1
|
Liu X, Geng Z, Ding X, Lou Y, Zhang X. Convallatoxin suppresses osteosarcoma cell proliferation, migration, invasion, and enhances osteogenic differentiation by downregulating parathyroid hormone receptor 1 (PTHR1) expression and inactivating Wnt/β-catenin pathway. Bioengineered 2022; 13:13280-13292. [PMID: 35635031 PMCID: PMC9275893 DOI: 10.1080/21655979.2022.2080363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. Convallatoxin, a natural cardiac glycoside, exhibits potent anti-tumor activities. Literature has confirmed that PTHR1 is highly expressed in OS tissues and cells and downregulation of PTHR1 could decrease the invasion and growth of OS cells and increase tumor differentiation. In addition, PTHR1 could activate Wnt signaling pathway to promote the malignant functions of OS. In the present study, MG63 and U2OS cells were treated with 0, 12.5, 25, and 50 nM convallatoxin in order to elucidate the precise function of convallatox on the malignant behaviors of OS cells. Moreover, MG63 and U2OS cells treated with convallatoxin were transfected with Ov-PTHR1 or sh-DKK1, aiming to explore whether convallatoxin impeded the malignant progression of OS by modulating PTHR1 and Wnt/β-catenin pathway. CCK-8, wound healing and transwell assays were employed to assess the proliferation, migration, and invasion of OS cells. Differentiation markers (collagen 1, osteopontin, RANKL, Runx2, osteocalcin) were measured to evaluate OS cell differentiation. Results illuminated that convallatoxin suppressed proliferation, migration, and invasion as well as promoted osteogenic differentiation of OS cells. Besides, convallatoxin inhibited PTHR1 expression and inactivated Wnt/β-catenin pathway and PTHR1 overexpression activated Wnt/β-catenin pathway. Furthermore, PTHR1 overexpression or DKK1 knockdown reversed the suppressing effects of convallatoxin on OS cell proliferation, migration, and invasion, as well as the enhancing effect of convallatoxin on OS cell osteogenic differentiation. Collectively, convallatoxin may repress the malignant progression of OS by blocking PTHR1 and Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xin Liu
- Department of Orthopaedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ze Geng
- Department of Orthopaedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiangyong Ding
- Department of Orthopaedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Lou
- Department of Orthopaedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xingquan Zhang
- Department of Orthopaedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
MicroRNAs and osteosarcoma: Potential targets for inhibiting metastasis and increasing chemosensitivity. Biochem Pharmacol 2022; 201:115094. [PMID: 35588853 DOI: 10.1016/j.bcp.2022.115094] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the third most common cancer in young adults after lymphoma and brain cancer. Metastasis, like other cellular events, is dependent on signaling pathways; a series of changes in some proteins and signaling pathways pave the way for OS cells to invade and migrate. Ezrin, TGF-β, Notch, RUNX2, matrix metalloproteinases (MMPs), Wnt/β-catenin, and phosphoinositide 3-kinase (PI3K)/AKT are among the most important of these proteins and signaling pathways. Despite the improvements in treating OS, the overall survival of patients suffering from the metastatic disease has not experienced any significant change after surgical treatments and chemotherapy and 5-years overall survival in patients with metastatic OS is about 20%. Studies have shown that overexpression or inhibition of some microRNAs (miRNAs) has significant effects in limiting the invasion and migration of OS cells. The results of these studies highlight the potential of the clinical application of some miRNA mimics and miRNA inhibitors (antagomiRs) to inhibit OS metastasis in the future. In addition, some studies have shown that miRNAs are associated with the most important drug resistance mechanisms in OS, and some miRNAs are highly effective targets to increase chemosensitivity. The results of these studies suggest that miRNA mimics and antagomiRs may be helpful to increase the efficacy of conventional chemotherapy drugs in the treatment of metastatic OS. In this article, we discussed the role of various signaling pathways and the involved miRNAs in the metastasis of OS, attempting to provide a comprehensive review of the literature on OS metastasis and chemosensitivity.
Collapse
|
3
|
Al-Khan AA, Al Balushi NR, Richardson SJ, Danks JA. Roles of Parathyroid Hormone-Related Protein (PTHrP) and Its Receptor (PTHR1) in Normal and Tumor Tissues: Focus on Their Roles in Osteosarcoma. Front Vet Sci 2021; 8:637614. [PMID: 33796580 PMCID: PMC8008073 DOI: 10.3389/fvets.2021.637614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor and originates from bone forming mesenchymal cells and primarily affects children and adolescents. The 5-year survival rate for OS is 60 to 65%, with little improvement in prognosis during the last four decades. Studies have demonstrated the evolving roles of parathyroid hormone-related protein (PTHrP) and its receptor (PTHR1) in bone formation, bone remodeling, regulation of calcium transport from blood to milk, regulation of maternal calcium transport to the fetus and reabsorption of calcium in kidneys. These two molecules also play critical roles in the development, progression and metastasis of several tumors such as breast cancer, lung carcinoma, chondrosarcoma, squamous cell carcinoma, melanoma and OS. The protein expression of both PTHrP and PTHR1 have been demonstrated in OS, and their functions and proposed signaling pathways have been investigated yet their roles in OS have not been fully elucidated. This review aims to discuss the latest research with PTHrP and PTHR1 in OS tumorigenesis and possible mechanistic pathways. This review is dedicated to Professor Michael Day who died in May 2020 and was a very generous collaborator.
Collapse
Affiliation(s)
- Awf A Al-Khan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.,Department of Pathology, Sohar Hospital, Sohar, Oman
| | - Noora R Al Balushi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Samantha J Richardson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.,School of Science, RMIT University, Bundoora, VIC, Australia
| | - Janine A Danks
- School of Science, RMIT University, Bundoora, VIC, Australia.,The University of Melbourne, Department of Medicine, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
4
|
Sun C, Li S. PTHR1 in osteosarcoma: Specific molecular mechanisms and comprehensive functional perspective. J Cell Mol Med 2021; 25:3175-3181. [PMID: 33675132 PMCID: PMC8034476 DOI: 10.1111/jcmm.16420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma occurs largely in children and adolescents and is the most common primary malignant tumour of bone. Although surgical advances and neoadjuvant chemotherapy have made great strides in recent years, rates of local recurrence and lung metastasis remain high, with a plateau in overall survival during the past decade. It is thus urgent to explore the pathogenesis of osteosarcoma and identify potential therapeutic targets. Parathyroid hormone receptor 1 (PTHR1) belongs to the broad family of G protein–coupled receptors, binding both parathyroid hormone (PTH) and parathyroid hormone–related peptide (PTHrP, a paracrine factor). Previous studies have shown that in tissues and cells of osteosarcoma, expression of PTHR1 is markedly increased, correlating with aggressive biologic behaviour and a poor prognosis. PTHR1 expression also correlates closely with epigenetic regulation, transcriptional regulation, post‐translational modification and protein interaction. Herein, we have summarized the latest research on the role played by PTHR1 in progression of osteosarcoma, assessing its clinical utility as a novel biomarker and its therapeutic ramifications.
Collapse
Affiliation(s)
- Chaonan Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.,Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), Shenyang, China
| |
Collapse
|
5
|
Li S, Liu F, Pei Y, Dong Y, Shang Y. Parathyroid hormone type 1 receptor regulates osteosarcoma K7M2 Cell growth by interacting with angiotensinogen. J Cell Mol Med 2021; 25:2841-2850. [PMID: 33511766 PMCID: PMC7957183 DOI: 10.1111/jcmm.16314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 01/11/2023] Open
Abstract
This study aimed to determine the interactions between parathyroid hormone type 1 receptor (PTHR1) and angiotensinogen (AGT) and the effects of these agents on osteosarcoma (OS). We constructed a stably transfected mouse OS K7M2 cell line (shPTHR1- K7M2) using shRNA and knocked down AGT in these cells using siRNA-AGT. The transfection efficiency and expression of AGT, chemokine C-C motif receptor 3 (CCR3), and chemokine (C-C motif) ligand 9 (CCL9) were determined using real-time quantitative PCR. Cell viability and colony formation were assessed using Cell Counting Kit-8 and crystal violet staining, respectively. Cell apoptosis and cycle phases were assessed by flow cytometry, and cell migration and invasion were evaluated using Transwell assays. Interference with PTHR1 upregulated the expression of AGT and CCR3, and downregulated that of CCL9, which was further downregulated by AGT knockdown. Cell viability, migration, invasion and colony formation were significantly decreased, while cell apoptosis was significantly increased in shPTHR1-K7M2, compared with those in K7M2 cells (P < .05 for all). However, AGT knockdown further inhibited cell viability after 72 h of culture but promoted cell migration and invasion. PTHR1 interference decreased and increased the numbers of cells in the G0/G1 and G2/M phases, respectively, compared with those in K7M2 cells. Angiotensinogen knockdown increased the number of cells in the G0/G1 phase compared with that in the shPTHR1-K7M2 cells. Therefore, PTHR1 affects cell viability, apoptosis, migration, invasion and colony formation, possibly by regulating AGT/CCL9 in OS cells.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Fei Liu
- Department of Bone and Soft Tissue Tumor SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Yi Pei
- Department of Bone and Soft Tissue Tumor SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Yujin Dong
- Department of Hand and Foot SurgeryDalian Municipal Center Hospital Affiliated of Dalian Medical UniversityDalianChina
| | - Yaohua Shang
- Department of Hand and Foot SurgeryDalian Municipal Center Hospital Affiliated of Dalian Medical UniversityDalianChina
| |
Collapse
|
6
|
Deligiorgi MV, Trafalis DT. The safety profile of denosumab in oncology beyond the safety of denosumab as an anti-osteoporotic agent: still more to learn. Expert Opin Drug Saf 2020; 20:191-213. [PMID: 33287586 DOI: 10.1080/14740338.2021.1861246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Initially endorsed as an antiosteoporotic agent, denosumab ‒ human monoclonal antibody inhibiting the receptor activator of nuclear factor kappa-B ligand (RANKL)‒ has currently shown an anticancer potential, rationalizing its exploitation in oncology. A prerequisite for leveraging denosumab in oncology is a favorable safety profile. AREAS COVERED The present review provides an overview of the adverse events of denosumab in oncology, with a focus on hypocalcemia, medication-related osteonecrosis of the jaw, atypical femoral fracture(s), post-denosumab vertebral fractures, increased risk of infections, and excess of second primary cancer. Representative studies addressing the safety and efficacy of denosumab compared to bisphosphonates in oncology are summarized. Critical gaps in the literature concerning the safety of denosumab in oncology are highlighted as opposed to plenty of available safety data on denosumab as an antiosteoporotic agent. EXPERT OPINION Despite the generally acceptable safety profile of denosumab in oncology, many issues remain unresolved. Further research is mandatory to counteract current challenges, namely: (i) validation of risk factors for adverse events; (ii) elucidation of the pathophysiology of the adverse events in search of actionable molecular pathways; (iii) illumination of the association of denosumab with increased risk of infections and/or second primary cancer; (iv) establishment of optimal diagnostic, and therapeutic protocols.
Collapse
Affiliation(s)
- Maria V Deligiorgi
- Department of Pharmacology - Clinical Pharmacology Unit, National and Kapodistrian University of Athens, Faculty of Medicine , Athens, Greece
| | - Dimitrios T Trafalis
- Department of Pharmacology - Clinical Pharmacology Unit, National and Kapodistrian University of Athens, Faculty of Medicine , Athens, Greece
| |
Collapse
|
7
|
Parathyroid hormone receptor 1 (PTHR1) is a prognostic indicator in canine osteosarcoma. Sci Rep 2020; 10:1564. [PMID: 32005896 PMCID: PMC6994589 DOI: 10.1038/s41598-020-58524-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/13/2020] [Indexed: 12/04/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignant primary bone tumour in humans and dogs. Several studies have established the vital role of parathyroid hormone-related protein (PTHrP) and its receptor (PTHR1) in bone formation and remodeling. In addition, these molecules play a role in the progression and metastasis of many human tumour types. This study investigated the expression of PTHR1 and PTHrP in canine OS tissues and assessed their prognostic value. Formalin-fixed, paraffin-embedded tissue samples from 50 dogs diagnosed with primary OS were immunolabeled with antibodies specific for PTHR1 and PTHrP. The immunostaining intensity of tumours from patients with OS was correlated with survival time. Both PTHR1 and PTHrP were detected in all OS samples (n = 50). Dogs with OS tumours showing high immunostaining intensity for PTHR1 (n = 36) had significantly shorter survival times (p = 0.028, Log Rank; p = 0.04, Cox regression) when compared with OS that had low immunostaining intensity for PTHR1 (n = 14).PTHrP immunostaining intensity did not correlate with survival time (p > 0.05). The results of this study indicate that increased expression of PTHR1 antigen in canine OS is associated with poor prognosis. This suggests that PTHR1 may be useful as a prognostic indicator in canine OS.
Collapse
|
8
|
Li S, Wu X, Pei Y, Wang W, Zheng K, Qiu E, Zhang X. PTHR1 May Be Involved in Progression of Osteosarcoma by Regulating miR-124-3p- AR-Tgfb1i1, miR-27a-3p- PPARG-Abca1, and miR-103/590-3p- AXIN2 Axes. DNA Cell Biol 2019; 38:1323-1337. [PMID: 31536386 DOI: 10.1089/dna.2019.4880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Our previous study has indicated that the parathyroid hormone type 1 receptor (PTHR1) may play important roles in development and progression of osteosarcoma (OS) by regulating Wnt, angiogenesis, and inflammation pathway genes. The goal of this study was to further illuminate the roles of PTHR1 in OS by investigating upstream regulation mechanisms (including microRNA [miRNA] and transcription factors [TFs]) of crucial genes. The microarray dataset GSE46861 was downloaded from the Gene Expression Omnibus database, in which six tumors with short hairpin RNA (shRNA) PTHR1 knockdown (PTHR1.358) and six tumors with shRNA control knockdown (Ren.1309) were collected from mice. Differentially expressed genes (DEGs) between PTHR1.358 and Ren.1309 were identified using the linear models for microarray data (LIMMA) method, and then the miRNA-TF-mRNA regulatory network was constructed using data from corresponding databases, followed by module analysis, to screen crucial regulatory relationships. OS-related human miRNAs were extracted from the curated Osteosarcoma Database. Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool. As a result, the miRNA-TF-mRNA regulatory network, including 1049 nodes (516 miRNA, 25 TFs, and 508 DEGs) and 15942 edges (interaction relationships, such as Pparg-Abca1 and miR-590-3p-AXIN2), was constructed, from which three significant modules were extracted and modules 2 and 3 contained interactions between miRNAs/TFs and DEGs such as miR-103-3p-AXIN2, miR-124-3p-AR-Tgfb1i1, and miR-27a-3p-PPARG-Abca1. miR-27a-3p was a known miRNA associated with OS. Abca1, AR, and miR-124-3p were hub genes in the miRNA-TF-mRNA network. Tgfb1i1 was involved in cell proliferation, Abca1 participated in the cholesterol metabolic process, and AXIN2 was associated with the canonical Wnt signaling pathway. Furthermore, we also confirmed upregulation of miR-590-3p and downregulation of AXIN2 in the mouse OS cell line K7M2-WT transfected with PTHR1 shRNA. In conclusion, PTHR1 may play important roles in progression of OS by activating miR-124-3p-AR-Tgfb1i1, miR-27a-3p-PPARG-Abca1, and miR-103/590-3p-AXIN2 axes.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xixi Wu
- School of Medicine, Ross University School of Medicine, Miramar, Florida
| | - Yi Pei
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Wei Wang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Ke Zheng
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Enduo Qiu
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xiaojing Zhang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Tovazzi V, Dalla Volta A, Pedersini R, Amoroso V, Berruti A. Excess of second tumors in denosumab-treated patients: a metabolic hypothesis. Future Oncol 2019; 15:2319-2321. [DOI: 10.2217/fon-2019-0170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Valeria Tovazzi
- Department of Medical & Surgical Specialties, Radiological Sciences, & Public Health, Medical Oncology, University of Brescia at ASST Spedali Civili, Brescia, Italy
| | - Alberto Dalla Volta
- ASST Spedali Civili of Brescia Medical Oncology, University of Verona, Verona, Italy
| | - Rebecca Pedersini
- Department of Medical & Surgical Specialties, Radiological Sciences, & Public Health, Medical Oncology, University of Brescia at ASST Spedali Civili, Brescia, Italy
| | - Vito Amoroso
- Department of Medical & Surgical Specialties, Radiological Sciences, & Public Health, Medical Oncology, University of Brescia at ASST Spedali Civili, Brescia, Italy
| | - Alfredo Berruti
- Department of Medical & Surgical Specialties, Radiological Sciences, & Public Health, Medical Oncology, University of Brescia at ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
10
|
Zhang Z, Li P, Li T, Zhao C, Wang G. Velvet Antler compounds targeting major cell signaling pathways in osteosarcoma - a new insight into mediating the process of invasion and metastasis in OS. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractVelvet antler is the only renewable bone tissue of mammalian animals, which consists of a variety of growth factors, amino acids and polypeptides. But the mechanism of high-speed proliferation without carcinogenesis is still mystifying. The previous study of this work found that the velvet antler peptides (VAP) could not only inhibit the proliferation and migration of osteosarcoma cell lines MG-63 and U2OS, but also induced U2OS apoptosis and inhibited MG-63 epithelial-mesenchymal transition (EMT) through TGF-β and Notch pathways. These results lead us to conclude that VAP has the potential ability to mediate osteosarcoma cells by regulating related signaling pathways and growth factors. Therefore, finding a new appropriate inhibitor for OS is a valuable research direction, which will give patients a better chance to receive proper therapy. From an applied perspective, this review summarized the effects of velvet antler, genes, growth factors and research progress of relative pathways and genes of osteosarcoma, which are poised to help link regenerative molecular biology and regenerative medicine in osteosarcoma pathogenesis.
Collapse
Affiliation(s)
- Zhengyao Zhang
- School of Life Science and Medicine, Dalian University of Technology, DaGong Road, PanjinLiaoning 124221, China
| | - Pengfei Li
- School of Life Science and Medicine, Dalian University of Technology, DaGong Road, PanjinLiaoning 124221, China
| | - Tie Li
- Acupuncture and Tuina Institute, Changchun University of Chinese Medicine, ChangchunJilin 130021, China
| | - Changwei Zhao
- Department of Orthopedics, Changchun University of Chinese Medicine, ChangchunJilin 130021, China
| | - Guoxiang Wang
- Cancer Center, The First Hospital of Jilin University, ChangchunJilin 130021, China
| |
Collapse
|
11
|
Ren YM, Duan YH, Sun YB, Yang T, Zhao WJ, Zhang DL, Tian ZW, Tian MQ. Exploring the key genes and pathways of side population cells in human osteosarcoma using gene expression array analysis. J Orthop Surg Res 2018; 13:153. [PMID: 29921292 PMCID: PMC6006685 DOI: 10.1186/s13018-018-0860-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/08/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human osteosarcoma (OS) is one of the most common primary bone sarcoma, because of early metastasis and few treatment strategies. It has been reported that the tumorigenicity and self-renewal capacity of side population (SP) cells play roles in human OS via regulating of target genes. This study aims to complement the differentially expressed genes (DEGs) that regulated between the SP cells and the non-SP cells from primary human OS and identify their functions and molecular pathways associated with OS. METHODS The gene expression profile GSE63390 was downloaded, and bioinformatics analysis was made. RESULTS One hundred forty-one DEGs totally were identified. Among them, 72 DEGs (51.06%) were overexpressed, and the remaining 69 DEGs (48.94%) were underexpressed. Gene ontology (GO) and pathway enrichment analysis of target genes were performed. We furthermore identified some relevant core genes using gene-gene interaction network analysis such as EIF4E, FAU, HSPD1, IL-6, and KISS1, which may have a relationship with the development process of OS. We also discovered that EIF4E/mTOR signaling pathway could be a potential research target for therapy and tumorigenesis of OS. CONCLUSION This analysis provides a comprehensive understanding of the roles of DEGs coming from SP cells in the development of OS. However, these predictions need further experimental validation in future studies.
Collapse
Affiliation(s)
- Yi-Ming Ren
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Yuan-Hui Duan
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Yun-Bo Sun
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Tao Yang
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Wen-Jun Zhao
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Dong-Liang Zhang
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Zheng-Wei Tian
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Meng-Qiang Tian
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| |
Collapse
|