1
|
Poongodi R, Hsu YW, Yang TH, Huang YH, Yang KD, Lin HC, Cheng JK. Stem Cell-Derived Extracellular Vesicle-Mediated Therapeutic Signaling in Spinal Cord Injury. Int J Mol Sci 2025; 26:723. [PMID: 39859437 PMCID: PMC11765593 DOI: 10.3390/ijms26020723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic strategy for spinal cord injury (SCI). These nanosized vesicles possess unique properties such as low immunogenicity and the ability to cross biological barriers, making them ideal carriers for delivering bioactive molecules to injured tissues. MSC-EVs have been demonstrated to exert multiple beneficial effects in SCI, including reducing inflammation, promoting neuroprotection, and enhancing axonal regeneration. Recent studies have delved into the molecular mechanisms underlying MSC-EV-mediated therapeutic effects. Exosomal microRNAs (miRNAs) have been identified as key regulators of various cellular processes involved in SCI pathogenesis and repair. These miRNAs can influence inflammation, oxidative stress, and apoptosis by modulating gene expression. This review summarized the current state of MSC-EV-based therapies for SCI, highlighting the underlying mechanisms and potential clinical applications. We discussed the challenges and limitations of translating these therapies into clinical practice, such as inconsistent EV production, complex cargo composition, and the need for targeted delivery strategies. Future research should focus on optimizing EV production and characterization, identifying key therapeutic miRNAs, and developing innovative delivery systems to maximize the therapeutic potential of MSC-EVs in SCI.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Yung-Wei Hsu
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ya-Hsien Huang
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Kuender D. Yang
- Institute of Long-Term Care, MacKay Medical College, New Taipei City 25245, Taiwan;
- MacKay Children’s Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jen-Kun Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
3
|
Zhang C, Talifu Z, Xu X, Liu W, Ke H, Pan Y, Li Y, Bai F, Jing Y, Li Z, Li Z, Yang D, Gao F, Du L, Li J, Yu Y. MicroRNAs in spinal cord injury: A narrative review. Front Mol Neurosci 2023; 16:1099256. [PMID: 36818651 PMCID: PMC9931912 DOI: 10.3389/fnmol.2023.1099256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a global medical problem with high disability and mortality rates. At present, the diagnosis and treatment of SCI are still lacking. Spinal cord injury has a complex etiology, lack of diagnostic methods, poor treatment effect and other problems, which lead to the difficulty of spinal cord regeneration and repair, and poor functional recovery. Recent studies have shown that gene expression plays an important role in the regulation of SCI repair. MicroRNAs (miRNAs) are non-coding RNA molecules that target mRNA expression in order to silence, translate, or interfere with protein synthesis. Secondary damage, such as oxidative stress, apoptosis, autophagy, and inflammation, occurs after SCI, and differentially expressed miRNAs contribute to these events. This article reviews the pathophysiological mechanism of miRNAs in secondary injury after SCI, focusing on the mechanism of miRNAs in secondary neuroinflammation after SCI, so as to provide new ideas and basis for the clinical diagnosis and treatment of miRNAs in SCI. The mechanisms of miRNAs in neurological diseases may also make them potential biomarkers and therapeutic targets for spinal cord injuries.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Yan Li
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yingli Jing
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zihan Li
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,*Correspondence: Jianjun Li,
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China,,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Yan Yu,
| |
Collapse
|