1
|
Cojocaru FD, Balan V, Verestiuc L. Advanced 3D Magnetic Scaffolds for Tumor-Related Bone Defects. Int J Mol Sci 2022; 23:16190. [PMID: 36555827 PMCID: PMC9788029 DOI: 10.3390/ijms232416190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The need for bone substitutes is a major challenge as the incidence of serious bone disorders is massively increasing, mainly attributed to modern world problems, such as obesity, aging of the global population, and cancer incidence. Bone cancer represents one of the most significant causes of bone defects, with reserved prognosis regarding the effectiveness of treatments and survival rate. Modern therapies, such as hyperthermia, immunotherapy, targeted therapy, and magnetic therapy, seem to bring hope for cancer treatment in general, and bone cancer in particular. Mimicking the composition of bone to create advanced scaffolds, such as bone substitutes, proved to be insufficient for successful bone regeneration, and a special attention should be given to control the changes in the bone tissue micro-environment. The magnetic manipulation by an external field can be a promising technique to control this micro-environment, and to sustain the proliferation and differentiation of osteoblasts, promoting the expression of some growth factors, and, finally, accelerating new bone formation. By incorporating stimuli responsive nanocarriers in the scaffold's architecture, such as magnetic nanoparticles functionalized with bioactive molecules, their behavior can be rigorously controlled under external magnetic driving, and stimulates the bone tissue formation.
Collapse
Affiliation(s)
| | | | - Liliana Verestiuc
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| |
Collapse
|
2
|
Guerrieri AN, Montesi M, Sprio S, Laranga R, Mercatali L, Tampieri A, Donati DM, Lucarelli E. Innovative Options for Bone Metastasis Treatment: An Extensive Analysis on Biomaterials-Based Strategies for Orthopedic Surgeons. Front Bioeng Biotechnol 2020; 8:589964. [PMID: 33123519 PMCID: PMC7573123 DOI: 10.3389/fbioe.2020.589964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
Bone is the third most frequent site of metastasis, with a particular incidence in breast and prostate cancer patients. For example, almost 70% of breast cancer patients develop several bone metastases in the late stage of the disease. Bone metastases are a challenge for clinicians and a burden for patients because they frequently cause pain and can lead to fractures. Unfortunately, current therapeutic options are in most cases only palliative and, although not curative, surgery remains the gold standard for bone metastasis treatment. Surgical intervention mostly provides the replacement of the affected bone with a bioimplant, which can be made by materials of different origins and designed through several techniques that have evolved throughout the years simultaneously with clinical needs. Several scientists and clinicians have worked to develop biomaterials with potentially successful biological and mechanical features, however, only a few of them have actually reached the scope. In this review, we extensively analyze currently available biomaterials-based strategies focusing on the newest and most innovative ideas while aiming to highlight what should be considered both a reliable choice for orthopedic surgeons and a future definitive and curative option for bone metastasis and cancer patients.
Collapse
Affiliation(s)
- Ania Naila Guerrieri
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Roberta Laranga
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Davide Maria Donati
- Third Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
3
|
Chen J, Jiang J, Wang W, Qin J, Chen J, Chen W, Wang Y. Low intensity pulsed ultrasound promotes the migration of bone marrow- derived mesenchymal stem cells via activating FAK-ERK1/2 signalling pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3603-3613. [PMID: 31468983 DOI: 10.1080/21691401.2019.1657878] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To investigate the promoting effects and mechanisms of low intensity pulsed ultrasound (LIPUS) on the migration of bone marrow-derived mesenchymal stem cells (BMSCs). The BMSCs migration was researched from cell and animal experiments. In the cell experiment, the BMSCs was treated using LIPUS (30 mW/cm2, 20 min/day, 2 days), and the wound healing and transwell migration were observed. In the animal experiment, the BMSCs labelled with green fluorescent protein (GFP) were injected into rats with femoral defects via the tail vein (1 × 106/mL). The healing of bone was detected using x-ray and sampled for hematoxylin & eosin (H&E) staining and fluorescence microscopy. About the mechanisms, the cellular F-actin of cytoskeleton was stained with FITC-phalloidin. The changes of BMSCs genes after LIPUS treatment were screened using microarray assay and verified using quantitative real-time polymerase chain reaction (qRT-PCR). The biological processes of those genes were predicted by KEGG analysis. The protein expression levels of FAK, ERK1/2 and myosin II related migration were detected using western blotting. The results showed LIPUS promoted the BMSCs migration (p < .05) without significant temperature changes (p > .05) in vitro and in vivo than control group (p < .05). The cytoskeletal rearrangement was carried out, and the ITGA8 gene related with cell migration was found with high expression after LIPUS treatment (p < .05). FAK inhibitor (PF-573228) and ERK1/2 inhibitor (U0126) were proved, in turn, decreased the BMSCs migration induced using LIPUS (p < .05). LIPUS can promote the BMSCs migration in vitro and in vivo, one mechanism may be related to the activation of FAK-ERK1/2 signalling pathways using LIPUS.
Collapse
Affiliation(s)
- Junlin Chen
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing, the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive Medicine, Chongqing Medical University , Chongqing , China
| | - Jingwei Jiang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing, the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive Medicine, Chongqing Medical University , Chongqing , China
| | - Wei Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing, the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive Medicine, Chongqing Medical University , Chongqing , China
| | - Juan Qin
- Guizhou Maternal and Child Health Hospital, Guizhou Medical University , Guizhou , China
| | - Jinyun Chen
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing, the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive Medicine, Chongqing Medical University , Chongqing , China
| | - Wenzhi Chen
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing, the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive Medicine, Chongqing Medical University , Chongqing , China
| | - Yan Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing, the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive Medicine, Chongqing Medical University , Chongqing , China
| |
Collapse
|
4
|
Dilogo IH, Phedy P, Kholinne E, Djaja YP, Fiolin J, Kusnadi Y, Yulisa ND. Autologous mesenchymal stem cell implantation, hydroxyapatite, bone morphogenetic protein-2, and internal fixation for treating critical-sized defects: a translational study. INTERNATIONAL ORTHOPAEDICS 2019; 43:1509-1519. [PMID: 30747273 PMCID: PMC6525135 DOI: 10.1007/s00264-019-04307-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/27/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Critical-sized defect (CSD) is one of the most challenging cases for orthopaedic surgeons. We aim to explore the therapeutic potential of the combination of bone marrow-derived mesenchymal stem cells (BM-MSCs), hydroxyapatite (HA) granules, bone morphogenetic protein-2 (BMP-2), and internal fixation for treating CSDs. METHODS This was a translational study performed during the period of January 2012 to 2016. Subjects were patients diagnosed with CSDs who had previously failed surgical attempts. They were treated with the combination of autologous BM-MSCs, HA granules, BMP-2, and mechanical stabilization. Post-operative pain level, functional outcome, defect volume, and radiological healing were evaluated after a minimum follow-up of 12 months. RESULTS A total of six subjects were recruited in this study. The pain was significantly reduced in all cases; with the decrease of mean preoperative visual analog scale (VAS) from 4 ± 2.2 to 0 after six month follow-up. Clinical functional outcome percentage increased significantly from 25 ± 13.7 to 70.79 ± 19.5. Radiological healing assessment using Tiedemann score also showed an increase from 0.16 ± 0.4 to 8 ± 3 at one year follow-up. No immunologic nor neoplastic side effects were found. CONCLUSIONS The combination of autologous BM-MSCs, HA granules, and BMP-2 is safe and remains to be a good option for the definitive treatment for CSD with previous failed surgical attempts. Further studies with a larger sample size are required to be done.
Collapse
Affiliation(s)
- Ismail Hadisoebroto Dilogo
- Department of Orthopaedics and Traumatology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
- Stem Cells Medical Technology Integrated Service Unit, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Stem Cells and Tissue Engineering Research Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
| | - Phedy Phedy
- Department of Orthopaedics and Traumatology, Fatmawati General Hospital, Jakarta, Indonesia
| | - Erica Kholinne
- Department of Orthopaedics and Traumatology, St. Carolus Hospital, Jakarta, Indonesia
| | - Yoshi Pratama Djaja
- Department of Orthopaedics and Traumatology, Fatmawati General Hospital, Jakarta, Indonesia
| | - Jessica Fiolin
- Department of Orthopaedics and Traumatology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Yuyus Kusnadi
- Laboratory of Regenerative and Cellular Therapy (ReGeniC), Bifarma Adiluhung Ltd., Jakarta, Indonesia
| | - Nyimas Diana Yulisa
- Department of Radiology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
5
|
Yin J, Wang B, Zhu C, Sun C, Liu X. [Local injection of angiopoietin 2 promotes angiogenesis in tissue engineered bone and repair of bone defect with autophagy induction in vivo]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1150-1156. [PMID: 30129346 PMCID: PMC8413973 DOI: 10.7507/1002-1892.201804105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/09/2018] [Indexed: 01/07/2023]
Abstract
Objective To investigate the mechanism of early vascularization of the tissue engineered bone in the treatment of rabbit radial bone defect by local injection of angiopoietin 2 (Ang-2). Methods A single 1.5 cm long radius defect model (left and right sides randomised) was constructed from 48 New Zealand white rabbits. After implantation of hydroxyapatite/collagen scaffolds in bone defects, the rabbits were randomly divided into 2 groups: control group (group A) and Ang-2 group (group B) were injected with 1 mL normal saline and 1 mL saline-soluble 400 ng/mL Ang-2 daily at the bone defect within 2 weeks after operation, respectively. Western blot was used to detect the expressions of autophagy related protein [microtubule associated protein 1 light chain 3 (LC3), Beclin-1], angiogenesis related protein [vascular endothelial growth factor (VEGF)], and autophagy degradable substrate protein (SQSTMl/p62) in callus. X-ray films examination and Lane-Sandhu X-ray scoring were performed to evaluate the bone defect repair at 4, 8, and 12 weeks after operation. The rabbits were sacrificed at 12 weeks after operation for gross observation, and the angiogenesis of bone defect was observed by HE staining. Results Western blot assay showed that the relative expression of LC3-II/LC3-I, Beclin-1, and VEGF in group B was significantly higher than that in group A, and the relative expression of SQSTMl/p62 was significantly lower than that in group A ( P<0.05). Radiographic and gross observation of specimens showed that only a small number of callus were formed in group A, the bone defect was not repaired; more callus were formed and complete repair of bone defect was observed in group B. The Lane-Sandhu scores in group B were significantly higher than those in group A at 4, 8, and 12 weeks after operation ( P<0.05). HE staining showed that the Harvard tubes in group B were well arranged and the number of new vessels was significantly higher than that in group A ( t=-11.879, P=0.000). Conclusion Local injection of appropriate concentration of Ang-2 may promote early vascularization and bone defect repair of rabbit tissue engineered bone by enhancing autophagy.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100, P.R.China
| | - Bin Wang
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100, P.R.China
| | - Chao Zhu
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100, P.R.China
| | - Chao Sun
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100, P.R.China
| | - Xinhui Liu
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100,
| |
Collapse
|
6
|
Effect of Hypoxia-Inducible Factor 1 α on Early Healing in Extraction Sockets. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8210637. [PMID: 30046609 PMCID: PMC6036846 DOI: 10.1155/2018/8210637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/26/2018] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to investigate the effect of hypoxia-inducible factor 1α (HIF1A) on the early healing (4 weeks) of extraction sockets exhibiting partial loss of the labial bone. Two extraction sockets of the maxillary incisors from each of six dogs were assigned to two treatment modalities: deproteinized bovine bone mineral (i) with 10% collagen (DBBM-C) soaked with HIF1A and covered by a collagen membrane (CM) (HIF group) or (ii) treated with DBBM-C only and covered by a CM (control group). Microcomputed tomography revealed some degree of collapse of the labial contour. The totally augmented volume and new bone volume did not differ significantly between two groups (P > 0.05). The histological analysis revealed that the apical area of the socket was mostly filled with newly formed bone, while there was less newly formed bone in the coronal area and incomplete cortex formation. The histomorphometric analysis revealed that the area of newly formed bone was significantly larger in the HIF group than the control group (12.16 ± 3.04 versus 9.48 ± 2.01 mm2, P < 0.05), while there was no significant intergroup difference in the total augmented area. In conclusion, even though DBBM-C soaked with HIF1A enhanced histomorphometric bone formation, this intervention did not demonstrate superiority in preventing ridge shrinkage compared to DBBM-C alone. Clinical relevance of these findings should be further studied.
Collapse
|
7
|
Usuelli FG, D'Ambrosi R, Maccario C, Indino C, Manzi L, Maffulli N. Adipose-derived stem cells in orthopaedic pathologies. Br Med Bull 2017; 124:31-54. [PMID: 29253149 DOI: 10.1093/bmb/ldx030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/22/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION To examine the current literature regarding the clinical application of adipose-derived stem cells (ADSCs) for the management of orthopaedic pathologies. SOURCES OF DATA MEDLINE,SCOPUS, CINAHL and EMBASE (1950 to April 14, 2017) were searched by two independent investigators for articles published in English. Reviews, meta-analyses, expert opinions, case reports, mini case series and editorials were excluded. Furthermore, we excluded animal studies, cadaveric studies and in vitro studies. AREAS OF AGREEMENT ADSCs seem to produce excellent clinical results. However, the length and modalities of follow-up in the different conditions are extremely variable. Nevertheless, it appears that the use of adipose-derived stem cells is associated with subjective and objective clinical improvements and minimal complication rates. AREAS OF CONTROVERSY None of the studies identified is a randomized double-blinded trial, and most of the selected studies present major limitations, and different methods, confounding the results of our review. GROWING POINTS It is necessary to conduct more and better studies to ascertain whether ADSCs really play a role in orthopaedic surgery with particular attention to ADSCs harvesting method, type of administration and the conditions treated. AREAS TIMELY FOR DEVELOPING RESEARCH The current literature regarding the use of ADSCs for orthopaedic pathologies is limited. At present, long-term safety is the biggest challenge of ADSCs based regenerative medicine. LEVEL OF EVIDENCE Level IV-Study of Level I, II, III, IV.
Collapse
Affiliation(s)
| | - Riccardo D'Ambrosi
- Foot and Ankle Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Italy
| | - Camilla Maccario
- Foot and Ankle Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Italy
| | - Cristian Indino
- Foot and Ankle Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Luigi Manzi
- Foot and Ankle Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Nicola Maffulli
- Department of Orthopaedics and Traumatology, Azienda Ospedaliera San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, London, UK
| |
Collapse
|
8
|
Gao C, Feng P, Peng S, Shuai C. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomater 2017; 61:1-20. [PMID: 28501710 DOI: 10.1016/j.actbio.2017.05.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
Abstract
The high brittleness and low strength of bioactive ceramics have severely restricted their application in bone repair despite the fact that they have been regarded as one of the most promising biomaterials. In the last few years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have gained increasing attention owing to their favorable biocompatibility, large surface specific area and super mechanical properties. These qualities make LDNs potential nanofillers in reinforcing bioactive ceramics. In this review, the types, characteristics and applications of the commonly used LDNs in ceramic composites are summarized. In addition, the fabrication methods for LDNs/ceramic composites, such as hot pressing, spark plasma sintering and selective laser sintering, are systematically reviewed and compared. Emphases are placed on how to obtain the uniform dispersion of LDNs in a ceramic matrix and maintain the structural stability of LDNs during the high-temperature fabrication process of ceramics. The reinforcing mechanisms of LDNs in ceramic composites are then discussed in-depth. The in vitro and in vivo studies of LDNs/ceramic in bone repair are also summarized and discussed. Finally, new developments and potential applications of LDNs/ceramic composites are further discussed with reference to experimental and theoretical studies. STATEMENT OF SIGNIFICANCE Despite bioactive ceramics having been regarded as promising biomaterials, their high brittleness and low strength severely restrict their application in bone scaffolds. In recent years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have shown great potential in reinforcing bioactive ceramics owing to their unique structures and properties. However, so far it has been difficult to maintain the structural stability of LDNs during fabrication of LDNs/ceramic composites, due to the lengthy, high-temperature process involved. This review presents a comprehensive overview of the developments and applications of LDNs in bioactive ceramics. The newly-developed fabrication methods for LDNs/ceramic composites, the reinforcing mechanisms and the in vitro and in vivo performance of LDNs are also summarized and discussed in detail.
Collapse
Affiliation(s)
- Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| |
Collapse
|
9
|
Liu H, Zheng X, Chen L, Jian C, Hu X, Zhao Y, Li Z, Yu A. Negative pressure wound therapy promotes muscle-derived stem cell osteogenic differentiation through MAPK pathway. J Cell Mol Med 2017; 22:511-520. [PMID: 28944996 PMCID: PMC5742679 DOI: 10.1111/jcmm.13339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/08/2017] [Indexed: 01/30/2023] Open
Abstract
Negative pressure wound therapy (NPWT) has been revealed to be effective in the treatment of open fractures, although the underlying mechanism is not clear. This article aimed to investigate the effects of NPWT on muscle‐derived stem cell (MDSC) osteoblastic differentiation and the related potential mechanism. The cell proliferation rate was substantially increased in NPWT‐treated MDSCs in comparison with a static group for 3 days. There was no observable effect on the apoptosis of MDSC treated with NPWT compared with the control group for 3 days. The expression levels of HIF‐1α, BMP‐2, COL‐I, OST and OPN were increased on days 3, 7 and 14, but the expression level of Runx2 was increased on days 3 and 7 in the NPWT group. Pre‐treatment, the specific inhibitors were added into the MDSCs treated with NPWT and the control group. ALP activity and mineralization were reduced by inhibiting the ERK1/2, p38 and JNK pathways. The expression levels of Runx2, COL‐I, OST and OPN genes and proteins were also decreased using the specific MAPK pathway inhibitors on days 3, 7 and 14. There were no significant effects on the expression of BMP‐2 except on day 3. However, the expressions of the HIF‐1α gene and protein slightly increased when the JNK pathway was inhibited. Therefore, NPWT promotes the proliferation and osteogenic differentiation of MDSCs through the MAPK pathway.
Collapse
Affiliation(s)
- Hong Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xun Zheng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liang Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chao Jian
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yong Zhao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zonghuan Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Li Q, Liu R, Zhao J, Lu Q. N-methyl pyrrolidone (NMP) ameliorates the hypoxia-reduced osteoblast differentiation via inhibiting the NF-κB signaling. J Toxicol Sci 2017; 41:701-9. [PMID: 27665779 DOI: 10.2131/jts.41.701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ischemic-hypoxic condition for local osteoblasts and bone mesenchymal stem cells during bone fracture inhibits bone repairing. N-methyl pyrrolidone (NMP) has been approved as a safe and biologically inactive small chemical molecule, and might be useful for bone fracture repairing. In the present study, we investigated the effect of NMP on the hypoxia-reduced cellular viability and the expression of differentiation-associated markers, such as bone morphogenetic protein 2 (BMP-2), propeptide of type I procollagen I (PINP), alkaline phosphatase (ALP) or runt-related transcription factor 2 (Runx2) in the osteoblasts, and then we examined the molecular mechanism underlining such effect in the human osteoblastic hFOB 1.19 cells. Our results demonstrated that NMP significantly blocked the hypoxia-induced cell viability reduction and inhibited the hypoxia-caused expression downregulation of BMP-2, PINP, ALP and Runx2 in hFOB 1.19 cells. Then we confirmed the involvement of nuclear factor κB (NF-κB) pathway in the regulation by NMP on the hypoxia-mediated the reduction of osteoblast differentiation. The upregulated expression and transcriptional activity of NF-κB, while the downregulated inhibitory κB expression by the hypoxia treatment was reversed by the treatment with 10 mM NMP. In conclusion, our study found a protective role of NMP in osteoblast differentiation in response to hypoxia, and such protection was through inhibiting the NF-κB signaling. This suggests that NMP might be a protective agent in bone fracture repairing.
Collapse
Affiliation(s)
- Qiang Li
- Department of Orthopedics, the Affiliated Hospital of Inner Mongolia Medical University, China
| | | | | | | |
Collapse
|
11
|
Sang X, Wang Z, Qin T, Li Y. Elevated concentrations of hypoxia-inducible factor-1α in patients with fracture and concomitant traumatic brain injury. Ann Clin Biochem 2016; 54:584-592. [PMID: 27687082 DOI: 10.1177/0004563216673087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Compelling evidence indicate that traumatic brain injury is highly related to accelerated bone fracture repair, but the underlying mechanism still remains elusive. Fracture repair process relies greatly on the formation of new blood vessels in fracture site, and angiogenic factors have been confirmed to be essential for the initiation and maintenance of the fracture healing. Hypoxia-inducible factor-1α was demonstrated to be a critical regulator of angiogenic-osteogenic coupling during bone development and regeneration. The aim of the present study was to investigate the local and circulating concentrations of hypoxia-inducible factor-1α in patients with long-bone fractures and concomitant traumatic brain injury and to determine the potential role of hypoxia-inducible factor-1α in fracture healing. Methods Twenty-five patients with a long-bone fracture and concomitant traumatic brain injury (FT group) and 33 without a brain injury (Fr group) were enrolled in this study. Healthy subjects donated serum samples as control. Serum samples were collected over a period of six months, following a standardized time schedule. Hypoxia-inducible factor-1α concentrations were measured in fracture haematoma and serum of patients in both groups using enzyme-linked immunosorbent assay. Results Patients in FT group had a short time to union. Serum hypoxia-inducible factor-1α concentrations elevated in the early healing period and reached the maximum level during intramembranous bone formation phase in both groups. Thereafter, it decreased continuously and approached to the minimum levels until the end of the observation period. Serum hypoxia-inducible factor-1α concentrations in both groups were significantly higher compared with controls and hypoxia-inducible factor-1α concentrations in both serum and fracture haematoma were higher in FT group than that in Fr group. Fracture haematoma contained significantly higher hypoxia-inducible factor-1α concentrations compared with hypoxia-inducible factor-1α concentrations in serum. Serum hypoxia-inducible factor-1α concentrations had a positive correlation with hypoxia-inducible factor-1α concentrations in fracture haematoma in patients with fractures. Conclusions These findings suggest the local and systemic involvement of hypoxia-inducible factor-1α in fracture healing and the accelerated fracture repair in patients with traumatic brain injury might be associated with elevated hypoxia-inducible factor-1α concentrations in fracture haematoma and serum.
Collapse
Affiliation(s)
- Xiguang Sang
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, P. R. China
| | - Zhiyong Wang
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, P. R. China
| | - Tao Qin
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, P. R. China
| | - Yonggang Li
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, P. R. China
| |
Collapse
|
12
|
Mi W, Shi Q, Chen X, Wu T, Huang H. miR-33a-5p modulates TNF-α-inhibited osteogenic differentiation by targeting SATB2 expression in hBMSCs. FEBS Lett 2016; 590:396-407. [PMID: 26785690 DOI: 10.1002/1873-3468.12064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Abstract
miRNAs play a number of roles in bone, including mediating the pathological effects of inflammation. Here, we found that miR-33a-5p expression was significantly increased after TNF-α treatment during BMP-2-induced osteogenic differentiation of hBMSCs. Luciferase reporter assays and western blotting demonstrated that special AT-rich sequence-binding protein 2 (SATB2) is a target of miR-33a-5p. Moreover, we show that BMP-2 induces SATB2 expression by interacting with SATB2 directly via the BMP-2-RUNX2 pathway. However, TNF-α first decreases SATB2 expression by inhibiting miR-33a-5p degradation. We thus conclude that miR-33a-5p plays a central role in this complex regulatory network. These findings will help to understand the regulatory role of miR-33a-5p in the inflammatory process.
Collapse
Affiliation(s)
- Wenxiang Mi
- Department of Prosthodontics, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, China
| | - Qiongling Shi
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xipeng Chen
- Department of Prosthodontics, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, China
| | - Tingting Wu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Functional Reconstruction, Capital Medical University School of Stomatology, China
| | - Hui Huang
- Department of Prosthodontics, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, China
| |
Collapse
|
13
|
Qiu Y, Chen Y, Zeng T, Guo W, Zhou W, Yang X. EGCG ameliorates the hypoxia-induced apoptosis and osteogenic differentiation reduction of mesenchymal stem cells via upregulating miR-210. Mol Biol Rep 2016; 43:183-93. [DOI: 10.1007/s11033-015-3936-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/09/2015] [Indexed: 02/04/2023]
|