1
|
Sun X, Wang N, Jiang H, Liu Q, Xiao C, Xu J, Wu Y, Mei J, Wu S, Lin Z. Insulin-transferrin-selenium promote formation of tissue-engineered vascular grafts in early stage of culture. Prep Biochem Biotechnol 2024; 54:1186-1195. [PMID: 38546975 DOI: 10.1080/10826068.2024.2333468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
To create tissue-engineered vascular grafts (TEVGs) in vitro, vascular smooth muscle cells (VSMCs) must function effectively and produce sufficient extracellular matrix (ECM) in a three-dimensional space. In this study, we investigated whether the addition of insulin-transferrin-selenium (ITS), a medium supplement, could enhance TEVG formation. PGA fabric was used as the scaffold, and 1% ITS was added to the medium. After two weeks, the tissues were examined using electron microscopy and staining. The ITS group exhibited a denser structure and increased collagen production. VSMCs were cultured in two dimensions with ITS and assessed for collagen production, cell growth, and glucose metabolism. The results showed that ITS supplementation increased collagen production, cell growth, glucose utilization, lactate production, and ATP levels. Furthermore, reducing the amount of fetal bovine serum (FBS) in the medium did not affect the TEVGs or VSMCs when ITS was present. In conclusion, ITS improves TEVG construction by promoting VSMCs growth and reducing the need for FBS.
Collapse
MESH Headings
- Tissue Engineering/methods
- Insulin/metabolism
- Animals
- Blood Vessel Prosthesis
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Selenium/pharmacology
- Selenium/chemistry
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Cells, Cultured
- Cell Proliferation/drug effects
- Rats
- Tissue Scaffolds/chemistry
- Collagen/metabolism
- Glucose/metabolism
Collapse
Affiliation(s)
- Xuheng Sun
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Nannan Wang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
| | - Hongjing Jiang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Qing Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Cong Xiao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Jianyi Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Yindi Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Jingyi Mei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
| | - Shuting Wu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Province, P.R. China
| | - Zhanyi Lin
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| |
Collapse
|
2
|
Chen X, Zhang R, Zhang Q, Xu Z, Xu F, Li D, Li Y. Magnetically Controlled 3D Cartilage Regeneration. Cartilage 2024; 15:293-302. [PMID: 37401776 PMCID: PMC11418502 DOI: 10.1177/19476035231183254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/02/2023] [Accepted: 06/02/2023] [Indexed: 07/05/2023] Open
Abstract
OBJECTIVE The cartilage regeneration field has not yet overcome the issue of effective "shaping": growing regenerated cartilage in the desired shape, and maintaining that shape, is problematic. This study reports on a new method of cartilage regeneration in which the cartilage is shaped in three dimensions. Since cartilage is composed only of cartilage cells and an abundant extracellular matrix with no blood circulation, once it is damaged, the lack of nutrient supply means that it is difficult to repair. Scaffold-free cell sheet technology plays an important role in cartilage regeneration, avoiding inflammation and immune response caused by scaffold materials. However, cartilage regenerated from the cell sheet needs to be sculpted and shaped before it can be used for cartilage defect transplantation. DESIGN In this study, we used a new ultra-strong magnetic-responsive Fe3O4 nanoparticle (MNP) to shape the cartilage in vitro. Super-magnetic Fe3O4 microspheres are manufactured by co-assembling negatively charged Cetyltrimethylammonium bromide (CTAB) and positively charged Fe3+ under solvothermal conditions. RESULTS The Fe3O4 MNPs are swallowed by chondrocytes, and the MNP-labeled chondrocytes are acted upon by the magnetic field. The predetermined magnetic force makes the tissues coalesce to form a multilayer cell sheet with a predetermined shape. The shaped cartilage tissue is regenerated in the transplanted body, and the nano magnetic control particles do not affect cell viability. The nanoparticles in this study improve the efficiency of cell interaction through super-magnetic modification, and to a certain extent change the way the cells absorb magnetic iron nanoparticles. This phenomenon allows a more orderly and compact alignment of the cartilage cell extracellular matrix, promotes ECM precipitation and cartilage tissue maturation, and improves the efficiency of cartilage regeneration. CONCLUSION The magnetic bionic structure, which contains specific magnetic particle-labeled cells, is deposited layer by layer to generate a three-dimensional structure with repair function, and further induce the production of cartilage. This study describes a new method for the regeneration of tissue engineered cartilage which has broad application prospects in regenerative medicine.
Collapse
Affiliation(s)
- Xia Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruhong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicheng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Datao Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyuan Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Paudel S, Feltham T, Manandhar L, Guo Y, Schon L, Zhang Z. Mild Synovitis Impairs Chondrogenic Joint Environment. Cells Tissues Organs 2023; 213:245-254. [PMID: 37524055 DOI: 10.1159/000532008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/25/2023] [Indexed: 08/02/2023] Open
Abstract
The impact of mild synovitis on the chondrogenic environment in the joint pertaining to cartilage repair is often neglected. In this study, 21 synovial samples were collected from foot surgeries for histology and isolation of fibroblast-like synoviocytes (FLSs). Of the 21 samples, 13 were normal and eight were mild synovitis, according to their synovitis scores. In mild synovitis, CD3+ lymphocytes were increased in the sublining layer. When chondrocytes were cultured and treated with the conditioned medium produced by FLSs, their glycosaminoglycan production was negatively correlated with the synovitis scores of the synovium, from which FLSs were isolated. In conclusion, mild synovitis in common joint conditions compromises the process of chondrogenesis, via inhibiting chondrocyte matrix production by FLSs. The results suggest that the concomitant synovitis, even being mild, could significantly alter the joint environment for chondrogenesis and impair the outcome of cartilage repair.
Collapse
Affiliation(s)
- Sharada Paudel
- Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Tyler Feltham
- Philadelphia College of Osteopathic Medicine-GA, Suwanee, Georgia, USA
| | | | - Yi Guo
- Department of Orthopaedic Surgery, Montefiore Medical Center, Bronx, New York, USA
| | - Lew Schon
- Institute for Foot and Ankle Reconstruction, Mercy Medical Center, Baltimore, Maryland, USA
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, Maryland, USA
| | - Zijun Zhang
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Bonato A, Fisch P, Ponta S, Fercher D, Manninen M, Weber D, Eklund KK, Barreto G, Zenobi‐Wong M. Engineering Inflammation-Resistant Cartilage: Bridging Gene Therapy and Tissue Engineering. Adv Healthc Mater 2023; 12:e2202271. [PMID: 36841937 PMCID: PMC11468558 DOI: 10.1002/adhm.202202271] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/09/2023] [Indexed: 02/27/2023]
Abstract
Articular cartilage defects caused by traumatic injury rarely heal spontaneously and predispose into post-traumatic osteoarthritis. In the current autologous cell-based treatments the regenerative process is often hampered by the poor regenerative capacity of adult cells and the inflammatory state of the injured joint. The lack of ideal treatment options for cartilage injuries motivated the authors to tissue engineer a cartilage tissue which would be more resistant to inflammation. A clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout of TGF-β-activated kinase 1 (TAK1) gene in polydactyly chondrocytes provides multivalent protection against the signals that activate the pro-inflammatory and catabolic NF-κB pathway. The TAK1-KO chondrocytes encapsulate into a hyaluronan hydrogel deposit copious cartilage extracellular matrix proteins and facilitate integration onto native cartilage, even under proinflammatory conditions. Furthermore, when implanted in vivo, compared to WT fewer pro-inflammatory M1 macrophages invade the cartilage, likely due to the lower levels of cytokines secreted by the TAK1-KO polydactyly chondrocytes. The engineered cartilage thus represents a new paradigm-shift for the creation of more potent and functional tissues for use in regenerative medicine.
Collapse
Affiliation(s)
- Angela Bonato
- Department of Health Sciences and TechnologyETH ZürichZürich8093Switzerland
| | - Philipp Fisch
- Department of Health Sciences and TechnologyETH ZürichZürich8093Switzerland
| | - Simone Ponta
- Department of Health Sciences and TechnologyETH ZürichZürich8093Switzerland
| | - David Fercher
- Department of Health Sciences and TechnologyETH ZürichZürich8093Switzerland
| | | | - Daniel Weber
- Division of Hand SurgeryUniversity Children's HospitalZürich8032Switzerland
| | - Kari K. Eklund
- Orton Orthopedic Hospital HelsinkiHelsinki00280Finland
- Department of RheumatologyUniversity of Helsinki and Helsinki University HospitalHelsinki00014Finland
| | - Goncalo Barreto
- Orton Orthopedic Hospital HelsinkiHelsinki00280Finland
- Translational Immunology Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinki00014Finland
| | - Marcy Zenobi‐Wong
- Department of Health Sciences and TechnologyETH ZürichZürich8093Switzerland
| |
Collapse
|
5
|
Shiromoto Y, Niki Y, Kikuchi T, Yoshihara Y, Oguma T, Nemoto K, Chiba K, Kanaji A, Matsumoto M, Nakamura M. Increased migratory activity and cartilage regeneration by superficial-zone chondrocytes in enzymatically treated cartilage explants. BMC Musculoskelet Disord 2022; 23:256. [PMID: 35296296 PMCID: PMC8925221 DOI: 10.1186/s12891-022-05210-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Background Limited chondrocyte migration and impaired cartilage-to-cartilage healing is a barrier in cartilage regenerative therapy. Collagenase treatment and delivery of a chemotactic agent may play a positive role in chondrocyte repopulation at the site of cartilage damage. This study evaluated chondrocyte migratory activity after enzymatic treatment in cultured cartilage explant. Differential effects of platelet-derived growth factor (PDGF) dimeric isoforms on the migratory activity were investigated to define major chemotactic factors for cartilage. Methods Full-thickness cartilage (4-mm3 blocks) were harvested from porcine femoral condyles and subjected to explant culture. After 15 min or 60 min of actinase and collagenase treatments, chondrocyte migration and infiltration into a 0.5-mm cartilage gap was investigated. Cell morphology and lubricin, keratan sulfate, and chondroitin 4 sulfate expression in superficial- and deep-zone chondrocytes were assessed. The chemotactic activities of PDGF-AA, −AB, and -BB were measured in each zone of chondrocytes, using a modified Boyden chamber assay. The protein and mRNA expression and histological localization of PDGF-β were analyzed by western blot analysis, real-time reverse transcription polymerase chain reaction (RT-PCR), and immunohistochemistry, and results in each cartilage zone were compared. Results Superficial-zone chondrocytes had higher migratory activity than deep-zone chondrocytes and actively bridged the cartilage gap, while metachromatic staining by toluidine blue and immunoreactivities of keratan sulfate and chondroitin 4 sulfate were detected around the cells migrating from the superficial zone. These superficial-zone cells with weak immunoreactivity for lubricin tended to enter the cartilage gap and possessed higher migratory activity, while the deep-zone chondrocytes remained in the lacuna and exhibited less migratory activity. Among PDGF isoforms, PDGF-AB maximized the degree of chemotactic activity of superficial zone chondrocytes. Increased expression of PDGF receptor-β was associated with higher migratory activity of the superficial-zone chondrocytes. Conclusions In enzymatically treated cartilage explant culture, chondrocyte migration and infiltration into the cartilage gap was higher in the superficial zone than in the deep zone. Preferential expression of PDGF receptor-β combined with the PDGF-AB dimeric isoform may explain the increased migratory activity of the superficial-zone chondrocytes. Cells migrating from superficial zone may contribute to cartilage regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05210-2.
Collapse
Affiliation(s)
- Yuichiro Shiromoto
- Department of Orthopedic Surgery, School of Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama, 359-8513, Japan
| | - Yasuo Niki
- Department of Orthopedic Surgery, School of Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Toshiyuki Kikuchi
- Department of Orthopedic Surgery, National Hospital Organization, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama City, Tokyo, 208-0011, Japan
| | - Yasuo Yoshihara
- Department of Orthopedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama, 359-8513, Japan.,Department of Orthopedic Surgery, National Hospital Organization, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama City, Tokyo, 208-0011, Japan
| | - Takemi Oguma
- Department of Orthopedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama, 359-8513, Japan
| | - Koichi Nemoto
- Department of Orthopedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama, 359-8513, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama, 359-8513, Japan
| | - Arihiko Kanaji
- Department of Orthopedic Surgery, School of Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, School of Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, School of Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
6
|
Migliorini F, Eschweiler J, Goetze C, Tingart M, Maffulli N. Membrane scaffolds for matrix-induced autologous chondrocyte implantation in the knee: a systematic review. Br Med Bull 2021; 140:50-61. [PMID: 34553227 DOI: 10.1093/bmb/ldab024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Chondral defects of the knee are common and their management is challenging. SOURCE OF DATA Current scientific literature published in PubMed, Google scholar, Embase and Scopus. AREAS OF AGREEMENT Membrane-induced autologous chondrocyte implantation (mACI) has been used to manage chondral defects of the knee. AREAS OF CONTROVERSY Hyaluronic acid membrane provides better outcomes than a collagenic membrane for mACI in the knee at midterm follow-up is controversial. GROWING POINTS To investigate whether hyaluronic acid membrane may provide comparable clinical outcomes than collagenic membranes for mACI in focal defects of the knee. AREAS TIMELY FOR DEVELOPING RESEARCH Hyaluronic acid membrane yields a lower rate of failures and revision surgeries for mACI in the management of focal articular cartilage defects of the knee compared with collagenic scaffolds at midterm follow-up. No difference was found in patient reported outcome measures (PROMs). Further comparative studies are required to validate these results in a clinical setting.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Christian Goetze
- Department of Orthopaedic Surgery, Auguste-Viktoria Clinic, Ruhr University Bochum, 32545, Bad Oeynhausen, Germany
| | - Markus Tingart
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK.,School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke-on-Trent ST4 7QB, UK
| |
Collapse
|
7
|
Liao S, Meng H, Li J, Zhao J, Xu Y, Wang A, Xu W, Peng J, Lu S. Potential and recent advances of microcarriers in repairing cartilage defects. J Orthop Translat 2021; 27:101-109. [PMID: 33520655 PMCID: PMC7810913 DOI: 10.1016/j.jot.2020.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/11/2022] Open
Abstract
Articular cartilage regeneration is one of the challenges faced by orthopedic surgeons. Microcarrier applications have made great advances in cartilage tissue engineering in recent years and enable cost-effective cell expansion, thus providing permissive microenvironments for cells. In addition, microcarriers can be loaded with proteins, factors, and drugs for cartilage regeneration. Some microcarriers also have the advantages of injectability and targeted delivery. The application of microcarriers with these characteristics can overcome the limitations of traditional methods and provide additional advantages. In terms of the transformation potential, microcarriers have not only many advantages, such as providing sufficient and beneficial cells, factors, drugs, and microenvironments for cartilage regeneration, but also many application characteristics; for example, they can be injected to reduce invasiveness, transplanted after microtissue formation to increase efficiency, or combined with other stents to improve mechanical properties. Therefore, this technology has enormous potential for clinical transformation. In this review, we focus on recent advances in microcarriers for cartilage regeneration. We compare the characteristics of microcarriers with other methods for repairing cartilage defects, provide an overview of the advantages of microcarriers, discuss the potential of microcarrier systems, and present an outlook for future development. Translational potential of this article We reviewed the advantages and recent advances of microcarriers for cartilage regeneration. This review could give many scholars a better understanding of microcarriers, which can provide doctors with potential methods for treating patients with cartilage injure.
Collapse
Affiliation(s)
- Sida Liao
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Haoye Meng
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Junkang Li
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jun Zhao
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yichi Xu
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Aiyuan Wang
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenjing Xu
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiang Peng
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shibi Lu
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
8
|
Yuan F, Chen H, Hu P, Su P, Guan X. MiR-26a regulates the expression of serum IGF-1 in patients with osteoporosis and its effect on proliferation and apoptosis of mouse chondrocytes. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:298-307. [PMID: 34059575 PMCID: PMC8185263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To examine the effects of the regulation on IGF-1 by miR-26a on the serum of patients with osteoporosis (OP) and apoptosis and proliferation of chondrocytes of mice with OP. METHODS Totally 47 patients with OP treated in our hospital between July 2018 and November 2019 were selected as the research group, and 42 healthy individuals in physical examination over this period were selected as the control group. Serum was sampled from each participant in both groups, and miR-26a in the sampled serum was quantified and compared. In addition, chondrocytes were sampled from mice with OP. The changes of proliferation and apoptosis of the chondrocytes were analyzed via MTT and flow cytometry, and the levels of Caspase3, Caspase9, Bax, and Bcl-2 were quantified by western blot (WB) assay. RESULTS MiR-26a was expressed highly in the serum of patients with OP and chondrocytes of mice with OP, while IGF-1 was lowly expressed in them. According to the dual-luciferase reporter assay, there was a targeting correlation between miR-26a and IGF-1, and suppressing miR-26a significantly up-regulated the expression and protein level of IGF-1. CONCLUSIONS MiR-26a can serve as a biological marker for the diagnosis of OP, and it can suppress the proliferation of chondrocytes and promote their apoptosis by regulating IGF-1.
Collapse
Affiliation(s)
- Fangchang Yuan
- Orthopedic Department, Rizhao People’s Hospital, P.R. China
| | - Haixia Chen
- Dermatology Department, Rizhao People’s Hospital, P.R. China
| | - Peng Hu
- Orthopedic Department, Rizhao People’s Hospital, P.R. China
| | - Peng Su
- Orthopedic Department, Lanshan District People’s Hospital, P.R. China
| | - Xiliang Guan
- Orthopedic Department, Rizhao People’s Hospital, P.R. China,Corresponding author: Xiliang Guan, Orthopedic Department, Rizhao People’s Hospital, No. 126 Tai’an Road, Rizhao 276800, Shandong, P.R. China E-mail:
| |
Collapse
|
9
|
Naghizadeh Z, Karkhaneh A, Nokhbatolfoghahaei H, Farzad-Mohajeri S, Rezai-Rad M, Dehghan MM, Aminishakib P, Khojasteh A. Cartilage regeneration with dual-drug-releasing injectable hydrogel/microparticle system: In vitro and in vivo study. J Cell Physiol 2020; 236:2194-2204. [PMID: 32776540 DOI: 10.1002/jcp.30006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
In this study, we developed an injectable in situ forming hydrogel/microparticle system consisting of two drugs, melatonin and methylprednisolone, to investigate the capability of the system for chondrogenesis in vitro and in vivo. The chemical, mechanical, and rheological properties of the hydrogel/microparticle were investigated. For in vitro evaluation, the adipose-derived stem cells might be mixed with hydrogel/microparticles, then cellular viability was analyzed by acridine orange/propidium iodide and 4',6-diamidino-2-phenylindole staining and also dimethylmethylene blue assay were conducted to find the amount of proteoglycan. The real-time polymerase chain reaction for aggrecan, sex-determining region Y-Box 9, collagen I (COL1), and COL2 gene expression was performed after 14 and 21 days. For evaluation of cartilage regeneration, the samples were implanted in rabbit knees with cartilaginous experimental defects. Defects were created in both knees of three groups of rabbits. Group 1 was the control with no injection, and Groups 2 and 3 were loaded with hydrogel/cell and hydrogel/microparticle/cell; respectively. Then, after 3 and 6 months, histological evaluations of the defected sites were carried out. The amount of glycosaminoglycans after 14 and 21 days increased significantly in hydrogels/microparticles loaded with cells. The expression of marker genes was also significant in hydrogels/microparticles loaded with cells. According to histology analysis, the hydrogels/microparticles loaded with cells showed the best cartilage regeneration. Overall, our study revealed that the developed injectable hydrogel/microparticle can be used for cartilage regeneration.
Collapse
Affiliation(s)
- Ziba Naghizadeh
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Akbar Karkhaneh
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Rezai-Rad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad M Dehghan
- Institute of Biomedical Research, University of Tehran, Tehran, Iran.,Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pouyan Aminishakib
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Gao Y, Gao J, Li H, Du D, Jin D, Zheng M, Zhang C. Autologous costal chondral transplantation and costa-derived chondrocyte implantation: emerging surgical techniques. Ther Adv Musculoskelet Dis 2019; 11:1759720X19877131. [PMID: 31579403 PMCID: PMC6759717 DOI: 10.1177/1759720x19877131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023] Open
Abstract
It is a great challenge to cure symptomatic lesions and considerable defects of hyaline cartilage due to its complex structure and poor self-repair capacity. If left untreated, unmatured degeneration will cause significant complications. Surgical intervention to repair cartilage may prevent progressive joint degeneration. A series of surgical techniques, including biological augmentation, microfracture and bone marrow stimulation, autologous chondrocyte implantation (ACI), and allogenic and autogenic chondral/osteochondral transplantation, have been used for various indications. However, the limited repairing capacity and the potential pitfalls of these techniques cannot be ignored. Increasing evidence has shown promising outcomes from ACI and cartilage transplantation. Nevertheless, the morbidity of autologous donor sites and limited resource of allogeneic bone have considerably restricted the wide application of these surgical techniques. Costal cartilage, which preserves permanent chondrocytes and the natural osteochondral junction, is an ideal candidate for the restoration of cartilage defects. Several in vitro and in vivo studies have shown good performance of costal cartilage transplantation. Although costal cartilage is a classic donor in plastic and cosmetic surgery, it is rarely used in skeletal cartilage restoration. In this review, we introduce the fundamental properties of costal cartilage and summarize costa-derived chondrocyte implantation and costal chondral/osteochondral transplantation. We will also discuss the pitfalls and pearls of costal cartilage transplantation. Costal chondral/osteochondral transplantation and costa-based chondrocytotherapy might be up-and-coming surgical techniques for recalcitrant cartilage lesions.
Collapse
Affiliation(s)
| | - Junjie Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Centre for Orthopaedic Translational Research, University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Hengyuan Li
- Department of Orthopaedics, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Dajiang Du
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Dongxu Jin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Minghao Zheng
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai 200233, China
| |
Collapse
|
11
|
Li YJ, Teng BH, Zhao YH, Yang Q, Wang LY, Huang Y. [Preparation and evaluation of carboxymethyl chitosan/sodium alginate hydrogel for cartilage tissue engineering]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:253-259. [PMID: 31218857 PMCID: PMC7030079 DOI: 10.7518/hxkq.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/10/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study aimed to optimize the preparation of carboxymethyl chitosan/sodium alginate (CMCS/OSA) compound hydrogels. This study also aimed to investigate the applicability of the hydrogels in cartilage tissue engi-neering. METHODS Three groups of CMCS/OSA composite hydrogels with amino-to-aldehyde ratios of 2∶1, 1∶1 and 1∶2 were prepared. The microstructure, physical properties, and cell biocompatibility of the three groups of CMCS/OSA com-posite hydrogels were evaluated. Samples were subjected to scanning electron microscopy, rheological test, adhesion tension test, swelling rate test, and cell experiments to identify the CMCS/OSA composite hydrogel with the cross-linking degree that can meet the requirements for scaffolds in cartilage tissue engineering. RESULTS The experimental results showed that the CMCS/OSA hydrogel with a amine-to-aldhyde ratio of 1∶1 had good porosity, suitable gelling time, strong adhesive force, stable swelling rate, and good cellular biocompatibility. CONCLUSIONS The CMCS/OSA compound hydrogel prepared with a 1∶1 ratio of amino and aldehyde groups has potential applications in cartilage tissue engineering.
Collapse
Affiliation(s)
- Yun-Jie Li
- Dept. of Orthodontics, Stoma-tological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Bin-Hong Teng
- Dept. of Orthodontics, Stoma-tological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Yan-Hong Zhao
- Dept. of Orthodontics, Stoma-tological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Qiang Yang
- Dept. of Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Lian-Yong Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai Uni-versity, Tianjin 300071, China
| | - Ying Huang
- Dept. of Orthodontics, Stoma-tological Hospital of Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
12
|
Attico E, Sceberras V, Pellegrini G. Approaches for Effective Clinical Application of Stem Cell Transplantation. CURRENT TRANSPLANTATION REPORTS 2018; 5:244-250. [PMID: 30221121 PMCID: PMC6132451 DOI: 10.1007/s40472-018-0202-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE OF REVIEW This review highlights problems related to translation of advanced therapy medicinal products (ATMPs) from bench to bedsite. Regenerative medicine within the current regulatory frame reveals common hitches in the course of development, translation, and clinical application. This paper suggests outlining a path from the few examples of successfully approved vs unsuccessful advanced therapies. RECENT FINDINGS In the multitude of ongoing studies, few of them achieved positive results with a final treatment available to patients; this result was possible due to multidisciplinary teams working together from the beginning of the development and during the hard route to standardization and clinical application. SUMMARY The root of success of an advanced therapy requires not only the inescapable scientific and biological knowledge but also requires several contributions as regulatory, ethical, medical, and bio-engineering expertise, from the real beginning. A strong scientific rationale and an integrated network of expertises would contribute to a successful investment of available resources in advanced therapy medicinal products and to a greater confidence in future medicine.
Collapse
Affiliation(s)
- E. Attico
- Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | | | - G. Pellegrini
- Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
- Holostem Terapie Avanzate, Modena, Italy
| |
Collapse
|