1
|
Rai J, Mai DVC, Drami I, Pring ET, Gould LE, Lung PFC, Glover T, Shur JD, Whitcher B, Athanasiou T, Jenkins JT. MRI radiomics prediction modelling for pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review and meta-analysis. Abdom Radiol (NY) 2025:10.1007/s00261-025-04953-5. [PMID: 40293520 DOI: 10.1007/s00261-025-04953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE Predicting response to neoadjuvant therapy in locally advanced rectal cancer (LARC) is challenging. Organ preservation strategies can be offered to patients with complete clinical response. We aim to evaluate MRI-derived radiomics models in predicting complete pathological response (pCR). METHODS Search included MEDLINE, Embase and Cochrane Central Register of Controlled Trials (CENTRAL) and Cochrane Database of Systematic Reviews (CDSR) for studies published before 1st February 2024. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS) tools were used to assess quality of included study. The research protocol was registered in PROSPERO (CRD42024512865). We calculated pooled area under the receiver operating characteristic curve (AUC) using a random-effects model. To compare AUC between subgroups the Hanley & McNeil test was performed. RESULTS Forty-four eligible studies (12,714 patients) were identified for inclusion in the systematic review. We selected thirty-five studies including 10,543 patients for meta-analysis. The pooled AUC for MRI radiomics predicted pCR in LARC was 0.87 (95% CI 0.84-0.89). In the subgroup analysis 3 T MRI field intensity had higher pooled AUC 0.9 (95% CI 0.87-0.94) than 1.5 T pooled AUC 0.82 (95% CI 0.80-0.83) p < 0.001. Asian ethnicity had higher pooled AUC 0.9 (95% CI 0.87-0.93) than non-Asian pooled AUC 0.8 (95% CI 0.75-0.84) p < 0.001. CONCLUSION We have demonstrated that 3 T MRI field intensity provides a superior predictive performance. The role of ethnicity on radiomics features needs to be explored in future studies. Further research in the field of MRI radiomics is important as accurate prediction for pCR can lead to organ preservation strategy in LARC.
Collapse
Affiliation(s)
- Jason Rai
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK.
- Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Dinh V C Mai
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ioanna Drami
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Edward T Pring
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Laura E Gould
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Phillip F C Lung
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Radiology, St Mark's the National Bowel Hospital, London, UK
| | - Thomas Glover
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Radiology, St Mark's the National Bowel Hospital, London, UK
| | - Joshua D Shur
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Brandon Whitcher
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, UK
- Research Centre for Optimal Health, University of Westminster, London, UK
| | - Thanos Athanasiou
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - John T Jenkins
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
2
|
Liao Z, Luo D, Tang X, Huang F, Zhang X. MRI-based radiomics for predicting pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review and meta-analysis. Front Oncol 2025; 15:1550838. [PMID: 40129922 PMCID: PMC11930822 DOI: 10.3389/fonc.2025.1550838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose To evaluate the value of MRI-based radiomics for predicting pathological complete response (pCR) after neoadjuvant chemoradiotherapy (NCRT) in patients with locally advanced rectal cancer (LARC) through a systematic review and meta-analysis. Methods A systematic literature search was conducted in PubMed, Embase, Proquest, Cochrane Library, and Web of Science databases, covering studies up to July 1st, 2024, on the diagnostic accuracy of MRI radiomics for predicting pCR in LARC patients following NCRT. Two researchers independently evaluated and selected studies using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and the Radiomics Quality Score (RQS) tool. A random-effects model was employed to calculate the pooled sensitivity, specificity, and diagnostic odds ratio (DOR) for MRI radiomics in predicting pCR. Meta-regression and subgroup analyses were performed to explore potential sources of heterogeneity. Statistical analyses were performed using RevMan 5.4, Stata 17.0, and Meta-Disc 1.4. Results A total of 35 studies involving 9,696 LARC patients were included in this meta-analysis. The average RQS score of the included studies was 13.91 (range 9.00-24.00), accounting for 38.64% of the total score. According to QUADAS-2, there were risks of bias in patient selection and flow and timing domain, though the overall quality of the studies was acceptable. MRI-based radiomics showed no significant threshold effect in predicting pCR (Spearman correlation coefficient=0.119, P=0.498) but exhibited high heterogeneity (I2≥50%). The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and DOR were 0.83, 0.82, 5.1, 0.23 and 27.22 respectively, with an area under the summary receiver operating characteristic (sROC) curve of 0.91. According to joint model analysis, publication year, country, multi-magnetic field strength, multi-MRI sequence, ROI structure, contour consistency, feature extraction software, and feature quantity after feature dimensionality reduction were potential sources of heterogeneity. Deeks' funnel plot suggested no significant publication bias (P=0.69). Conclusions MRI-based radiomics demonstrates high efficacy for predicting pCR in LARC patients following NCRT, holding significant promise for informing clinical decision-making processes and advancing individualized treatment in rectal cancer patients. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024611733.
Collapse
Affiliation(s)
| | | | | | | | - Xuhui Zhang
- Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
De-Giorgio F, Guerreri M, Gatta R, Bergamin E, De Vita V, Mancino M, Boldrini L, Sala E, Pascali VL. Exploring radiomic features of lateral cerebral ventricles in postmortem CT for postmortem interval estimation. Int J Legal Med 2025; 139:667-677. [PMID: 39702800 DOI: 10.1007/s00414-024-03396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
The aim of this study is to investigate the potential of radiomic features extracted from postmortem computed tomography (PMCT) scans of the lateral cerebral ventricles (LCVs) to provide information on the time since death, or postmortem interval (PMI), a critical aspect of forensic medicine. Periodic PMCT scans, referred to as "sequential scans", were obtained from twelve corpses with known times of death, ranging from 5.5 to 273 h postmortem. Radiomics features were then extracted from the LCVs, and a mixed-effect model, specifically designed for sequential data, was employed to assess the association between feature values and PMI. Four model variants were fitted to the data to identify the best functional form to explain the relationship between the variables. Significant associations were observed for features, the most significant being the median Hounsfield Units (HU) within the LCVs (p < 9.47 × 10⁻⁹), LCVs surface area (p < 4.69 × 10⁻⁶), L-major axis (p < 2.17 × 10⁻⁵), L-minor axis (p < 1.30 × 10⁻⁴), and HU entropy (p < 4.16 × 10⁻⁴). Our findings align with previous studies, supporting a logarithmic model for PMI-related changes in LCV volume and mean HU intensity value. This study highlights the potential of PMCT-based radiomics as source of complementary information that could be integrated into existing methods for PMI estimation. Our results support the application of a quantitative imaging approach in forensic investigations.
Collapse
Affiliation(s)
- Fabio De-Giorgio
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Michele Guerreri
- Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia, Brescia, Italy
| | - Roberto Gatta
- Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia, Brescia, Italy
| | - Eva Bergamin
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vittorio De Vita
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Matteo Mancino
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Boldrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Evis Sala
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo L Pascali
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
4
|
Casà C, Portik D, Abbasi AN, Miccichè F. Radiomics in early detection of bilio-pancreatic lesions: A narrative review. Best Pract Res Clin Gastroenterol 2025; 74:101997. [PMID: 40210337 DOI: 10.1016/j.bpg.2025.101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 04/12/2025]
Abstract
Radiomics is transforming the field of early detection of bilio-pancreatic lesions, offering significant advancements in diagnostic accuracy and personalized treatment planning. By extracting high-dimensional data from medical images such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), radiomics reveals complex patterns that remain undetectable through traditional imaging evaluation. This review synthesizes recent developments in radiomics, particularly its application to early detection of pancreatic cancer (PC) and biliary duct cancer (BDC). It highlights the role of machine learning algorithms and multi-parametric models in improving diagnostic performance and discusses challenges such as standardization, reproducibility, and the need for larger, multicenter datasets. The integration of radiomics with genomic data and liquid biopsies also presents future opportunities for more individualized patient care.
Collapse
Affiliation(s)
- Calogero Casà
- UOC di Radioterapia Oncologica, Ospedale Isola Tiberina - Gemelli Isola, Rome, Italy.
| | - Daniel Portik
- European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium.
| | - Ahmed Nadeem Abbasi
- Consultant Radiation Oncologist, The Aga Khan University, Karachi, Pakistan.
| | - Francesco Miccichè
- UOC di Radioterapia Oncologica, Ospedale Isola Tiberina - Gemelli Isola, Rome, Italy.
| |
Collapse
|
5
|
Boldrini L, Charles-Davies D, Romano A, Mancino M, Nacci I, Tran HE, Bono F, Boccia E, Gambacorta MA, Chiloiro G. Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:109463. [PMID: 39562260 DOI: 10.1016/j.ejso.2024.109463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/26/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Predicting pathological complete response (pCR) from pre or post-treatment features could be significant in improving the process of making clinical decisions and providing a more personalized treatment approach for better treatment outcomes. However, the lack of external validation of predictive models, missing in several published articles, is a major issue that can potentially limit the reliability and applicability of predictive models in clinical settings. Therefore, this systematic review described different externally validated methods of predicting response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) patients and how they could improve clinical decision-making. METHOD An extensive search for eligible articles was performed on PubMed, Cochrane, and Scopus between 2018 and 2023, using the keywords: (Response OR outcome) prediction AND (neoadjuvant OR chemoradiotherapy) treatment in 'locally advanced Rectal Cancer'. INCLUSION CRITERIA (i) Studies including patients diagnosed with LARC (T3/4 and N- or any T and N+) by pre-medical imaging and pathological examination or as stated by the author (ii) Standardized nCRT completed. (iii) Treatment with long or short course radiotherapy. (iv) Studies reporting on the prediction of response to nCRT with pathological complete response (pCR) as the primary outcome. (v) Studies reporting external validation results for response prediction. (vi) Regarding language restrictions, only articles in English were accepted. EXCLUSION CRITERIA (i) We excluded case report studies, conference abstracts, reviews, studies reporting patients with distant metastases at diagnosis. (ii) Studies reporting response prediction with only internally validated approaches. DATA COLLECTION AND QUALITY ASSESSMENT Three researchers (DC-D, FB, HT) independently reviewed and screened titles and abstracts of all articles retrieved after de-duplication. Possible disagreements were resolved through discussion among the three researchers. If necessary, three other researchers (LB, GC, MG) were consulted to make the final decision. The extraction of data was performed using the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) template and quality assessment was done using the Prediction model Risk Of Bias Assessment Tool (PROBAST). RESULTS A total of 4547 records were identified from the three databases. After excluding 392 duplicate results, 4155 records underwent title and abstract screening. Three thousand and eight hundred articles were excluded after title and abstract screening and 355 articles were retrieved. Out of the 355 retrieved articles, 51 studies were assessed for eligibility. Nineteen reports were then excluded due to lack of reports on external validation, while 4 were excluded due to lack of evaluation of pCR as the primary outcome. Only Twenty-eight articles were eligible and included in this systematic review. In terms of quality assessment, 89 % of the models had low concerns in the participants domain, while 11 % had an unclear rating. 96 % of the models were of low concern in both the predictors and outcome domains. The overall rating showed high applicability potential of the models with 82 % showing low concern, while 18 % were deemed unclear. CONCLUSION Most of the external validated techniques showed promising performances and the potential to be applied in clinical settings, which is a crucial step towards evidence-based medicine. However, more studies focused on the external validations of these models in larger cohorts is necessary to ensure that they can reliably predict outcomes in diverse populations.
Collapse
Affiliation(s)
- Luca Boldrini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Diepriye Charles-Davies
- Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.
| | - Angela Romano
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Matteo Mancino
- Istituto di Radiologia, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Ilaria Nacci
- Istituto di Radiologia, Università Cattolica Del Sacro Cuore, Rome, Italy; Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Huong Elena Tran
- Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Francesco Bono
- Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Edda Boccia
- Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Antonietta Gambacorta
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Istituto di Radiologia, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Giuditta Chiloiro
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
6
|
Liu Y, Ma Z, Bao Y, Wang X, Men Y, Sun X, Ye F, Men K, Qin J, Bi N, Xue L, Hui Z. Integrating MR radiomics and dynamic hematological factors predicts pathological response to neoadjuvant chemoradiotherapy in esophageal cancer. Heliyon 2024; 10:e33702. [PMID: 39050414 PMCID: PMC11268188 DOI: 10.1016/j.heliyon.2024.e33702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose We aimed to integrate MR radiomics and dynamic hematological factors to build a model to predict pathological complete response (pCR) to neoadjuvant chemoradiotherapy (NCRT) in esophageal squamous cell carcinoma (ESCC). Methods Patients with ESCC receiving NCRT and esophagectomy between September 2014 and September 2022 were retrospectively included. All patients underwent pre-treatment T2-weighted imaging as well as pre-treatment and post-treatment blood tests. Patients were randomly divided to training set and testing set at a ratio of 7:3. Machine learning models were constructed based on MR radiomics and hematological factors to predict pCR, respectively. A nomogram model was developed to integrate MR radiomics and hematological factors. Model performances were evaluated by areas under curves (AUCs), sensitivity, specificity, positive predictive value and negative. Results A total of 82 patients were included, of whom 39 (47.6 %) achieved pCR. The hematological model built with four hematological factors had an AUC of 0.628 (95%CI 0.391-0.852) in the testing set. Two out of 1106 extracted features were selected to build the radiomics model with an AUC of 0.821 (95%CI 0.641-0.981). The nomogram model integrating hematological factors and MR radiomics had best predictive performance, with an AUC of 0.904 (95%CI 0.770-1.000) in the testing set. Conclusion An integrated model using dynamic hematological factors and MR radiomics is constructed to accurately predicted pCR to NCRT in ESCC, which may be potentially useful to assist individualized preservation treatment of the esophagus.
Collapse
Affiliation(s)
- Yunsong Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeliang Ma
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongxing Bao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Men
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xujie Sun
- Department of Pathology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Ye
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuo Men
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianjun Qin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhouguang Hui
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
He J, Wang SX, Liu P. Machine learning in predicting pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer using MRI: a systematic review and meta-analysis. Br J Radiol 2024; 97:1243-1254. [PMID: 38730550 PMCID: PMC11186567 DOI: 10.1093/bjr/tqae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/15/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVES To evaluate the performance of machine learning models in predicting pathological complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer using magnetic resonance imaging. METHODS We searched PubMed, Embase, Cochrane Library, and Web of Science for studies published before March 2024. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to assess the methodological quality of the included studies, random-effects models were used to calculate sensitivity and specificity, I2 values were used for heterogeneity measurements, and subgroup analyses were carried out to detect potential sources of heterogeneity. RESULTS A total of 1699 patients from 24 studies were included. For machine learning models in predicting pCR to nCRT, the meta-analysis calculated a pooled area under the curve (AUC) of 0.91 (95% CI, 0.88-0.93), pooled sensitivity of 0.83 (95% CI, 0.74-0.89), and pooled specificity of 0.86 (95% CI, 0.80-0.91). We investigated 6 studies that mainly contributed to heterogeneity. After performing meta-analysis again excluding these 6 studies, the heterogeneity was significantly reduced. In subgroup analysis, the pooled AUC of the deep-learning model was 0.93 and 0.89 for the traditional statistical model; the pooled AUC of studies that used diffusion-weighted imaging (DWI) was 0.90 and 0.92 in studies that did not use DWI; the pooled AUC of studies conducted in China was 0.93, and was 0.83 in studies conducted in other countries. CONCLUSIONS This systematic study showed that machine learning has promising potential in predicting pCR to nCRT in patients with locally advanced rectal cancer. Compared to traditional machine learning models, although deep-learning-based studies are less predominant and more heterogeneous, they are able to obtain higher AUC. ADVANCES IN KNOWLEDGE Compared to traditional machine learning models, deep-learning-based studies are able to obtain higher AUC, although they are less predominant and more heterogeneous. Together with clinical information, machine learning-based models may bring us closer towards precision medicine.
Collapse
Affiliation(s)
- Jia He
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha 410002, China
| | | | - Peng Liu
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha 410002, China
| |
Collapse
|
8
|
Valentini V, Alfieri S, Coco C, D'Ugo D, Crucitti A, Pacelli F, Persiani R, Sofo L, Picciocchi A, Doglietto GB, Barbaro B, Vecchio FM, Ricci R, Damiani A, Savino MC, Boldrini L, Cellini F, Meldolesi E, Romano A, Chiloiro G, Gambacorta MA. Four steps in the evolution of rectal cancer managements through 40 years of clinical practice: Pioneering, standardization, challenges and personalization. Radiother Oncol 2024; 194:110190. [PMID: 38438019 DOI: 10.1016/j.radonc.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Affiliation(s)
- Vincenzo Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Sergio Alfieri
- Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Coco
- U.O.C. Chirurgia Generale 2, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Domenico D'Ugo
- Unità di chirurgia generale, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Fabio Pacelli
- Unità chirurgica del peritoneo e del retroperitoneo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Roberto Persiani
- Unità di chirurgia generale, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luigi Sofo
- Divisione di Chirurgia Addominale, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Aurelio Picciocchi
- Dipartimento di Chirurgia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Battista Doglietto
- Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Brunella Barbaro
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Fabio Maria Vecchio
- Dipartimento di Patologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Riccardo Ricci
- Dipartimento di Patologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Damiani
- Gemelli Generator Real World Data Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Chiara Savino
- Gemelli Generator Real World Data Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Cellini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Elisa Meldolesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Angela Romano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuditta Chiloiro
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Maria Antonietta Gambacorta
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
9
|
Shen H, Jin Z, Chen Q, Zhang L, You J, Zhang S, Zhang B. Image-based artificial intelligence for the prediction of pathological complete response to neoadjuvant chemoradiotherapy in patients with rectal cancer: a systematic review and meta-analysis. LA RADIOLOGIA MEDICA 2024; 129:598-614. [PMID: 38512622 DOI: 10.1007/s11547-024-01796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE Artificial intelligence (AI) holds enormous potential for noninvasively identifying patients with rectal cancer who could achieve pathological complete response (pCR) following neoadjuvant chemoradiotherapy (nCRT). We aimed to conduct a meta-analysis to summarize the diagnostic performance of image-based AI models for predicting pCR to nCRT in patients with rectal cancer. METHODS This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A literature search of PubMed, Embase, Cochrane Library, and Web of Science was performed from inception to July 29, 2023. Studies that developed or utilized AI models for predicting pCR to nCRT in rectal cancer from medical images were included. The Quality Assessment of Diagnostic Accuracy Studies-AI was used to appraise the methodological quality of the studies. The bivariate random-effects model was used to summarize the individual sensitivities, specificities, and areas-under-the-curve (AUCs). Subgroup and meta-regression analyses were conducted to identify potential sources of heterogeneity. Protocol for this study was registered with PROSPERO (CRD42022382374). RESULTS Thirty-four studies (9933 patients) were identified. Pooled estimates of sensitivity, specificity, and AUC of AI models for pCR prediction were 82% (95% CI: 76-87%), 84% (95% CI: 79-88%), and 90% (95% CI: 87-92%), respectively. Higher specificity was seen for the Asian population, low risk of bias, and deep-learning, compared with the non-Asian population, high risk of bias, and radiomics (all P < 0.05). Single-center had a higher sensitivity than multi-center (P = 0.001). The retrospective design had lower sensitivity (P = 0.012) but higher specificity (P < 0.001) than the prospective design. MRI showed higher sensitivity (P = 0.001) but lower specificity (P = 0.044) than non-MRI. The sensitivity and specificity of internal validation were higher than those of external validation (both P = 0.005). CONCLUSIONS Image-based AI models exhibited favorable performance for predicting pCR to nCRT in rectal cancer. However, further clinical trials are warranted to verify the findings.
Collapse
Affiliation(s)
- Hui Shen
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Zhe Jin
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Qiuying Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Lu Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Jingjing You
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China.
| |
Collapse
|
10
|
Miccichè F, Rizzo G, Casà C, Leone M, Quero G, Boldrini L, Bulajic M, Corsi DC, Tondolo V. Role of radiomics in predicting lymph node metastasis in gastric cancer: a systematic review. Front Med (Lausanne) 2023; 10:1189740. [PMID: 37663653 PMCID: PMC10469447 DOI: 10.3389/fmed.2023.1189740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
INTRODUCTION Gastric cancer (GC) is an aggressive and clinically heterogeneous tumor, and better risk stratification of lymph node metastasis (LNM) could lead to personalized treatments. The role of radiomics in the prediction of nodal involvement in GC has not yet been systematically assessed. This study aims to assess the role of radiomics in the prediction of LNM in GC. METHODS A PubMed/MEDLINE systematic review was conducted to assess the role of radiomics in LNM. The inclusion criteria were as follows: i. original articles, ii. articles on radiomics, and iii. articles on LNM prediction in GC. All articles were selected and analyzed by a multidisciplinary board of two radiation oncologists and one surgeon, under the supervision of one radiation oncologist, one surgeon, and one medical oncologist. RESULTS A total of 171 studies were obtained using the search strategy mentioned on PubMed. After the complete selection process, a total of 20 papers were considered eligible for the analysis of the results. Radiomics methods were applied in GC to assess the LNM risk. The number of patients, imaging modalities, type of predictive models, number of radiomics features, TRIPOD classification, and performances of the models were reported. CONCLUSIONS Radiomics seems to be a promising approach for evaluating the risk of LNM in GC. Further and larger studies are required to evaluate the clinical impact of the inclusion of radiomics in a comprehensive decision support system (DSS) for GC.
Collapse
Affiliation(s)
- Francesco Miccichè
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Gianluca Rizzo
- U.O.C. di Chirurgia Digestiva e del Colon-Retto, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Calogero Casà
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Mariavittoria Leone
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Giuseppe Quero
- U.O.C. di Chirurgia Digestiva, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Boldrini
- U.O.C. di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Milutin Bulajic
- U.O.C. di Endoscopia Digestiva, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | | | - Vincenzo Tondolo
- U.O.C. di Chirurgia Digestiva e del Colon-Retto, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| |
Collapse
|
11
|
Casà C, Corvari B, Cellini F, Cornacchione P, D’Aviero A, Reina S, Di Franco S, Salvati A, Colloca GF, Cesario A, Patarnello S, Balducci M, Morganti AG, Valentini V, Gambacorta MA, Tagliaferri L. KIT 1 (Keep in Touch) Project-Televisits for Cancer Patients during Italian Lockdown for COVID-19 Pandemic: The Real-World Experience of Establishing a Telemedicine System. Healthcare (Basel) 2023; 11:1950. [PMID: 37444784 PMCID: PMC10340416 DOI: 10.3390/healthcare11131950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
UNLABELLED To evaluate the adoption of an integrated eHealth platform for televisit/monitoring/consultation during the COVID-19 pandemic. METHODS During the lockdown imposed by the Italian government during the COVID19 pandemic spread, a dedicated multi-professional working group was set up in the Radiation Oncology Department with the primary aim of reducing patients' exposure to COVID-19 by adopting de-centralized/remote consultation methodologies. Each patient's clinical history was screened before the visit to assess if a traditional clinical visit would be recommended or if a remote evaluation was to be preferred. Real world data (RWD) in the form of patient-reported outcomes (PROMs) and patient reported experiences (PREMs) were collected from patients who underwent televisit/teleconsultation through the eHealth platform. RESULTS During the lockdown period (from 8 March to 4 May 2020) a total of 1956 visits were managed. A total of 983 (50.26%) of these visits were performed via email (to apply for and to upload of documents) and phone call management; 31 visits (1.58%) were performed using the eHealth system. Substantially, all patients found the eHealth platform useful and user-friendly, consistently indicating that this type of service would also be useful after the pandemic. CONCLUSIONS The rapid implementation of an eHealth system was feasible and well-accepted by the patients during the pandemic. However, we believe that further evidence is to be generated to further support large-scale adoption.
Collapse
Affiliation(s)
- Calogero Casà
- Fatebenefratelli Isola Tiberina-Gemelli Isola, Via di Ponte Quattro Capi 39, 00186 Rome, Italy;
| | - Barbara Corvari
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (B.C.); (F.C.); (G.F.C.); (A.C.); (S.P.); (M.B.); (V.V.); (M.A.G.); (L.T.)
| | - Francesco Cellini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (B.C.); (F.C.); (G.F.C.); (A.C.); (S.P.); (M.B.); (V.V.); (M.A.G.); (L.T.)
| | - Patrizia Cornacchione
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (B.C.); (F.C.); (G.F.C.); (A.C.); (S.P.); (M.B.); (V.V.); (M.A.G.); (L.T.)
| | - Andrea D’Aviero
- Mater Olbia Hospital, SS 125 Orientale Sarda, 07026 Olbia, Italy;
| | - Sara Reina
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (S.R.); (S.D.F.); (A.S.)
| | - Silvia Di Franco
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (S.R.); (S.D.F.); (A.S.)
| | - Alessandra Salvati
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (S.R.); (S.D.F.); (A.S.)
| | - Giuseppe Ferdinando Colloca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (B.C.); (F.C.); (G.F.C.); (A.C.); (S.P.); (M.B.); (V.V.); (M.A.G.); (L.T.)
| | - Alfredo Cesario
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (B.C.); (F.C.); (G.F.C.); (A.C.); (S.P.); (M.B.); (V.V.); (M.A.G.); (L.T.)
| | - Stefano Patarnello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (B.C.); (F.C.); (G.F.C.); (A.C.); (S.P.); (M.B.); (V.V.); (M.A.G.); (L.T.)
| | - Mario Balducci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (B.C.); (F.C.); (G.F.C.); (A.C.); (S.P.); (M.B.); (V.V.); (M.A.G.); (L.T.)
| | - Alessio Giuseppe Morganti
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum University of Bologna, Via Zamboni 33, 40126 Bologna, Italy;
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Vincenzo Valentini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (B.C.); (F.C.); (G.F.C.); (A.C.); (S.P.); (M.B.); (V.V.); (M.A.G.); (L.T.)
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (S.R.); (S.D.F.); (A.S.)
| | - Maria Antonietta Gambacorta
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (B.C.); (F.C.); (G.F.C.); (A.C.); (S.P.); (M.B.); (V.V.); (M.A.G.); (L.T.)
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (S.R.); (S.D.F.); (A.S.)
| | - Luca Tagliaferri
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (B.C.); (F.C.); (G.F.C.); (A.C.); (S.P.); (M.B.); (V.V.); (M.A.G.); (L.T.)
| |
Collapse
|
12
|
Di Costanzo G, Ascione R, Ponsiglione A, Tucci AG, Dell’Aversana S, Iasiello F, Cavaglià E. Artificial intelligence and radiomics in magnetic resonance imaging of rectal cancer: a review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:406-421. [PMID: 37455833 PMCID: PMC10344900 DOI: 10.37349/etat.2023.00142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/01/2023] [Indexed: 07/18/2023] Open
Abstract
Rectal cancer (RC) is one of the most common tumours worldwide in both males and females, with significant morbidity and mortality rates, and it accounts for approximately one-third of colorectal cancers (CRCs). Magnetic resonance imaging (MRI) has been demonstrated to be accurate in evaluating the tumour location and stage, mucin content, invasion depth, lymph node (LN) metastasis, extramural vascular invasion (EMVI), and involvement of the mesorectal fascia (MRF). However, these features alone remain insufficient to precisely guide treatment decisions. Therefore, new imaging biomarkers are necessary to define tumour characteristics for staging and restaging patients with RC. During the last decades, RC evaluation via MRI-based radiomics and artificial intelligence (AI) tools has been a research hotspot. The aim of this review was to summarise the achievement of MRI-based radiomics and AI for the evaluation of staging, response to therapy, genotyping, prediction of high-risk factors, and prognosis in the field of RC. Moreover, future challenges and limitations of these tools that need to be solved to favour the transition from academic research to the clinical setting will be discussed.
Collapse
Affiliation(s)
- Giuseppe Di Costanzo
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Raffaele Ascione
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Giacoma Tucci
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Serena Dell’Aversana
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Francesca Iasiello
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Enrico Cavaglià
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| |
Collapse
|
13
|
Pham TD, Ravi V, Luo B, Fan C, Sun XF. Artificial intelligence fusion for predicting survival of rectal cancer patients using immunohistochemical expression of Ras homolog family member B in biopsy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1-16. [PMID: 36937315 PMCID: PMC10017185 DOI: 10.37349/etat.2023.00119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/31/2022] [Indexed: 02/10/2023] Open
Abstract
Aim The process of biomarker discovery is being accelerated with the application of artificial intelligence (AI), including machine learning. Biomarkers of diseases are useful because they are indicators of pathogenesis or measures of responses to therapeutic treatments, and therefore, play a key role in new drug development. Proteins are among the candidates for biomarkers of rectal cancer, which need to be explored using state-of-the-art AI to be utilized for prediction, prognosis, and therapeutic treatment. This paper aims to investigate the predictive power of Ras homolog family member B (RhoB) protein in rectal cancer. Methods This study introduces the integration of pretrained convolutional neural networks and support vector machines (SVMs) for classifying biopsy samples of immunohistochemical expression of protein RhoB in rectal-cancer patients to validate its biologic measure in biopsy. Features of the immunohistochemical expression images were extracted by the pretrained networks and used for binary classification by the SVMs into two groups of less and more than 5-year survival rates. Results The fusion of neural search architecture network (NASNet)-Large for deep-layer feature extraction and classifier using SVMs provided the best average classification performance with a total accuracy = 85%, prediction of survival rate of more than 5 years = 90%, and prediction of survival rate of less than 5 years = 75%. Conclusions The finding obtained from the use of AI reported in this study suggest that RhoB expression on rectal-cancer biopsy can be potentially used as a biomarker for predicting survival outcomes in rectal-cancer patients, which can be informative for clinical decision making if the patient would be recommended for preoperative therapy.
Collapse
Affiliation(s)
- Tuan D. Pham
- Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar 34754, Saudi Arabia
| | - Vinayakumar Ravi
- Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar 34754, Saudi Arabia
| | - Bin Luo
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, Chengdu 610032, Sichuan, China
| | - Chuanwen Fan
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Xiao-Feng Sun
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
14
|
Casà C, Dinapoli L, Marconi E, Chiesa S, Cornacchione P, Beghella Bartoli F, Bracci S, Salvati A, Scalise S, Colloca GF, Chieffo DPR, Gambacorta MA, Valentini V, Tagliaferri L. Integration of art and technology in personalized radiation oncology care: Experiences, evidence, and perspectives. Front Public Health 2023; 11:1056307. [PMID: 36755901 PMCID: PMC9901799 DOI: 10.3389/fpubh.2023.1056307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Cancer diagnoses expose patients to traumatic stress, sudden changes in daily life, changes in the body and autonomy, with even long-term consequences, and in some cases, to come to terms with the end-of-life. Furthermore, rising survival rates underline that the need for interventions for emotional wellbeing is in growing demand by patients and survivors. Cancer patients frequently have compliance problems, difficulties during treatment, stress, or challenges in implementing healthy behaviors. This scenario was highlighted during the COVID-19 emergency. These issues often do not reach the clinical attention of dedicated professionals and could also become a source of stress or burnout for professionals. So, these consequences are evident on individual, interpersonal, and health system levels. Oncology services have increasingly sought to provide value-based health care, considering resources invested, with implications for service delivery and related financing mechanisms. Value-based health care can improve patient outcomes, often revealed by patient outcome measures while seeking balance with economical budgets. The paper aims to show the Gemelli Advanced Radiation Therapy (ART) experience of personalizing the patients' care pathway through interventions based on technologies and art, the personalized approach to cancer patients and their role as "co-stars" in treatment care. The paper describes the vision, experiences, and evidence that have guided clinical choices involving patients and professionals in a co-constructed therapeutic pathway. We will explore this approach by describing: the various initiatives already implemented and prospects, with particular attention to the economic sustainability of the paths proposed to patients; the several pathways of personalized care, both from the patient's and healthcare professional perspective, that put the person's experience at the Gemelli ART Center. The patient's satisfaction with the treatment and economic outcomes have been considered. The experiences and future perspectives described in the manuscript will focus on the value of people's experiences and patient satisfaction indicators, patients, staff, and the healthcare organization.
Collapse
Affiliation(s)
- Calogero Casà
- UOC di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina, Gemelli Isola, Rome, Italy
| | - Loredana Dinapoli
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- UOS di Psicologia Clinica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Elisa Marconi
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- UOS di Psicologia Clinica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Silvia Chiesa
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Radiologiche ed Ematologiche Università Cattolica del Sacro Cuore, Rome, Italy
| | - Patrizia Cornacchione
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Radiologiche ed Ematologiche Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Beghella Bartoli
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Serena Bracci
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alessandra Salvati
- Dipartimento di Scienze Radiologiche ed Ematologiche Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Scalise
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuseppe Ferdinando Colloca
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Radiologiche ed Ematologiche Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniela Pia Rosaria Chieffo
- UOS di Psicologia Clinica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Scienze della Salute della Donna, del Bambino e di Sanità Pubblica Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Antonietta Gambacorta
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Radiologiche ed Ematologiche Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Valentini
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Radiologiche ed Ematologiche Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Tagliaferri
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Radiologiche ed Ematologiche Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
15
|
Radiomics Approaches for the Prediction of Pathological Complete Response after Neoadjuvant Treatment in Locally Advanced Rectal Cancer: Ready for Prime Time? Cancers (Basel) 2023; 15:cancers15020432. [PMID: 36672381 PMCID: PMC9857080 DOI: 10.3390/cancers15020432] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
In recent years, neoadjuvant therapy of locally advanced rectal cancer has seen tremendous modifications. Adding neoadjuvant chemotherapy before or after chemoradiotherapy significantly increases loco-regional disease-free survival, negative surgical margin rates, and complete response rates. The higher complete rate is particularly clinically meaningful given the possibility of organ preservation in this specific sub-population, without compromising overall survival. However, all locally advanced rectal cancer most likely does not benefit from total neoadjuvant therapy (TNT), but experiences higher toxicity rates. Diagnosis of complete response after neoadjuvant therapy is a real challenge, with a risk of false negatives and possible under-treatment. These new therapeutic approaches thus raise the need for better selection tools, enabling a personalized therapeutic approach for each patient. These tools mostly focus on the prediction of the pathological complete response given the clinical impact. In this article, we review the place of different biomarkers (clinical, biological, genomics, transcriptomics, proteomics, and radiomics) as well as their clinical implementation and discuss the most recent trends for future steps in prediction modeling in patients with locally advanced rectal cancer.
Collapse
|
16
|
Jia LL, Zheng QY, Tian JH, He DL, Zhao JX, Zhao LP, Huang G. Artificial intelligence with magnetic resonance imaging for prediction of pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:1026216. [PMID: 36313696 PMCID: PMC9597310 DOI: 10.3389/fonc.2022.1026216] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The purpose of this study was to evaluate the diagnostic accuracy of artificial intelligence (AI) models with magnetic resonance imaging(MRI) in predicting pathological complete response(pCR) to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer. Furthermore, assessed the methodological quality of the models. Methods We searched PubMed, Embase, Cochrane Library, and Web of science for studies published before 21 June 2022, without any language restrictions. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS) tools were used to assess the methodological quality of the included studies. We calculated pooled sensitivity and specificity using random-effects models, I2 values were used to measure heterogeneity, and subgroup analyses to explore potential sources of heterogeneity. Results We selected 21 papers for inclusion in the meta-analysis from 1562 retrieved publications, with a total of 1873 people in the validation groups. The meta-analysis showed that AI models based on MRI predicted pCR to nCRT in patients with rectal cancer: a pooled area under the curve (AUC) 0.91 (95% CI, 0.88-0.93), sensitivity of 0.82(95% CI,0.71-0.90), pooled specificity 0.86(95% CI,0.80-0.91). In the subgroup analysis, the pooled AUC of the deep learning(DL) model was 0.97, the pooled AUC of the radiomics model was 0.85; the pooled AUC of the combined model with clinical factors was 0.92, and the pooled AUC of the radiomics model alone was 0.87. The mean RQS score of the included studies was 10.95, accounting for 30.4% of the total score. Conclusions Radiomics is a promising noninvasive method with high value in predicting pathological response to nCRT in patients with rectal cancer. DL models have higher predictive accuracy than radiomics models, and combined models incorporating clinical factors have higher diagnostic accuracy than radiomics models alone. In the future, prospective, large-scale, multicenter investigations using radiomics approaches will strengthen the diagnostic power of pCR. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021285630.
Collapse
Affiliation(s)
- Lu-Lu Jia
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Qing-Yong Zheng
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University, Lanzhou, China
| | - Jin-Hui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Di-Liang He
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Jian-Xin Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Lian-Ping Zhao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, China
- *Correspondence: Gang Huang,
| |
Collapse
|