1
|
Alser M, Eudine J, Mutlu O. Taming large-scale genomic analyses via sparsified genomics. Nat Commun 2025; 16:876. [PMID: 39837860 PMCID: PMC11751491 DOI: 10.1038/s41467-024-55762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Searching for similar genomic sequences is an essential and fundamental step in biomedical research. State-of-the-art computational methods performing such comparisons fail to cope with the exponential growth of genomic sequencing data. We introduce the concept of sparsified genomics where we systematically exclude a large number of bases from genomic sequences and enable faster and memory-efficient processing of the sparsified, shorter genomic sequences, while providing comparable accuracy to processing non-sparsified sequences. Sparsified genomics provides benefits to many genomic analyses and has broad applicability. Sparsifying genomic sequences accelerates the state-of-the-art read mapper (minimap2) by 2.57-5.38x, 1.13-2.78x, and 3.52-6.28x using real Illumina, HiFi, and ONT reads, respectively, while providing comparable memory footprint, 2x smaller index size, and more correctly detected variations compared to minimap2. Sparsifying genomic sequences makes containment search through very large genomes and large databases 72.7-75.88x (1.62-1.9x when indexing is preprocessed) faster and 723.3x more storage-efficient than searching through non-sparsified genomic sequences (with CMash and KMC3). Sparsifying genomic sequences enables robust microbiome discovery by providing 54.15-61.88x (1.58-1.71x when indexing is preprocessed) faster and 720x more storage-efficient taxonomic profiling of metagenomic samples over the state-of-the-art tool (Metalign).
Collapse
Affiliation(s)
- Mohammed Alser
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zurich, Switzerland.
- Department of Computer Science, Georgia State University, Atlanta, GA, USA.
- Department of Clinical Pharmacy, University of Southern California, LA, CA, USA.
| | - Julien Eudine
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zurich, Switzerland
| | - Onur Mutlu
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
2
|
Moeckel C, Mareboina M, Konnaris MA, Chan CS, Mouratidis I, Montgomery A, Chantzi N, Pavlopoulos GA, Georgakopoulos-Soares I. A survey of k-mer methods and applications in bioinformatics. Comput Struct Biotechnol J 2024; 23:2289-2303. [PMID: 38840832 PMCID: PMC11152613 DOI: 10.1016/j.csbj.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
The rapid progression of genomics and proteomics has been driven by the advent of advanced sequencing technologies, large, diverse, and readily available omics datasets, and the evolution of computational data processing capabilities. The vast amount of data generated by these advancements necessitates efficient algorithms to extract meaningful information. K-mers serve as a valuable tool when working with large sequencing datasets, offering several advantages in computational speed and memory efficiency and carrying the potential for intrinsic biological functionality. This review provides an overview of the methods, applications, and significance of k-mers in genomic and proteomic data analyses, as well as the utility of absent sequences, including nullomers and nullpeptides, in disease detection, vaccine development, therapeutics, and forensic science. Therefore, the review highlights the pivotal role of k-mers in addressing current genomic and proteomic problems and underscores their potential for future breakthroughs in research.
Collapse
Affiliation(s)
- Camille Moeckel
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Manvita Mareboina
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Maxwell A. Konnaris
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Candace S.Y. Chan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Austin Montgomery
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
3
|
Myers MA, Arnold BJ, Bansal V, Balaban M, Mullen KM, Zaccaria S, Raphael BJ. HATCHet2: clone- and haplotype-specific copy number inference from bulk tumor sequencing data. Genome Biol 2024; 25:130. [PMID: 38773520 PMCID: PMC11110434 DOI: 10.1186/s13059-024-03267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Bulk DNA sequencing of multiple samples from the same tumor is becoming common, yet most methods to infer copy-number aberrations (CNAs) from this data analyze individual samples independently. We introduce HATCHet2, an algorithm to identify haplotype- and clone-specific CNAs simultaneously from multiple bulk samples. HATCHet2 extends the earlier HATCHet method by improving identification of focal CNAs and introducing a novel statistic, the minor haplotype B-allele frequency (mhBAF), that enables identification of mirrored-subclonal CNAs. We demonstrate HATCHet2's improved accuracy using simulations and a single-cell sequencing dataset. HATCHet2 analysis of 10 prostate cancer patients reveals previously unreported mirrored-subclonal CNAs affecting cancer genes.
Collapse
Affiliation(s)
- Matthew A Myers
- Department of Computer Science, Princeton University, Princeton, USA
| | - Brian J Arnold
- Center for Statistics and Machine Learning, Princeton University, Princeton, USA
| | - Vineet Bansal
- Princeton Research Computing, Princeton University, Princeton, NJ, USA
| | - Metin Balaban
- Department of Computer Science, Princeton University, Princeton, USA
| | - Katelyn M Mullen
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simone Zaccaria
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK.
| | | |
Collapse
|
4
|
Siekaniec G, Roux E, Lemane T, Guédon E, Nicolas J. Identification of isolated or mixed strains from long reads: a challenge met on Streptococcus thermophilus using a MinION sequencer. Microb Genom 2021; 7. [PMID: 34812718 PMCID: PMC8743539 DOI: 10.1099/mgen.0.000654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This study aimed to provide efficient recognition of bacterial strains on personal computers from MinION (Nanopore) long read data. Thanks to the fall in sequencing costs, the identification of bacteria can now proceed by whole genome sequencing. MinION is a fast, but highly error-prone sequencing device and it is a challenge to successfully identify the strain content of unknown simple or complex microbial samples. It is heavily constrained by memory management and fast access to the read and genome fragments. Our strategy involves three steps: indexing of known genomic sequences for a given or several bacterial species; a request process to assign a read to a strain by matching it to the closest reference genomes; and a final step looking for a minimum set of strains that best explains the observed reads. We have applied our method, called ORI, on 77 strains of Streptococcus thermophilus. We worked on several genomic distances and obtained a detailed classification of the strains, together with a criterion that allows merging of what we termed 'sibling' strains, only separated by a few mutations. Overall, isolated strains can be safely recognized from MinION data. For mixtures of several non-sibling strains, results depend on strain abundance.
Collapse
Affiliation(s)
- Grégoire Siekaniec
- Univ Rennes, INRIA, Campus de Beaulieu 35042 Rennes cedex, Rennes, France
- INRAE, Institut Agro, STLO, F-35000, Rennes, France
| | - Emeline Roux
- Univ Rennes, INRIA, Campus de Beaulieu 35042 Rennes cedex, Rennes, France
- CALBINOTOX (Composés ALimentaire BIofonctionnalités et risques NeuTOXiques) EA7488 Université de Lorraine, France
| | - Téo Lemane
- Univ Rennes, INRIA, Campus de Beaulieu 35042 Rennes cedex, Rennes, France
| | - Eric Guédon
- INRAE, Institut Agro, STLO, F-35000, Rennes, France
- *Correspondence: Eric Guédon,
| | - Jacques Nicolas
- Univ Rennes, INRIA, Campus de Beaulieu 35042 Rennes cedex, Rennes, France
- *Correspondence: Jacques Nicolas,
| |
Collapse
|
5
|
Mallik A, Ilie L. ALeS: adaptive-length spaced-seed design. Bioinformatics 2021; 37:1206-1210. [PMID: 34107042 DOI: 10.1093/bioinformatics/btaa945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/26/2020] [Accepted: 10/27/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Sequence similarity is the most frequently used procedure in biological research, as proved by the widely used BLAST program. The consecutive seed used by BLAST can be dramatically improved by considering multiple spaced seeds. Finding the best seeds is a hard problem and much effort went into developing heuristic algorithms and software for designing highly sensitive spaced seeds. RESULTS We introduce a new algorithm and software, ALeS, that produces more sensitive seeds than the current state-of-the-art programs, as shown by extensive testing. We also accurately estimate the sensitivity of a seed, enabling its computation for arbitrary seeds. AVAILABILITYAND IMPLEMENTATION The source code is freely available at github.com/lucian-ilie/ALeS. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Arnab Mallik
- Department of Computer Science, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Lucian Ilie
- Department of Computer Science, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
6
|
Dencker T, Leimeister CA, Gerth M, Bleidorn C, Snir S, Morgenstern B. 'Multi-SpaM': a maximum-likelihood approach to phylogeny reconstruction using multiple spaced-word matches and quartet trees. NAR Genom Bioinform 2020; 2:lqz013. [PMID: 33575565 PMCID: PMC7671388 DOI: 10.1093/nargab/lqz013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/31/2019] [Accepted: 10/13/2019] [Indexed: 02/03/2023] Open
Abstract
Word-based or 'alignment-free' methods for phylogeny inference have become popular in recent years. These methods are much faster than traditional, alignment-based approaches, but they are generally less accurate. Most alignment-free methods calculate 'pairwise' distances between nucleic-acid or protein sequences; these distance values can then be used as input for tree-reconstruction programs such as neighbor-joining. In this paper, we propose the first word-based phylogeny approach that is based on 'multiple' sequence comparison and 'maximum likelihood'. Our algorithm first samples small, gap-free alignments involving four taxa each. For each of these alignments, it then calculates a quartet tree and, finally, the program 'Quartet MaxCut' is used to infer a super tree for the full set of input taxa from the calculated quartet trees. Experimental results show that trees produced with our approach are of high quality.
Collapse
Affiliation(s)
- Thomas Dencker
- Department of Bioinformatics, Institute of Microbiology and Genetics, Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Chris-André Leimeister
- Department of Bioinformatics, Institute of Microbiology and Genetics, Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Michael Gerth
- Institute for Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, L69 7ZB Liverpool, UK
| | - Christoph Bleidorn
- Department of Animal Evolution and Biodiversity, Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
- Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Sagi Snir
- Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, Israel
| | - Burkhard Morgenstern
- Department of Bioinformatics, Institute of Microbiology and Genetics, Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
- Göttingen Center of Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Röhling S, Linne A, Schellhorn J, Hosseini M, Dencker T, Morgenstern B. The number of k-mer matches between two DNA sequences as a function of k and applications to estimate phylogenetic distances. PLoS One 2020; 15:e0228070. [PMID: 32040534 PMCID: PMC7010260 DOI: 10.1371/journal.pone.0228070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
We study the number Nk of length-k word matches between pairs of evolutionarily related DNA sequences, as a function of k. We show that the Jukes-Cantor distance between two genome sequences-i.e. the number of substitutions per site that occurred since they evolved from their last common ancestor-can be estimated from the slope of a function F that depends on Nk and that is affine-linear within a certain range of k. Integers kmin and kmax can be calculated depending on the length of the input sequences, such that the slope of F in the relevant range can be estimated from the values F(kmin) and F(kmax). This approach can be generalized to so-called Spaced-word Matches (SpaM), where mismatches are allowed at positions specified by a user-defined binary pattern. Based on these theoretical results, we implemented a prototype software program for alignment-free sequence comparison called Slope-SpaM. Test runs on real and simulated sequence data show that Slope-SpaM can accurately estimate phylogenetic distances for distances up to around 0.5 substitutions per position. The statistical stability of our results is improved if spaced words are used instead of contiguous words. Unlike previous alignment-free methods that are based on the number of (spaced) word matches, Slope-SpaM produces accurate results, even if sequences share only local homologies.
Collapse
Affiliation(s)
- Sophie Röhling
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
| | - Alexander Linne
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
| | - Jendrik Schellhorn
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
| | | | - Thomas Dencker
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
| | - Burkhard Morgenstern
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
- Göttingen Center of Molecular Biosciences (GZMB), Göttingen, Germany
| |
Collapse
|
8
|
Leimeister CA, Dencker T, Morgenstern B. Accurate multiple alignment of distantly related genome sequences using filtered spaced word matches as anchor points. Bioinformatics 2019; 35:211-218. [PMID: 29992260 PMCID: PMC6330006 DOI: 10.1093/bioinformatics/bty592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/09/2018] [Indexed: 01/30/2023] Open
Abstract
Motivation Most methods for pairwise and multiple genome alignment use fast local homology search tools to identify anchor points, i.e. high-scoring local alignments of the input sequences. Sequence segments between those anchor points are then aligned with slower, more sensitive methods. Finding suitable anchor points is therefore crucial for genome sequence comparison; speed and sensitivity of genome alignment depend on the underlying anchoring methods. Results In this article, we use filtered spaced word matches to generate anchor points for genome alignment. For a given binary pattern representing match and don't-care positions, we first search for spaced-word matches, i.e. ungapped local pairwise alignments with matching nucleotides at the match positions of the pattern and possible mismatches at the don't-care positions. Those spaced-word matches that have similarity scores above some threshold value are then extended using a standard X-drop algorithm; the resulting local alignments are used as anchor points. To evaluate this approach, we used the popular multiple-genome-alignment pipeline Mugsy and replaced the exact word matches that Mugsy uses as anchor points with our spaced-word-based anchor points. For closely related genome sequences, the two anchoring procedures lead to multiple alignments of similar quality. For distantly related genomes, however, alignments calculated with our filtered-spaced-word matches are superior to alignments produced with the original Mugsy program where exact word matches are used to find anchor points. Availability and implementation http://spacedanchor.gobics.de. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Thomas Dencker
- Department of Bioinformatics, Institute of Microbiology and Genetics
| | - Burkhard Morgenstern
- Department of Bioinformatics, Institute of Microbiology and Genetics.,Center for Computational Sciences, University of Goettingen, Goettingen, Germany
| |
Collapse
|
9
|
|
10
|
Leimeister CA, Schellhorn J, Dörrer S, Gerth M, Bleidorn C, Morgenstern B. Prot-SpaM: fast alignment-free phylogeny reconstruction based on whole-proteome sequences. Gigascience 2019; 8:giy148. [PMID: 30535314 PMCID: PMC6436989 DOI: 10.1093/gigascience/giy148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/10/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022] Open
Abstract
Word-based or 'alignment-free' sequence comparison has become an active research area in bioinformatics. While previous word-frequency approaches calculated rough measures of sequence similarity or dissimilarity, some new alignment-free methods are able to accurately estimate phylogenetic distances between genomic sequences. One of these approaches is Filtered Spaced Word Matches. Here, we extend this approach to estimate evolutionary distances between complete or incomplete proteomes; our implementation of this approach is called Prot-SpaM. We compare the performance of Prot-SpaM to other alignment-free methods on simulated sequences and on various groups of eukaryotic and prokaryotic taxa. Prot-SpaM can be used to calculate high-quality phylogenetic trees for dozens of whole-proteome sequences in a matter of seconds or minutes and often outperforms other alignment-free approaches. The source code of our software is available through Github: https://github.com/jschellh/ProtSpaM.
Collapse
Affiliation(s)
- Chris-Andre Leimeister
- University of Göttingen, Department of Bioinformatics, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Jendrik Schellhorn
- University of Göttingen, Department of Bioinformatics, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Svenja Dörrer
- University of Göttingen, Department of Bioinformatics, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Michael Gerth
- Institute for Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, L69 7ZB Liverpool, UK
| | - Christoph Bleidorn
- University of Göttingen, Department of Animal Evolution and Biodiversity, Untere Karspüle 2, 37073 Göttingen, Germany
- Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Burkhard Morgenstern
- University of Göttingen, Department of Bioinformatics, Goldschmidtstr. 1, 37077 Göttingen, Germany
- Göttingen Center of Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077 Göttingen
| |
Collapse
|
11
|
Abstract
Background Spaced-seeds, i.e. patterns in which some fixed positions are allowed to be wild-cards, play a crucial role in several bioinformatics applications involving substrings counting and indexing, by often providing better sensitivity with respect to k-mers based approaches. K-mers based approaches are usually fast, being based on efficient hashing and indexing that exploits the large overlap between consecutive k-mers. Spaced-seeds hashing is not as straightforward, and it is usually computed from scratch for each position in the input sequence. Recently, the FSH (Fast Spaced seed Hashing) approach was proposed to improve the time required for computation of the spaced seed hashing of DNA sequences with a speed-up of about 1.5 with respect to standard hashing computation. Results In this work we propose a novel algorithm, Fast Indexing for Spaced seed Hashing (FISH), based on the indexing of small blocks that can be combined to obtain the hashing of spaced-seeds of any length. The method exploits the fast computation of the hashing of runs of consecutive 1 in the spaced seeds, that basically correspond to k-mer of the length of the run. Conclusions We run several experiments, on NGS data from simulated and synthetic metagenomic experiments, to assess the time required for the computation of the hashing for each position in each read with respect to several spaced seeds. In our experiments, FISH can compute the hashing values of spaced seeds with a speedup, with respect to the traditional approach, between 1.9x to 6.03x, depending on the structure of the spaced seeds. Electronic supplementary material The online version of this article (10.1186/s12859-018-2415-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samuele Girotto
- Department of Information Engineering, University of Padova, via Gradenigo 6/A, Padova, Italy
| | - Matteo Comin
- Department of Information Engineering, University of Padova, via Gradenigo 6/A, Padova, Italy.
| | - Cinzia Pizzi
- Department of Information Engineering, University of Padova, via Gradenigo 6/A, Padova, Italy.
| |
Collapse
|
12
|
Morgenstern B, Schöbel S, Leimeister CA. Phylogeny reconstruction based on the length distribution of k-mismatch common substrings. Algorithms Mol Biol 2017; 12:27. [PMID: 29238399 PMCID: PMC5724348 DOI: 10.1186/s13015-017-0118-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Various approaches to alignment-free sequence comparison are based on the length of exact or inexact word matches between pairs of input sequences. Haubold et al. (J Comput Biol 16:1487-1500, 2009) showed how the average number of substitutions per position between two DNA sequences can be estimated based on the average length of exact common substrings. RESULTS In this paper, we study the length distribution of k-mismatch common substrings between two sequences. We show that the number of substitutions per position can be accurately estimated from the position of a local maximum in the length distribution of their k-mismatch common substrings.
Collapse
Affiliation(s)
- Burkhard Morgenstern
- Department of Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Svenja Schöbel
- Department of Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Chris-André Leimeister
- Department of Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| |
Collapse
|