1
|
Kendall R, Robinson T, Reed V, Kanke J, Sosa A, Nelson C, Swanson D, Villa M, Bloom E. Why is Volumetric Modulated Arc Therapy Not Considered the Standard of Care for Locoregional Radiation Therapy for Breast Cancer Patients? Adv Radiat Oncol 2025; 10:101728. [PMID: 40264855 PMCID: PMC12013385 DOI: 10.1016/j.adro.2025.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/18/2025] [Indexed: 04/24/2025] Open
Abstract
We quantify dosimetric differences between 3-dimensional (3D) planning and volumetric modulated arc therapy (VMAT) in breast cancer patients requiring comprehensive regional nodal irradiation (CRNI). Target volume dose, prescription isodose conformality to target volumes, plan hotspots, normal tissue dose-volume metrics, and back and shoulder dose were compared for VMAT and 3D plans of 50 patients. Metrics used to compare VMAT plans with 3D plans included the percentage of primary clinical target volumes (CTVs) receiving 98% of a prescription dose of 5000 cGy, CTV dose hotspots, the extra treatment volume (ETV), and the portion of the patient's body receiving 90% of the CTV prescription dose (excluding the primary target volume). Superior values for these metrics were found for VMAT plans when compared to 3D plans. The mean percentage of the target volume receiving 98% of the prescription dose of 3D plans was 95.4% versus 98.9% among VMAT plans (P < .01). The mean target volume hotspot of 3D plans was 7200 cGy versus 5450 cGy for VMAT plans (P < .01). A mean ETV found for 3D plans was nearly double that found among VMAT plans (5.3% vs 2.7%, P < .01). VMAT plans resulted in lower doses to the shoulder and back. Mean total body volumes of VMAT plans were lower for dose thresholds of 100% to 130% of the prescription. VMAT plans generally had superior values for institutional normal tissue dose constraints. VMAT is superior to 3D planning across multiple metrics for breast cancer patients requiring CRNI. Insurance coverage for VMAT should not require 3D comparison plans.
Collapse
Affiliation(s)
- Robin Kendall
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tiffany Robinson
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Valerie Reed
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James Kanke
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alan Sosa
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher Nelson
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Swanson
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Villa
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth Bloom
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Zhang L, Ji D, Huang X, Ju Y. Comparative Evaluation of Volumetric-Modulated Arc Therapy and Intensity-Modulated Radiotherapy in Postoperative Breast Cancer Treatment. Br J Hosp Med (Lond) 2025; 86:1-19. [PMID: 40135308 DOI: 10.12968/hmed.2024.0809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Aims/Background Breast cancer (BC) is one of the most prevalent malignancies among women globally, with postoperative radiotherapy playing a pivotal role in its multidisciplinary management. Volumetric-modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) are advanced radiotherapy techniques that improve dose distribution uniformity within the target volume while minimizing damage to surrounding normal tissues. This study aimed to compare the effects of VMAT and IMRT on immune function and prognosis in postoperative BC patients, providing a scientific basis for clinical decision-making and optimizing BC treatment strategies. Methods Between January 2022 and January 2024, 265 postoperative BC patients who underwent radiotherapy with VMAT or IMRT at Nantong First People's Hospital were retrospectively analyzed. Based on the radiotherapy technique, patients were categorized into the VMAT group (129 cases) and the IMRT group (136 cases). The efficacies of the 2 radiotherapy techniques were compared by assessing overall radiotherapy effectiveness, levels of cancer biomarkers, levels of immune factors, quality of life and the incidence of adverse reactions. Results The overall objective response rate (ORR) and disease control rate (DCR) were significantly higher in the VMAT (75.97% and 93.80%, respectively) compared to the IMRT group (63.24% and 86.03%, respectively, p < 0.05). Serum levels of cancer antigen 15-3 (CA15-3), human epidermal growth factor receptor 2 (HER2), carcinoembryonic antigen (CEA), and interleukin-6 (IL-6) significantly decreased in both groups at 1-, 3-, and 6-month post-radiotherapy compared to levels immediately after radiotherapy (p < 0.05). Conversely, levels of interleukin-2 (IL-2) and interferon-α (IFN-α) demonstrated a significant increase over the same time points (p < 0.05). Notably, at 1-month post-radiotherapy, the VMAT group exhibited significantly lower serum levels of CA15-3, HER2, CEA, and IL-6 and significantly higher levels of IL-2 and IFN-α compared to the IMRT group (p < 0.05). Post-radiotherapy, quality of life (QoL) scores encompassing mental health, physical health, environmental conditions, and social relationships significantly improved in both groups compared to pre-radiotherapy levels (p < 0.05). However, no statistically significant differences in QoL were observed between the two groups after treatment (p > 0.05). The incidence of adverse reactions was significantly lower in the VMAT group (9.30%) compared to the IMRT (19.12%) group (p < 0.05). Conclusion VMAT and IMRT effectively improve cancer marker profiles, modulate immune factors, and enhance QoL in postoperative BC patients. VMAT exhibited superior efficacy, achieving higher ORR and DCR and a significant reduction in radiotherapy-related adverse reactions compared to IMRT. These findings highlight the advantages of VMAT in comprehensive BC treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Radiotherapy, Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Dandan Ji
- Department of Radiotherapy, Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Xiaomei Huang
- Department of Radiotherapy, Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Yongjian Ju
- Department of Radiotherapy, Nantong First People's Hospital, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Costin IC, Marcu LG. Patient and treatment-related factors that influence dose to heart and heart substructures in left-sided breast cancer radiotherapy. Phys Med 2024; 128:104851. [PMID: 39504787 DOI: 10.1016/j.ejmp.2024.104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Cardiac substructures are critical organs at risk in left-sided breast cancer radiotherapy being often overlooked during treatment planning. The treatment technique plays an important role in diminishing dose to critical structures. This review aims to analyze the impact of treatment- and patient-related factors on heart substructure dosimetry and to identify the gaps in literature regarding dosimetric reporting of cardiac substructures. METHODS A systematic search of the literature was conducted in Medline/Pubmed database incorporating data published over the past 10 years, leading to 81 eligible studies. Treatment-related factors analyzed for their impact on patient outcome included the number of treatment fields, field geometry, treatment time and monitor units. Additionally, patient-related parameters such as breast size and tumor shape were considered for cardiac dosimetry evaluation. RESULTS Limited number of fields appeared to be an advantage for mean heart dose reduction when tangential IMRT versus multiple fields IMRT was evaluated. Larger breast size (910.20 ± 439.80 cm3) is linked to larger treatment fields and higher heart doses. Internal mammary node irradiation further escalates cardiac substructures dosimetry treated with 3DCRT and IMRT/VMAT. Proton therapy delivers lower mean heart dose regardless of breathing condition (free or respiratory-gated). CONCLUSION The management of treatment- and patient-related factors must be taken into account regardless of the treatment technique when evaluating cardiac dose. Furthermore, the gap found in the literature regarding heart toxicity assessment in left-sided breast cancer patients emphasizes the need for cardiac substructure contouring to better manage and control radiation-induced cardiac toxicities in this patient group.
Collapse
Affiliation(s)
- Ioana-Claudia Costin
- West University of Timisoara, Faculty of Physics, 300223, Timisoara, Romania; Emergency County Hospital, Oradea 410167, Romania
| | - Loredana G Marcu
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia; Faculty of Informatics & Science, University of Oradea, Oradea 410087, Romania.
| |
Collapse
|
4
|
Miéville FA, Pitteloud N, Achard V, Lamanna G, Pisaturo O, Tercier PA, Allal AS. Post-mastectomy radiotherapy: Impact of bolus thickness and irradiation technique on skin dose. Z Med Phys 2024; 34:542-554. [PMID: 37150728 PMCID: PMC11624419 DOI: 10.1016/j.zemedi.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 05/09/2023]
Abstract
PURPOSE To determine 10 MV IMRT and VMAT based protocols with a daily bolus targeting a skin dose of 45 Gy in order to replace the 6 MV tangential fields with a 5 mm thick bolus on alternate days method for post-mastectomy radiotherapy. METHOD We measured the mean surface dose along the chest wall PTV as a function of different bolus thicknesses for sliding window IMRT and VMAT plans. We analyzed surface dose profiles and dose homogeneities and compared them to our standard 6 MV strategy. All measurements were performed on a thorax phantom with Gafchromic films while dosimetric plans were computed using the Acuros XB algorithm (Varian). RESULTS We obtained the best compromise between measured surface dose (mean dose and homogeneity) and skin toxicity threshold obtained from the literature using a daily 3 mm thick bolus. Mean surface doses were 91.4 ± 2.8% [85.7% - 95.4%] and 92.2 ± 2.3% [85.6% - 95.2%] of the prescribed dose with IMRT and VMAT techniques, respectively. Our standard 6 MV alternate days 5 mm thick bolus leads to 89.0 ± 3.7% [83.6% - 95.5%]. Mean dose differences between measured and TPS results were < 3.2% for depths as low as 2 mm depth. CONCLUSION 10 MV IMRT-based protocols with a daily 3 mm thick bolus produce a surface dose comparable to the standard 6 MV 5 mm thick bolus on alternate days method but with an improved surface dose homogeneity. This allows for a better control of skin toxicity and target volume coverage.
Collapse
Affiliation(s)
- Frédéric A Miéville
- Department of Radiation Oncology, Hôpital Fribourgeois, 2-6 Chemin des Pensionnats, 1752 Villars-sur-Glâne, Fribourg, Switzerland.
| | - Nicolas Pitteloud
- Department of Radiation Oncology, Hôpital Fribourgeois, 2-6 Chemin des Pensionnats, 1752 Villars-sur-Glâne, Fribourg, Switzerland
| | - Vérane Achard
- Department of Radiation Oncology, Hôpital Fribourgeois, 2-6 Chemin des Pensionnats, 1752 Villars-sur-Glâne, Fribourg, Switzerland
| | - Giorgio Lamanna
- Department of Radiation Oncology, Hôpital Fribourgeois, 2-6 Chemin des Pensionnats, 1752 Villars-sur-Glâne, Fribourg, Switzerland
| | - Olivier Pisaturo
- Department of Radiation Oncology, Hôpital Fribourgeois, 2-6 Chemin des Pensionnats, 1752 Villars-sur-Glâne, Fribourg, Switzerland
| | - Pierre-Alain Tercier
- Department of Radiation Oncology, Hôpital Fribourgeois, 2-6 Chemin des Pensionnats, 1752 Villars-sur-Glâne, Fribourg, Switzerland
| | - Abdelkarim S Allal
- Department of Radiation Oncology, Hôpital Fribourgeois, 2-6 Chemin des Pensionnats, 1752 Villars-sur-Glâne, Fribourg, Switzerland
| |
Collapse
|
5
|
Costin IC, Marcu LG. Correlations between patient-specific parameters and dosimetric indices for personalized breast cancer radiotherapy. Sci Rep 2024; 14:26141. [PMID: 39478060 PMCID: PMC11526019 DOI: 10.1038/s41598-024-75858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Treatment planning parameters in radiotherapy are key elements that dictate the success of treatment outcome. While some parameters are commonly evaluated irrespective of cancer type, others are site-dependent and strongly patient specific. Given the critical influence of planning parameters on personalized therapy, the aim of this study was to evaluate the correlations between the dosimetric indices (conformity, homogeneity and mismatch indices) related to tumor coverage and the patient-specific parameters which encompass parameters pertaining to organs at risk (widths and lengths of heart and ipsilateral lung included in treatment fields, mean/maximum doses to heart, ipsilateral lung, left anterior descending aorta and contralateral breast) and tumor volume. Forty breast cancer patients were divided into two groups according to tumor location: twenty with left-sided (group A) and twenty with right-sided breast cancer (group B). Conformal (3DCRT), intensity modulated (IMRT) and volumetric arc modulated (VMAT) radiotherapy techniques were used for plan creation. Moderate to strong correlations were found for ipsilateral lung parameters for both groups of patients regardless of the treatment technique. Moderate to strong correlations were found for heart parameters in group A patients, while no correlations were observed in group B. The mismatch index presented moderate to strong correlations with tumor volume for all treatment techniques (r = -0.861 3DCRT, r = -0.556 IMRT, r = -0.533 VMAT) particularly in group A. The evaluated correlations indicate the role of dosimetric indices in personalized treatment planning.
Collapse
Affiliation(s)
- Ioana-Claudia Costin
- Faculty of Physics, West University of Timisoara, 300223, Timisoara, Romania.
- Bihor County Emergency Clinical Hospital, 410167, Oradea, Romania.
| | - Loredana G Marcu
- Faculty of Informatics and Science, University of Oradea, 410087, Oradea, Romania
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5001, Australia
| |
Collapse
|
6
|
Wang SJ, Zhai YR, Zhang WW, Chen SY, Qin SR, Fang H, Tang Y, Song YW, Liu YP, Chen B, Qi SN, Tang Y, Lu NN, Li YX, Jing H, Wang SL. Dosimetric benefit and clinical feasibility of deep inspiration breath-hold and volumetric modulated arc therapy-based postmastectomy radiotherapy for left-sided breast cancer. Sci Rep 2024; 14:24638. [PMID: 39428424 PMCID: PMC11491445 DOI: 10.1038/s41598-024-75560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
To evaluate the dosimetric benefits and clinical feasibility of deep inspiratory breath-hold (DIBH) combined with volumetric modulated arc therapy (VMAT) in left-sided postmastectomy radiotherapy (PMRT). Eligible patients with left-sided breast cancer undergoing DIBH-based PMRT were prospectively included. Chest wall, supra/infraclavicular fossa, and/or internal mammary node irradiation (IMNI) were planned with a prescription dose of 43.5 Gy in 15 fractions. VMAT plans were designed on free breathing (FB)-and DIBH-CT to compare dosimetric parameters in heart, left anterior descending artery (LAD) and lung. Cone-beam computed tomography (CBCT) was performed before and after treatment to evaluate inter- and intra-fractional setup errors. Heart position and dose variations during treatment were estimated by fusing CBCT with DIBH-CT scans.Twenty patients were included with 10 receiving IMNI. In total, 193 pre-treatment and 39 pairs pre- and post-treatment CBCT scans were analyzed. The Dmean, Dmax, and V5-40 of the heart, LAD, and left lung were significantly lower in DIBH than FB (p < 0.05 for all), except for V5 of LAD (p = 0.167). The cardiopulmonary dosimetric benefits were maintained regardless of IMNI. The inter- and intra-fractional setup errors were < 0.3 cm; and the overall estimated PTV margins were < 1.0 cm. During treatment, the mean dice similarity coefficient of heart position and the mean ratio of heart Dmean between CBCT and DIBH-CT plans was 0.95 (0.88-1.00) and 100% (70.6-119.5%), respectively. DIBH-VMAT could effectively reduce the cardiopulmonary doses with acceptable reproducibility and stability in left-sided PMRT regardless of IMNI.
Collapse
Affiliation(s)
- Shi-Jia Wang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi-Rui Zhai
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wen-Wen Zhang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Si-Ye Chen
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shi-Rui Qin
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hui Fang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu Tang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yong-Wen Song
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue-Ping Liu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bo Chen
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shu-Nan Qi
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Tang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning-Ning Lu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ye-Xiong Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Hao Jing
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shu-Lian Wang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Costin IC, Cinezan C, Marcu LG. Cardio-oncology concerns in radiotherapy: Heart and cardiac substructure toxicities from modern delivery techniques. Crit Rev Oncol Hematol 2024; 204:104538. [PMID: 39427839 DOI: 10.1016/j.critrevonc.2024.104538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024] Open
Abstract
Cardio-oncology is lately gaining more attention due to radiation-induced cardiac events reported by a very large number of studies. In view of this, the current overview of the literature aimed to encompass all studies from the past 15 years to assess changes in cardiac dose due to treatment evolution, as well as the changes in treatment planning customs to incorporate not only the heart as a whole but also cardiac substructures. Modern treatment techniques, particularly proton therapy, offers superior cardiac sparing compared to more established radiotherapy, for all evaluated tumor sites. Intensity modulation, particularly coupled with respiratory gating shows significant improvement in dose-volume parameters pertaining to the heart. While past studies considered mean heart dose as the only reference for cardiac toxicities, recommendations for the other cardiac substructures to be dosimetrically assessed during planning are becoming more common.
Collapse
Affiliation(s)
- Ioana-Claudia Costin
- West University of Timisoara, Faculty of Physics, Timisoara 300223, Romania; Clinical Emergency County Hospital Bihor, Oradea 410169, Romania
| | - Corina Cinezan
- Clinical Emergency County Hospital Bihor, Oradea 410169, Romania; Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410087, Romania
| | - Loredana G Marcu
- Faculty of Informatics & Science, University of Oradea, Oradea 410087, Romania; UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
8
|
Lee TF, Chang CH, Chi CH, Liu YH, Shao JC, Hsieh YW, Yang PY, Tseng CD, Chiu CL, Hu YC, Lin YW, Chao PJ, Lee SH, Yeh SA. Utilizing radiomics and dosiomics with AI for precision prediction of radiation dermatitis in breast cancer patients. BMC Cancer 2024; 24:965. [PMID: 39107701 PMCID: PMC11304569 DOI: 10.1186/s12885-024-12753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
PURPOSE This study explores integrating clinical features with radiomic and dosiomic characteristics into AI models to enhance the prediction accuracy of radiation dermatitis (RD) in breast cancer patients undergoing volumetric modulated arc therapy (VMAT). MATERIALS AND METHODS This study involved a retrospective analysis of 120 breast cancer patients treated with VMAT at Kaohsiung Veterans General Hospital from 2018 to 2023. Patient data included CT images, radiation doses, Dose-Volume Histogram (DVH) data, and clinical information. Using a Treatment Planning System (TPS), we segmented CT images into Regions of Interest (ROIs) to extract radiomic and dosiomic features, focusing on intensity, shape, texture, and dose distribution characteristics. Features significantly associated with the development of RD were identified using ANOVA and LASSO regression (p-value < 0.05). These features were then employed to train and evaluate Logistic Regression (LR) and Random Forest (RF) models, using tenfold cross-validation to ensure robust assessment of model efficacy. RESULTS In this study, 102 out of 120 VMAT-treated breast cancer patients were included in the detailed analysis. Thirty-two percent of these patients developed Grade 2+ RD. Age and BMI were identified as significant clinical predictors. Through feature selection, we narrowed down the vast pool of radiomic and dosiomic data to 689 features, distributed across 10 feature subsets for model construction. In the LR model, the J subset, comprising DVH, Radiomics, and Dosiomics features, demonstrated the highest predictive performance with an AUC of 0.82. The RF model showed that subset I, which includes clinical, radiomic, and dosiomic features, achieved the best predictive accuracy with an AUC of 0.83. These results emphasize that integrating radiomic and dosiomic features significantly enhances the prediction of Grade 2+ RD. CONCLUSION Integrating clinical, radiomic, and dosiomic characteristics into AI models significantly improves the prediction of Grade 2+ RD risk in breast cancer patients post-VMAT. The RF model analysis demonstrates that a comprehensive feature set maximizes predictive efficacy, marking a promising step towards utilizing AI in radiation therapy risk assessment and enhancing patient care outcomes.
Collapse
Affiliation(s)
- Tsair-Fwu Lee
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Jiangong RdSanmin Dist., No.415, Kaohsiung, 80778, Taiwan, ROC
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan, ROC
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| | - Chu-Ho Chang
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Jiangong RdSanmin Dist., No.415, Kaohsiung, 80778, Taiwan, ROC
| | - Chih-Hsuan Chi
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Jiangong RdSanmin Dist., No.415, Kaohsiung, 80778, Taiwan, ROC
| | - Yen-Hsien Liu
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Jiangong RdSanmin Dist., No.415, Kaohsiung, 80778, Taiwan, ROC
| | - Jen-Chung Shao
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Jiangong RdSanmin Dist., No.415, Kaohsiung, 80778, Taiwan, ROC
| | - Yang-Wei Hsieh
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Jiangong RdSanmin Dist., No.415, Kaohsiung, 80778, Taiwan, ROC
| | - Pei-Ying Yang
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Jiangong RdSanmin Dist., No.415, Kaohsiung, 80778, Taiwan, ROC
| | - Chin-Dar Tseng
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Jiangong RdSanmin Dist., No.415, Kaohsiung, 80778, Taiwan, ROC
| | - Chien-Liang Chiu
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Jiangong RdSanmin Dist., No.415, Kaohsiung, 80778, Taiwan, ROC
| | - Yu-Chang Hu
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Yu-Wei Lin
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Pei-Ju Chao
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Jiangong RdSanmin Dist., No.415, Kaohsiung, 80778, Taiwan, ROC.
| | - Shen-Hao Lee
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Jiangong RdSanmin Dist., No.415, Kaohsiung, 80778, Taiwan, ROC.
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospitaland, Chang Gung University College of Medicine, Linkou, Taiwan, ROC.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Jiangong RdSanmin Dist., No.415, Kaohsiung, 80778, Taiwan, ROC.
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, 82445, Taiwan, ROC.
- Department of Radiation Oncology, E-DA Hospital, Kaohsiung, 82445, Taiwan, ROC.
| |
Collapse
|
9
|
Bonaccorsi SG, Tessonnier T, Hoeltgen L, Meixner E, Harrabi S, Hörner-Rieber J, Haberer T, Abdollahi A, Debus J, Mairani A. Exploring Helium Ions' Potential for Post-Mastectomy Left-Sided Breast Cancer Radiotherapy. Cancers (Basel) 2024; 16:410. [PMID: 38254899 PMCID: PMC10814201 DOI: 10.3390/cancers16020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Proton therapy presents a promising modality for treating left-sided breast cancer due to its unique dose distribution. Helium ions provide increased conformality thanks to a reduced lateral scattering. Consequently, the potential clinical benefit of both techniques was explored. An explorative treatment planning study involving ten patients, previously treated with VMAT (Volumetric Modulated Arc Therapy) for 50 Gy in 25 fractions for locally advanced, node-positive breast cancer, was carried out using proton pencil beam therapy with a fixed relative biological effectiveness (RBE) of 1.1 and helium therapy with a variable RBE described by the mMKM (modified microdosimetric kinetic model). Results indicated that target coverage was improved with particle therapy for both the clinical target volume and especially the internal mammary lymph nodes compared to VMAT. Median dose value analysis revealed that proton and helium plans provided lower dose on the left anterior descending artery (LAD), heart, lungs and right breast than VMAT. Notably, helium therapy exhibited improved ipsilateral lung sparing over protons. Employing NTCP models as available in the literature, helium therapy showed a lower probability of grade ≤ 2 radiation pneumonitis (22% for photons, 5% for protons and 2% for helium ions), while both proton and helium ions reduce the probability of major coronary events with respect to VMAT.
Collapse
Affiliation(s)
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Line Hoeltgen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Centro Nazionale di Adroterapia Oncologica (CNAO), 27100 Pavia, Italy
| |
Collapse
|
10
|
Chan RCK, Ng CKC, Hung RHM, Li YTY, Tam YTY, Wong BYL, Yu JCK, Leung VWS. Comparative Study of Plan Robustness for Breast Radiotherapy: Volumetric Modulated Arc Therapy Plans with Robust Optimization versus Manual Flash Approach. Diagnostics (Basel) 2023; 13:3395. [PMID: 37998531 PMCID: PMC10670672 DOI: 10.3390/diagnostics13223395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
A previous study investigated robustness of manual flash (MF) and robust optimized (RO) volumetric modulated arc therapy plans for breast radiotherapy based on five patients in 2020 and indicated that the RO was more robust than the MF, although the MF is still current standard practice. The purpose of this study was to compare their plan robustness in terms of dose variation to clinical target volume (CTV) and organs at risk (OARs) based on a larger sample size. This was a retrospective study involving 34 female patients. Their plan robustness was evaluated based on measured volume/dose difference between nominal and worst scenarios (ΔV/ΔD) for each CTV and OARs parameter, with a smaller difference representing greater robustness. Paired sample t-test was used to compare their robustness values. All parameters (except CTV ΔD98%) of the RO approach had smaller ΔV/ΔD values than those of the MF. Also, the RO approach had statistically significantly smaller ΔV/ΔD values (p < 0.001-0.012) for all CTV parameters except the CTV ΔV95% and ΔD98% and heart ΔDmean. This study's results confirm that the RO approach was more robust than the MF in general. Although both techniques were able to generate clinically acceptable plans for breast radiotherapy, the RO could potentially improve workflow efficiency due to its simpler planning process.
Collapse
Affiliation(s)
- Ray C. K. Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Curtise K. C. Ng
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Rico H. M. Hung
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China;
| | - Yoyo T. Y. Li
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Yuki T. Y. Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Blossom Y. L. Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Jacky C. K. Yu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Vincent W. S. Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| |
Collapse
|
11
|
Anjidani S, Siavashpour Z, Houshyari M, Haghgoo M, Nazarnejad M, Zayeri F, Alireza Javadinia S. A dosimetric comparative study following RTOG and ESTRO contouring guidelines for breast radiation therapy. Cancer Radiother 2023; 27:413-420. [PMID: 37482461 DOI: 10.1016/j.canrad.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023]
Abstract
PURPOSE To compare the dosimetric parameters considering the Radiation Therapy Oncology Group (RTOG) and European Society for Radiotherapy and Oncology (ESTRO) guidelines for breast cancer radiotherapy. Two radiotherapy techniques, intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT), were considered. PATIENTS AND METHODS Twenty-eight patients with left-sided medially-located TanyN2M0 tumors were contoured based on RTOG and ESTRO guidelines. 9-field IMRT, 10-field IMRT, 11-field IMRT, and VMAT treatment plans were applied as radiotherapy (RT) techniques for both contouring sets. The dosimetric parameters of the RT plans were extracted and compared. RESULTS Comparing dose-volume histogram (DVH) parameters, equivalent uniform dose (EUD), and normal tissue complication probability (NTCP) of OARs across the contouring guidelines and considering each RT technique showed that the only significant differences were higher Dmax, Dmean, V30, and V45, EUD, and NTCP of the thyroid in all treatment modalities when the RTOG guideline had been adopted. Using the VMAT technique, PTV's EUD and the tumor control probability (TCP) were considerably higher when the ESTRO guideline was adopted. Moreover, the conformity index (CI) of VMAT plans was significantly higher when the ESTRO guideline was used. CONCLUSION Unless having higher doses to thyroid when the RTOG guideline was adopted, the doses to other organs-at-risk (OAR) were similar between the two considering guidelines. Moreover, except for higher EUD, TCP, and CI for VMAT when the ESTRO guideline was used, no other significant differences were obtained between dosimetric parameters of target volumes considering the RT techniques and contouring guidelines.
Collapse
Affiliation(s)
- Sh Anjidani
- Radiotherapy Oncology Department, Shohada-e Tajrish Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Z Siavashpour
- Radiotherapy Oncology Department, Shohada-e Tajrish Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - M Houshyari
- Radiotherapy Oncology Department, Shohada-e Tajrish Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Haghgoo
- Department of Control Engineering, School of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - M Nazarnejad
- Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - F Zayeri
- Proteomics Research Center and Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Qods Square, Darband Street, Tehran, Iran
| | - S Alireza Javadinia
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
12
|
Keiper TD, Kisling K, Hua P, Manger RP. Comparing brass mesh to tissue equivalent bolus materials for volumetric modulated arc therapy chest wall irradiation. J Appl Clin Med Phys 2023; 24:e14054. [PMID: 37287131 PMCID: PMC10476985 DOI: 10.1002/acm2.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/08/2023] [Accepted: 04/01/2023] [Indexed: 06/09/2023] Open
Abstract
PURPOSE To compare the superficial dose when using brass mesh bolus (BMB), no bolus, or 3 mm tissue-equivalent bolus with a pseudo-flash volumetric modulated arc therapy (VMAT) breast treatment planning technique. METHODS Two different beam arrangements for right-sided irradiation and one beam arrangement for bilateral irradiation were planned on an inhomogeneous thorax phantom in accordance with our clinical practice for VMAT postmastectomy radiotherapy (PMRT). Plans were optimized using pseudo-flash and representative critical organ optimization structures were used to shape the dose. Plans were delivered without bolus, with 3 mm tissue-equivalent bolus (TEB), or with one-layer BMB. Optically stimulated luminescence dosimeter (OSLD) and radiochromic film measurements were taken and analyzed to determine the superficial dose in each case and the relative enhancement from the no bolus delivery. RESULTS Superficial dose measured with OSLDs was found to be 76.4 ± 4.5%, 103.0 ± 6.1%, and 98.1 ± 5.8% of prescription for no physical bolus (NB), TEB, and BMB, respectively. Superficial dose was observed to increase from lateral to medial points when measured with film. However, the relative increase in superficial dose from NB was consistent across the profile with an increase of 43 ± 2.1% and 34 ± 3.3% of prescription for TEB and BMB, respectively. The results are in good agreement with expectations from the literature and the experience with tangential radiotherapy. CONCLUSION Three millimeter TEB and one-layer BMB were shown to provide similar enhancement to the superficial dose compared to delivery without bolus. BMB, which does not significantly affect dose at depth and is more conformal to the patient surface, is an acceptable alternative to 3 mm TEB for chest wall PMRT patients treated with pseudo-flash PMRT.
Collapse
Affiliation(s)
- Timothy D. Keiper
- Department of Radiation Medicine and Applied SciencesMoores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
- California Protons Cancer Therapy CenterSan DiegoCaliforniaUSA
| | - Kelly Kisling
- Department of Radiation Medicine and Applied SciencesMoores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Patricia Hua
- Department of Radiation Medicine and Applied SciencesMoores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ryan P. Manger
- Department of Radiation Medicine and Applied SciencesMoores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
13
|
Nikovia V, Chinis E, Gkantaifi A, Marketou M, Mazonakis M, Charalampakis N, Mavroudis D, Orfanidou KV, Varveris A, Antoniadis C, Tolia M. Current Cardioprotective Strategies for the Prevention of Radiation-Induced Cardiotoxicity in Left-Sided Breast Cancer Patients. J Pers Med 2023; 13:1038. [PMID: 37511651 PMCID: PMC10381791 DOI: 10.3390/jpm13071038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignancy in females, accounting for the majority of cancer-related deaths worldwide. There is well-established understanding about the effective role of radiotherapy (RT) in BC therapeutic strategies, offering a better local-regional control, prolonged survival, and improved quality of life for patients. However, it has been proven that conventional RT modalities, especially in left-sided BC cases, are unable to avoid the administration of high RT doses to the heart, thus resulting in cardiotoxicity and promoting long-term cardiovascular diseases (CVD). Recent radiotherapeutic techniques, characterized by dosimetric dose restrictions, target volume revision/modifications, an increased awareness of risk factors, and consistent follow-ups, have created an advantageous context for a significant decrease inpost-RT CVD incidence. AIM This review presents the fundamental role of current cardioprotective strategies in the prevention of cardiotoxic effects in left-BCRT. MATERIAL AND METHODS A literature search was conducted up to January 2023 using the Cochrane Central Register of Controlled Trials and PubMed Central databases. Our review refers to new radiotherapeutic techniques carried out on patients after BC surgery. Specifically, a dose evaluation of the heart and left anterior descending coronary artery (LADCA) was pointed out for all the included studies, depending on the implemented RT modality, bed positioning, and internal mammary lymph nodes radiation. RESULTS Several studies reporting improved heart sparing with new RT techniques in BC patients were searched. In addition to the RT modality, which definitely determines the feasibility of achieving lower doses for the organs at risk (OARs), better target coverage, dose conformity and homogeneity, and the patient's position, characteristics, and anatomy may also affect the evaluated RT dose to the whole heart and its substructures. CONCLUSIONS Modern BC RT techniques seem to enable the administration of lower doses to the OARs without compromising on the target coverage. The analysis of several anatomical parameters and the assessment of cardiac biomarkers potentiate the protective effect of these new irradiation modalities, providing a holistic approach to the radiation-associated risks of cardiac disease for BC patients. Despite technological advances, an inevitable cardiac radiation risk still exists, while adverse cardiac events may be observed even many years after RT. Studies with longer follow-ups are required in order to determine the effectiveness of modern breast RT techniques.
Collapse
Affiliation(s)
- Vasiliki Nikovia
- Medical School, University of Crete, Vassilika, 71110 Heraklion, Greece
| | - Evangelos Chinis
- Medical School, University of Crete, Vassilika, 71110 Heraklion, Greece
| | - Areti Gkantaifi
- Radiotherapy Department, Theagenio Anticancer Hospital of Thessaloniki, 54639 Thessaloniki, Greece
| | - Maria Marketou
- Cardiology Department, University General Hospital of Heraklion, Heraklion, 71110 Heraklion, Greece
| | - Michalis Mazonakis
- Department of Medical Physics, Faculty of Medicine, University of Cret, Iraklion, P.O. Box 2208, 71003 Heraklion, Greece
| | | | - Dimitrios Mavroudis
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | | | - Antonios Varveris
- Department of Radiotherapy, University Hospital/Medical School, University of Crete, Vassilika, 71110 Heraklion, Greece
| | - Chrysostomos Antoniadis
- Department of Radiotherapy, University Hospital/Medical School, University of Crete, Vassilika, 71110 Heraklion, Greece
| | - Maria Tolia
- Department of Radiotherapy, University Hospital/Medical School, University of Crete, Vassilika, 71110 Heraklion, Greece
| |
Collapse
|
14
|
Miyata J, Tominaga Y, Kondo K, Sonoda Y, Hanazawa H, Sakai M, Itasaka S, Oita M, Kuroda M. Dosimetric comparison of pencil beam scanning proton therapy with or without multi-leaf collimator versus volumetric-modulated arc therapy for treatment of malignant glioma. Med Dosim 2023; 48:105-112. [PMID: 36914455 DOI: 10.1016/j.meddos.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/14/2023]
Abstract
This study aimed to examine the dosimetric effect of intensity-modulated proton therapy (IMPT) with a multi-leaf collimator (MLC) in treating malignant glioma. We compared the dose distribution of IMPT with or without MLC (IMPTMLC+ or IMPTMLC-, respectively) using pencil beam scanning and volumetric-modulated arc therapy (VMAT) in simultaneous integrated boost (SIB) plans for 16 patients with malignant gliomas. High- and low-risk target volumes were assessed using D2%, V90%, V95%, homogeneity index (HI), and conformity index (CI). Organs at risk (OARs) were evaluated using the average dose (Dmean) and D2%. Furthermore, the dose to the normal brain was evaluated using from V5Gy to V40Gy at 5 Gy intervals. There were no significant differences among all techniques regarding V90%, V95%, and CI for the targets. HI and D2% for IMPTMLC+ and IMPTMLC- were significantly superior to those for VMAT (p < 0.01). The Dmean and D2% of all OARs for IMPTMLC+ were equivalent or superior to those of other techniques. Regarding the normal brain, there was no significant difference in V40Gy among all techniques whereas V5Gy to V35Gy in IMPTMLC+ were significantly smaller than those in IMPTMLC- (with differences ranging from 0.45% to 4.80%, p < 0.05) and VMAT (with differences ranging from 6.85% to 57.94%, p < 0.01). IMPTMLC+ could reduce the dose to OARs, while maintaining target coverage compared to IMPTMLC- and VMAT in treating malignant glioma.
Collapse
Affiliation(s)
- Junya Miyata
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Okayama, Japan; Department of Radiological Technology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Yuki Tominaga
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Okayama, Japan; Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic, Osaka, Osaka, Japan
| | - Kazuto Kondo
- Department of Radiological Technology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Yasuaki Sonoda
- Department of Radiological Technology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Hideki Hanazawa
- Department of Radiation Oncology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Mami Sakai
- Department of Radiation Oncology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Satoshi Itasaka
- Department of Radiation Oncology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Masataka Oita
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Okayama, Japan.
| | - Masahiro Kuroda
- Graduate School of Health Sciences, Okayama University, Okayama, Okayama, Japan
| |
Collapse
|
15
|
Balasubramanian S, Shobana MK. A Dosimetric and Radiobiological Comparison of Intensity Modulated Radiotherapy, Volumetric Modulated Arc Therapy and Helical Tomotherapy Planning Techniques in Synchronous Bilateral Breast Cancer. Asian Pac J Cancer Prev 2022; 23:4233-4241. [PMID: 36580006 PMCID: PMC9971452 DOI: 10.31557/apjcp.2022.23.12.4233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The present investigation intends to identify the optimal radiotherapy treatment plan for synchronous bilateral breast cancer (SBBC) using dosimetric and radiobiological indexes for three techniques, namely, helical tomotherapy (HT), volumetric modulated arc therapy (VMAT), and intensity-modulated radiotherapy (IMRT). METHODS Twenty SBBC treated female patients treatment planning data (average age of 52.5 years) were used as the sample for the present study. Three different plans were created using 50 Gy in a 25 fraction dose regime. Poisson, Niemierko, and LKB models were applied for calculating normal tissue complication probability (NTCP) and tumour control probability (TCP). RESULT The target average dose comparison between IMRT with HT and VMAT with HT was highly substantial (P=0.001). The percentage of TCP for IMRT, VMAT, and HT in the Poisson model were 93.70±0.28, 94.68±0.30, and 94.34±0.57, respectively (p<0.05). The dose maximum was lower for the whole lung in the HT plan, with an average dose of 49.31Gy±3.9 (p<0.009). The NTCP values of both Niemierko and LKB models were lower for the heart, lungs, and liver for the IMRT plan. CONCLUSION The sparing of organs at risk was higher in the HT plan dosimetrically, and the TCP was higher in the three techniques. The comparison between the three techniques shows that the IMRT and HT techniques could be considered for treating SBBC.
Collapse
Affiliation(s)
- S Balasubramanian
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore (632014), India. ,Department of Radiation Oncology, Max Super Speciality Hospital, Ghaziabad (201012), India.
| | - MK Shobana
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore (632014), India. ,For Correspondence:
| |
Collapse
|
16
|
Stowe HB, Andruska ND, Reynoso F, Thomas M, Bergom C. Heart Sparing Radiotherapy Techniques in Breast Cancer: A Focus on Deep Inspiration Breath Hold. BREAST CANCER: TARGETS AND THERAPY 2022; 14:175-186. [PMID: 35899145 PMCID: PMC9309321 DOI: 10.2147/bctt.s282799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
Adjuvant radiation therapy is a critical component of breast cancer management. However, when breast cancer patients receive incidental radiation to the heart, there is an increased risk of cardiac disease and mortality. This is most common for patients with left-sided breast cancers and those receiving nodal irradiation as part of treatment. The overall risk of cardiac toxicity increases 4–16% with each Gray increase in mean heart radiation dose, with data suggesting that no lower limit exists which would eliminate cardiac risk entirely. Radiation techniques have improved over time, leading to lower cardiac radiation exposure than in the past. This decline is expected to reduce the incidence of radiation-induced heart dysfunction in patients. Deep inspiration breath hold (DIBH) is one such technique that was developed to reduce the risk of cardiac death and coronary events. DIBH is a non-invasive approach that capitalizes on the natural physiology of the respiratory cycle to increase the distance between the heart and the therapeutic target throughout the course of radiation therapy. DIBH has been shown to decrease the mean incidental radiation doses to the heart and left anterior descending coronary artery by approximately 20–70%. In this review, we summarize different techniques for DIBH and discuss recent data on this technique.
Collapse
Affiliation(s)
- Hayley B Stowe
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Neal D Andruska
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Francisco Reynoso
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Maria Thomas
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardio-Oncology Center of Excellence, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Alvin J. Siteman Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Correspondence: Carmen Bergom, Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA, Email
| |
Collapse
|
17
|
Lai L, Yen T, Liu Y. A comprehensive dosimetric comparison in adjuvant radiotherapy for various regional lymph node irradiations of left-side breast cancer using volumetric modulated arc therapy. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
18
|
Jiang S, Xue Y, Li M, Yang C, Zhang D, Wang Q, Wang J, Chen J, You J, Yuan Z, Wang X, Zhang X, Wang W. Artificial Intelligence-Based Automated Treatment Planning of Postmastectomy Volumetric Modulated Arc Radiotherapy. Front Oncol 2022; 12:871871. [PMID: 35547874 PMCID: PMC9084926 DOI: 10.3389/fonc.2022.871871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
As a useful tool, artificial intelligence has surpassed human beings in many fields. Artificial intelligence-based automated radiotherapy planning strategies have been proposed in lots of cancer sites and are the future of treatment planning. Postmastectomy radiotherapy (PMRT) decreases local recurrence probability and improves overall survival, and volumetric modulated arc therapy (VMAT) has gradually become the mainstream technique of radiotherapy. However, there are few customized effective automated treatment planning schemes for postmastectomy VMAT so far. This study investigated an artificial intelligence based automated planning using the MD Anderson Cancer Center AutoPlan (MDAP) system and Pinnacle treatment planning system (TPS), to effectively generate high-quality postmastectomy VMAT plans. In this study, 20 patients treated with PMRT were retrospectively investigated, including 10 left- and 10 right-sided postmastectomy patients. Chest wall and the supraclavicular, subclavicular, and internal mammary regions were delineated as target volume by radiation oncologists, and 50 Gy in 25 fractions was prescribed. Organs at risk including heart, spinal cord, left lung, right lung, and lungs were also contoured. All patients were planned with VMAT using 2 arcs. An optimization objective template was summarized based on the dose of clinical plans and requirements from oncologists. Several treatment planning parameters were investigated using an artificial intelligence algorithm, including collimation angle, jaw collimator mode, gantry spacing resolution (GSR), and number of start optimization times. The treatment planning parameters with the best performance or that were most preferred were applied to the automated treatment planning method. Dosimetric indexes of automated treatment plans (autoplans) and manual clinical plans were compared by the paired t-test. The jaw tracking mode, 2-degree GSR, and 3 rounds of optimization were selected in all the PMRT autoplans. Additionally, the 350- and 10-degree collimation angles were selected in the left- and right-sided PMRT autoplans, respectively. The uniformity index and conformity index of the planning target volume, mean heart dose, spinal cord D0.03cc, mean lung dose, and V5Gy and V20Gy of the lung of autoplans were significantly better compared with the manual clinical plans. An artificial intelligence-based automated treatment planning method for postmastectomy VMAT has been developed to ensure plan quality and improve clinical efficiency.
Collapse
Affiliation(s)
- Shengpeng Jiang
- Department of Radiation Ocology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yi Xue
- Department of Radiation Ocology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ming Li
- Department of Radiation Ocology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Chengwen Yang
- Department of Radiation Ocology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Daguang Zhang
- Department of Radiation Ocology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Qingxin Wang
- Department of Radiation Ocology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jing Wang
- Department of Radiation Ocology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jie Chen
- Department of Radiation Ocology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jinqiang You
- Department of Radiation Ocology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Zhiyong Yuan
- Department of Radiation Ocology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiaochun Wang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaodong Zhang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wei Wang
- Department of Radiation Ocology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
19
|
Tatsuno S, Doi H, Okada W, Inoue E, Nakamatsu K, Tanooka M, Tanaka M, Nishimura Y. Risk factors for radiation pneumonitis after rotating gantry intensity-modulated radiation therapy for lung cancer. Sci Rep 2022; 12:590. [PMID: 35022506 PMCID: PMC8755838 DOI: 10.1038/s41598-021-04601-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
The risk factors for severe radiation pneumonitis (RP) in patients with lung cancer who undergo rotating gantry intensity-modulated radiation therapy (IMRT) using volumetric modulated arc therapy (VMAT) or helical tomotherapy (HT) are poorly understood. Fifty-two patients who received rotating gantry IMRT for locally advanced lung cancer were included in this retrospective study. In total, 31 and 21 patients received VMAT and HT, respectively. The median follow-up duration was 14 months (range, 5.2–33.6). Twenty (38%) and eight (15%) patients developed grade ≥ 2 and ≥ 3 RP, respectively. In multivariate analysis, lung V5 ≥ 40% was associated with grade ≥ 2 RP (P = 0.02), and past medical history of pneumonectomy and total lung volume ≤ 3260 cc were independently associated with grade ≥ 3 RP (P = 0.02 and P = 0.03, respectively). Rotating gantry IMRT was feasible and safe in patients with lung cancer undergoing definitive radiotherapy. Reducing lung V5 may decrease the risk of symptomatic RP, and care should be taken to avoid severe RP after radiotherapy in patients with a past medical history of pneumonectomy and small total lung volume.
Collapse
Affiliation(s)
- Saori Tatsuno
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hiroshi Doi
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Wataru Okada
- Department of Radiotherapy, Takarazuka City Hospital, 4-5-2 Kohama, Takarazuka, Hyogo, Japan
| | - Eri Inoue
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kiyoshi Nakamatsu
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Masao Tanooka
- Department of Radiotherapy, Takarazuka City Hospital, 4-5-2 Kohama, Takarazuka, Hyogo, Japan
| | - Masahiro Tanaka
- Department of Radiotherapy, Takarazuka City Hospital, 4-5-2 Kohama, Takarazuka, Hyogo, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
20
|
Zhang Y, Huang Y, Ding S, Liang J, Kuang J, Mao Q, Ying W, Shu Y, Li J, Jiang C. A clinical trial to compare a 3D-printed bolus with a conventional bolus with the aim of reducing cardiopulmonary exposure in postmastectomy patients with volumetric modulated arc therapy. Cancer Med 2021; 11:1037-1047. [PMID: 34939343 PMCID: PMC8855922 DOI: 10.1002/cam4.4496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/13/2021] [Accepted: 12/03/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND We compared the dosimetry, application, and acute toxicity of a 3D-printed and a conventional bolus for postmastectomy radiotherapy (PMRT) with volumetric modulated arc therapy (VMAT). Materials and Methods Eligible patients (n = 75) with PMRT breast cancer were randomly selected to receive VMAT with a conventional bolus or a 3D-printed bolus. The primary endpoint was a 10% decrease in the mean heart dose to left-sided breast cancer patients. The secondary endpoint was a 5% decrease in the mean ipsilateral lung dose to all patients. A comparative analysis was carried out of the dosimetry, normal tissue complication probability (NTCP), acute skin toxicity, and radiation pneumonitis. RESULTS Compared to a conventional bolus, the mean heart dose in left-sided breast cancer was reduced by an average of 0.8 Gy (5.5 ± 1.3 Gy vs. 4.7 ± 0.8 Gy, p = 0.035) and the mean dose to the ipsilateral lung was also reduced by an average of 0.8 Gy (12.4 ± 1.0 Gy vs. 11.6 ± 0.8 Gy, p < 0.001). The values for V50Gy of the PTV of the chest wall for the 3D-printed and conventional boluses were 95.4 ± 0.6% and 94.8 ± 0.8% (p = 0.026) and the values for the CI of the entire PTV were 0.83 ± 0.02 and 0.80 ± 0.03 (p < 0.001), respectively. The NTCP for the 3D-printed bolus was also reduced to an average of 0.14% (0.32 ± 0.19% vs. 0.18 ± 0.11%, p = 0.017) for the heart and 0.45% (3.70 ± 0.67% vs. 3.25 ± 0.18%, p < 0.001) for the ipsilateral lung. Grade 2 and Grade 1 radiation pneumonitis were 0.0% versus 7.5% and 14.3% versus 20.0%, respectively (p = 0.184). CONCLUSIONS The 3D-printed bolus may reduce cardiopulmonary exposure in postmastectomy patients with volumetric modulated arc therapy.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, PR China
| | - Yuling Huang
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, PR China
| | - Shenggou Ding
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, PR China
| | - Jinghui Liang
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, PR China
| | - Jie Kuang
- School of Public Health, Nanchang University, Nanchang, PR China
| | - Qingfeng Mao
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, PR China
| | - Weiliang Ying
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, PR China
| | - Yuxian Shu
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, PR China
| | - Jingao Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, PR China.,Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma Nanchang, Nanchang, PR China.,Medical College of Nanchang University, Nanchang, PR China
| | - Chunling Jiang
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, PR China.,Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma Nanchang, Nanchang, PR China.,Medical College of Nanchang University, Nanchang, PR China
| |
Collapse
|