo Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Molecular Preclinical and Translational Imaging Research Center - IMPRonTe, University of Catania, Catania, Italy
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Lucia Salvatorelli
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | - Simona D'Aprile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pierangela Giustetto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giusi Irma Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Selene Richiusa
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | | | - Giada Petringa
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Giuseppe Broggi
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Fabrizio Scopelliti
- Radiopharmacy Laboratory Nuclear Medicine Department, Cannizzaro Hospital, Catania, Italy
| | - Gaetano Magro
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Ippolito
- Nuclear Medicine Department, Cannizzaro Hospital, Catania, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
- Molecular Preclinical and Translational Imaging Research Center - IMPRonTe, University of Catania, Catania, Italy.
| | - Giacomo Cuttone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| |
Collapse
|
6
|
Tian L, Hahn C, Lühr A. An ion-independent phenomenological relative biological effectiveness (RBE) model for proton therapy. Radiother Oncol 2022; 174:69-76. [PMID: 35803365 DOI: 10.1016/j.radonc.2022.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND A relative biological effectiveness (RBE) of 1.1 is used for proton therapy though clinical evidence of varying RBE was raised. Clinical studies on RBE variability have been conducted for decades for carbon radiation, which could advance the understanding of the clinical proton RBE given an ion-independent RBE model. In this work, such a model, linear and simple, using the beam quantity Q = Z2/E (Z = ion charge, E = kinetic energy per nucleon) was tested and compared to the commonly used, proton-specific and linear energy transfer (LET) based Wedenberg RBE model. MATERIAL AND METHODS The Wedenberg and Q models, both predicting RBEmax and RBEmin (i.e., RBE at vanishing and very high dose, respectively), are compared in terms of ion-dependence and prediction power. An experimental in-vitro data ensemble covering 115 publications for various ions was used as dataset. RESULTS The model parameter of the Q model was observed to be similar for different ions (in contrast to LET). The Q model was trained without any prior knowledge of proton data. For proton RBE, the differences between experimental data and corresponding predictions of the Wedenberg or the Q model were highly comparable. CONCLUSIONS A simple linear RBE model using Q instead of LET was proposed and tested to be able to predict proton RBE using model parameter trained based on only RBE data of other particles in a clinical proton energy range for a large in-vitro dataset. Adding (pre)clinical knowledge from carbon ion therapy may, therefore, reduce the dominating biological uncertainty in proton RBE modelling. This would translate in reduced RBE related uncertainty in proton therapy treatment planning.
Collapse
Affiliation(s)
- Liheng Tian
- TU Dortmund University, Department of Physics, Dortmund, Germany.
| | - Christian Hahn
- TU Dortmund University, Department of Physics, Dortmund, Germany; OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Armin Lühr
- TU Dortmund University, Department of Physics, Dortmund, Germany.
| |
Collapse
|
7
|
Aoki S, Koto M, Ikawa H, Imai R, Tokuhiko O, Shinoto M, Takiyama H, Yamada S, Tsuji H. Long-term outcomes of high dose carbon-ion radiation therapy for unresectable upper cervical (C1-2) chordoma. Head Neck 2022; 44:2162-2170. [PMID: 35734902 PMCID: PMC9544549 DOI: 10.1002/hed.27127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 11/06/2022] Open
Abstract
Background Chordoma is a rare, locally invasive neoplasm of the axial skeleton. Complete resection is often difficult, especially for the upper‐cervical (C1‐2) spine. We evaluated the efficacy and safety of carbon‐ion radiotherapy (CIRT) for unresectable C1‐2 chordoma. Methods Patients with C1‐2 chordoma treated with definitive CIRT (60.8 Gy [RBE] in 16 fractions) were retrospectively analyzed. We evaluated OS, LC, PFS, and toxicity. Results Nineteen eligible patients all completed the planned course of CIRT. With the median follow‐up 68 months (range: 29–144), median OS was 126 months (range: 36‐NA). Five‐year OS, LC, and PFS were 68.4% (95% CI, 42.8%–84.4%), 75.2% (46.1%–90.0%), and 64.1% (36.3%–82.3%), respectively. Regarding acute toxicity of grade ≥3, there was only one grade 3 mucositis. Late toxicity included radiation‐induced myelitis (grade 3 in 1 patient; 5.3%), and compression fractures (n = 5; 26.3%). Conclusions High‐dose CIRT is a promising treatment option for unresectable upper cervical chordoma.
Collapse
Affiliation(s)
- Shuri Aoki
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan.,Department of Radiology, University of Tokyo Hospital, Tokyo, Japan
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroaki Ikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Reiko Imai
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Omatsu Tokuhiko
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Shinoto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hirotoshi Takiyama
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
8
|
Eichkorn T, Karger CP, Brons S, Koerber SA, Mielke T, Haberer T, Debus J, Herfarth K. Results of a prospective randomized trial on long-term effectiveness of protons and carbon ions in prostate cancer: LEM I and α/β = 2 Gy overestimates the RBE. Radiother Oncol 2022; 173:223-230. [PMID: 35714806 DOI: 10.1016/j.radonc.2022.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
AIM To analyze the long-term effectiveness of carbon ions relative to protons in the prospective randomized controlled ion prostate irradiation (IPI) trial. METHODS Effectiveness via PSA assessment in a randomized study on prostate irradiation with 20x3.3 Gy(RBE) protons versus carbon ions was analyzed in 92 patients. Proton RBE was based on a fixed RBE of 1.1 while the local effect model (LEM) I and an α/β = 2 Gy was used for carbon ions. The dose in the prostate was recalculated based on the delivered treatment plan using LEM I and LEM IV and different α/β values. RESULTS Five-year overall and progression free survival was 98% and 85% with protons and 91% and 50% with carbon ions, respectively, with the latter being unexpectedly low compared to Japanese carbon ion data and rather corresponding to a photon dose <72 Gy in 2 Gy fractions. According to LEM I and the applied α/β-value of 2 Gy, the applied carbon ion dose in 2 Gy(RBE) fractions (EQD2) was 87.46 Gy(RBE). Recalculations confirmed a strong dependence of RBE-weighted dose on the α/β ratio as well as on the RBE-model. CONCLUSION The data demonstrate a significant lower effectiveness of the calculated RBE-weighted dose in the carbon ion as compared to the proton arm. LEM I and an α/β = 2 Gy overestimates the RBE for carbon ions in prostate cancer treatment. Adjusting the biological dose calculation by using LEM I with α/β = 4 Gy could be a pragmatic way to safely escalate dose in carbon ion radiotherapy for prostate cancer.
Collapse
Affiliation(s)
- Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.
| | - Christian P Karger
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Germany; Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.
| | - Stephan Brons
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Germany.
| | - Stefan Alexander Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.
| | - Thomas Mielke
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.
| | - Thomas Haberer
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), Germany.
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.
| |
Collapse
|
9
|
Relative biological effectiveness of single and split helium ion doses in the rat spinal cord increases strongly with linear energy transfer. Radiother Oncol 2022; 170:224-230. [PMID: 35367526 DOI: 10.1016/j.radonc.2022.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Determination of the relative biological effectiveness (RBE) of helium ions as a function of linear energy transfer (LET) for single and split doses using the rat cervical spinal cord as model system for late-responding normal tissue. MATERIAL AND METHODS The rat cervical spinal cord was irradiated at four different positions within a 6 cm spread-out Bragg-peak (SOBP) (LET 2.9, 9.4, 14.4 and 20.7 keV/µm) using increasing levels of single or split doses of helium ions. Dose-response curves were determined and based on TD50-values (dose at 50% effect probability using paresis II as endpoint), RBE-values were derived for the endpoint of radiation-induced myelopathy. RESULTS With increasing LET, RBE-values increased from 1.13 ± 0.04 to 1.42 ± 0.05 (single dose) and 1.12 ± 0.03 to 1.50 ± 0.04 (split doses) as TD50-values decreased from 21.7 ± 0.3 Gy to 17.3 ± 0.3 Gy (single dose) and 30.6 ± 0.3 Gy to 22.9 ± 0.3 Gy (split doses), respectively. RBE-models (LEM I and IV, mMKM) deviated differently for single and split doses but described the RBE variation in the high-LET region sufficiently accurate. CONCLUSION This study established the LET-dependence of the RBE for late effects in the central nervous system after single and split doses of helium ions. The results extend the existing database for protons and carbon ions and allow systematic testing of RBE-models. While the RBE-values of helium were generally lower than for carbon ions, the increase at the distal edge of the Bragg-peak was larger than for protons, making detailed RBE-modeling necessary.
Collapse
|
10
|
Pfuhl T, Friedrich T, Scholz M. Comprehensive comparison of local effect model IV predictions with the particle irradiation data ensemble. Med Phys 2021; 49:714-726. [PMID: 34766635 DOI: 10.1002/mp.15343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The increased relative biological effectiveness (RBE) of ions is one of the key benefits of ion radiotherapy compared to conventional radiotherapy with photons. To account for the increased RBE of ions during the process of ion radiotherapy treatment planning, a robust model for RBE predictions is indispensable. Currently, at several ion therapy centers the local effect model I (LEM I) is applied to predict the RBE, which varies with biological and physical impacting factors. After the introduction of LEM I, several model improvements were implemented, leading to the current version, LEM IV, which is systematically tested in this study. METHODS As a comprehensive RBE model should give consistent results for a large variety of ion species and energies, the particle irradiation data ensemble (PIDE) is used to systematically validate the LEM IV. The database covers over 1100 photon and ion survival experiments in form of their linear-quadratic parameters for a wide range of ion types and energies. This makes the database an optimal tool to challenge the systematic dependencies of the RBE model. After appropriate filtering of the database, 571 experiments were identified and used as test data. RESULTS The study confirms that the LEM IV reflects the RBE systematics observed in measurements well. It is able to reproduce the dependence of RBE on the linear energy transfer (LET) as well as on the αγ /βγ ratio for several ion species in a wide energy range. Additionally, the systematic quantitative analysis revealed precision capabilities and limits of the model. At lower LET values, the LEM IV tends to underestimate the RBE with an increasing underestimation with increasing atomic number of the ion. At higher LET values, the LEM IV overestimates the RBE for protons or helium ions, whereas the predictions for heavier ions match experimental data well. CONCLUSIONS The LEM IV is able to predict general RBE characteristics for several ion species in a broad energy range. The accuracy of the predictions is reasonable considering the small number of input parameters needed by the model. The detailed quantification of possible systematic deviations, however, enables to identify not only strengths but also limitations of the model. The gained knowledge can be used to develop model adjustments to further improve the model accuracy, which is on the way.
Collapse
Affiliation(s)
- Tabea Pfuhl
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Institute for Solid State Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Thomas Friedrich
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Michael Scholz
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
11
|
Kalholm F, Grzanka L, Traneus E, Bassler N. A systematic review on the usage of averaged LET in radiation biology for particle therapy. Radiother Oncol 2021; 161:211-221. [PMID: 33894298 DOI: 10.1016/j.radonc.2021.04.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
Linear Energy Transfer (LET) is widely used to express the radiation quality of ion beams, when characterizing the biological effectiveness. However, averaged LET may be defined in multiple ways, and the chosen definition may impact the resulting reported value. We review averaged LET definitions found in the literature, and quantify which impact using these various definitions have for different reference setups. We recorded the averaged LET definitions used in 354 publications quantifying the relative biological effectiveness (RBE) of hadronic beams, and investigated how these various definitions impact the reported averaged LET using a Monte Carlo particle transport code. We find that the kind of averaged LET being applied is, generally, poorly defined. Some definitions of averaged LET may influence the reported averaged LET values up to an order of magnitude. For publications involving protons, most applied dose averaged LET when reporting RBE. The absence of what target medium is used and what secondary particles are included further contributes to an ill-defined averaged LET. We also found evidence of inconsistent usage of averaged LET definitions when deriving LET-based RBE models. To conclude, due to commonly ill-defined averaged LET and to the inherent problems of LET-based RBE models, averaged LET may only be used as a coarse indicator of radiation quality. We propose a more rigorous way of reporting LET values, and suggest that ideally the entire particle fluence spectra should be recorded and provided for future RBE studies, from which any type of averaged LET (or other quantities) may be inferred.
Collapse
Affiliation(s)
- Fredrik Kalholm
- Medical Radiation Physics, Dept. of Physics, Stockholm University, Stockholm, Sweden; Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| | - Leszek Grzanka
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Niels Bassler
- Medical Radiation Physics, Dept. of Physics, Stockholm University, Stockholm, Sweden; Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden; Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Welzel T, Bendinger AL, Glowa C, Babushkina I, Jugold M, Peschke P, Debus J, Karger CP, Saager M. Longitudinal MRI study after carbon ion and photon irradiation: shorter latency time for myelopathy is not associated with differential morphological changes. Radiat Oncol 2021; 16:63. [PMID: 33789720 PMCID: PMC8011205 DOI: 10.1186/s13014-021-01792-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/18/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Radiation-induced myelopathy is a severe and irreversible complication that occurs after a long symptom-free latency time if the spinal cord was exposed to a significant irradiation dose during tumor treatment. As carbon ions are increasingly investigated for tumor treatment in clinical trials, their effect on normal tissue needs further investigation to assure safety of patient treatments. Magnetic resonance imaging (MRI)-visible morphological alterations could serve as predictive markers for medicinal interventions to avoid severe side effects. Thus, MRI-visible morphological alterations in the rat spinal cord after high dose photon and carbon ion irradiation and their latency times were investigated. METHODS Rats whose spinal cords were irradiated with iso-effective high photon (n = 8) or carbon ion (n = 8) doses as well as sham-treated control animals (n = 6) underwent frequent MRI measurements until they developed radiation-induced myelopathy (paresis II). MR images were analyzed for morphological alterations and animals were regularly tested for neurological deficits. In addition, histological analysis was performed of animals suffering from paresis II compared to controls. RESULTS For both beam modalities, first morphological alterations occurred outside the spinal cord (bone marrow conversion, contrast agent accumulation in the musculature ventral and dorsal to the spinal cord) followed by morphological alterations inside the spinal cord (edema, syrinx, contrast agent accumulation) and eventually neurological alterations (paresis I and II). Latency times were significantly shorter after carbon ions as compared to photon irradiation. CONCLUSIONS Irradiation of the rat spinal cord with photon or carbon ion doses that lead to 100% myelopathy induced a comparable fixed sequence of MRI-visible morphological alterations and neurological distortions. However, at least in the animal model used in this study, the observed MRI-visible morphological alterations in the spinal cord are not suited as predictive markers to identify animals that will develop myelopathy as the time between MRI-visible alterations and the occurrence of myelopathy is too short to intervene with protective or mitigative drugs.
Collapse
Affiliation(s)
- Thomas Welzel
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Radiation Oncology and Radiotherapy, University Hospital of Heidelberg, Heidelberg, Germany
| | - Alina L Bendinger
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany. .,Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Christin Glowa
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Radiation Oncology and Radiotherapy, University Hospital of Heidelberg, Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Inna Babushkina
- Core Facility Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Jugold
- Core Facility Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Peschke
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Radiotherapy, University Hospital of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian P Karger
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Maria Saager
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
13
|
The RBE in ion beam radiotherapy: In vivo studies and clinical application. Z Med Phys 2021; 31:105-121. [PMID: 33568337 DOI: 10.1016/j.zemedi.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Ion beams used for radiotherapy exhibit an increased relative biological effectiveness (RBE), which depends on several physical treatment parameters as well as on biological factors of the irradiated tissues. While the RBE is an experimentally well-defined quantity, translation to patients is complex and requires radiobiological studies, dedicated models to calculate the RBE in treatment planning as well as strategies for dose prescription. Preclinical in vivo studies and analysis of clinical outcome are important to validate and refine RBE-models. This review describes the concept of the experimental and clinical RBE and explains the fundamental dependencies of the RBE based on in vitro experiments. The available preclinical in vivo studies on normal tissue and tumor RBE for ions heavier than protons are reviewed in the context of the historical and present development of ion beam radiotherapy. In addition, the role of in vivo RBE-values in the development and benchmarking of RBE-models as well as the transition of these models to clinical application are described. Finally, limitations in the translation of experimental RBE-values into clinical application and the direction of future research are discussed.
Collapse
|
14
|
Xu WL, Aikeremu D, Sun JG, Zhang YJ, Xu JB, Zhou WZ, Zhao XB, Wang H, Yuan H. Effect of intensity-modulated radiation therapy on sciatic nerve injury caused by echinococcosis. Neural Regen Res 2021; 16:580-586. [PMID: 32985491 PMCID: PMC7996033 DOI: 10.4103/1673-5374.293153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Conventional radiotherapy has a good killing effect on femoral echinococcosis. However, the sciatic nerve around the lesion is irreversibly damaged owing to bystander effects. Although intensity-modulated radiation therapy shows great advantages for precise dose distribution into lesions, it is unknown whether intensity-modulated radiation therapy can perfectly protect the surrounding sciatic nerve on the basis of good killing of femoral echinococcosis foci. Therefore, this study comparatively analyzed differences between intensity-modulated radiation therapy and conventional radiotherapy on the basis of safety to peripheral nerves. Pure-breed Meriones meridiani with bilateral femoral echinococcosis were selected as the research object. Intensity-modulated radiation therapy was used to treat left femoral echinococcosis of Meriones meridianus, while conventional radiotherapy was used to treat right femoral echinococcosis of the same Meriones meridianus. The total radiation dose was 40 Gy. To understand whether intensity-modulated radiation therapy and conventional radiotherapy can kill femoral echinococcosis, trypan blue staining was used to detect pathological changes of bone Echinococcus granulosus and protoscolex death after radiotherapy. Additionally, enzyme histochemical staining was utilized to measure acid phosphatase activity in the protoscolex after radiotherapy. One week after radiotherapy, the overall structure of echinococcosis in bilateral femurs of Meriones meridiani treated by intensity-modulated radiation therapy disappeared. There was no significant difference in the mortality rate of protoscoleces of Echinococcus granulosus between the bilateral femurs of Meriones meridiani. Moreover, there was no significant difference in acid phosphatase activity in the protoscolex of Echinococcus granulosus between bilateral femurs. To understand the injury of sciatic nerve surrounding the foci of femoral echinococcosis caused by intensity-modulated radiation therapy and conventional radiotherapy, the ultrastructure of sciatic nerves after radiotherapy was observed by transmission electron microscopy. Additionally, apoptosis of neurons was examined using a terminal-deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and expression of Bcl-2 and Bax in sciatic nerve tissue was detected by immunohistochemical staining and western blot assay. Our results showed that most neurons in the left sciatic nerve of Meriones meridiani with echinococcosis treated by intensity-modulated radiation therapy had reversible injury, and there was no obvious apoptosis. Compared with conventional radiotherapy, the number of apoptotic cells and Bax expression in sciatic nerve treated by intensity-modulated radiation therapy were significantly decreased, while Bcl-2 expression was significantly increased. Our findings suggest that intensity-modulated radiation therapy has the same therapeutic effect on echinococcosis as conventional radiotherapy, and can reduce apoptosis of the sciatic nerve around foci caused by radiotherapy. Experiments were approved by the Animal Ethics Committee of People’s Hospital of Xinjiang Uygur Autonomous Region, China (Approval No. 20130301A41) on March 1, 2013.
Collapse
Affiliation(s)
- Wan-Long Xu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Dilimulati Aikeremu
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jun-Gang Sun
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yan-Jun Zhang
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiang-Bo Xu
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Wen-Zheng Zhou
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xi-Bin Zhao
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hao Wang
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hong Yuan
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
15
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|