1
|
Pisal T, Deshmukh A, Agrawal R, Gurnani S, Barosani A. Radiological Evaluation of Lumbar Endplate Dimensions in the Indian Population and Their Correlation With Cage Placement/Length in Diverse Lumbar Fusion Techniques. Cureus 2024; 16:e65631. [PMID: 39205725 PMCID: PMC11357736 DOI: 10.7759/cureus.65631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background Lumbar fusion techniques are vital for treating various spinal conditions by promoting vertebral fusion to alleviate pain and restore stability. Given the anatomical uniqueness of the Indian skeletal structure, this study evaluates the radiological dimensions of lumbar endplates in the Indian population and their correlation with the placement and length of interbody cages used in various lumbar fusion techniques such as oblique lateral lumbar interbody fusion (OLIF), transforaminal lumbar interbody fusion (TLIF), and anterior lumbar interbody fusion (ALIF). This study aimed to conduct radiological measurements of lumbar endplates in the Indian population and correlate them with cage placement and length in lumbar fusion techniques. Methods This prospective study was conducted at the orthopaedic ward of a tertiary care center in Western Maharashtra, India. Healthy individuals (aged >18 years, either gender) selected with a 95% confidence level using Philip Core Integrity software (Amsterdam, Netherlands) were included in the study. We excluded those with a history of low back pain, previous lumbar spine surgeries, fractures, tuberculosis, tumors, deformities, degenerative diseases, or lesions affecting the lumbar spine. Quantitative measurements such as oblique and sagittal diameters, apophyseal ring widths, and interbody cage lengths were calculated using multiplanar reformatting with specific imaging parameters. Results A total of 150 individuals with an average age of 39.83 ± 14.17 years, ranging from 20 to 65 years. Among the study population, 68 were males and 82 were females. Among the male study population, oblique parameters such as Angle AOB and Mid-OD (oblique diameter) show considerable variability, with Angle AOB ranging from 51.43 ± 2.40 mm (L2 inferior) to 31.59 ± 4.25 mm (L5 inferior) and Mid-OD ranging from 41.59 ± 2.59 mm (L3 superior) to 34.38 ± 2.26 mm (S1 superior). Side-sagittal dimensions vary from 32.11 ± 2.50 mm (S1 superior) to 36.48 ±3.26 mm (L3 superior), emphasizing the need for tailored surgical planning. In contrast, females in the study population exhibit distinct anatomical profiles, with Angle AOB ranging from 52.15 ± 2.43 mm (L2 inferior) to 20.45 ± 5.45 mm (S1 superior) and Mid-OD from 33.48 ± 2.15 mm (L3 inferior) to 42.45 ± 2.59 mm (L3 superior). These findings underscore gender-specific anatomical differences crucial for individualized clinical evaluation and treatment strategies. Conclusion This study comprehensively analyzes oblique, side-sagittal, transverse, and midsagittal anatomic parameters across various vertebral levels in men and women, highlighting significant anatomical variations crucial for clinical assessments and surgical interventions.
Collapse
Affiliation(s)
- Tushar Pisal
- Orthopaedics, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Ashwin Deshmukh
- Orthopaedics, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Rahul Agrawal
- Orthopaedics, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Sagar Gurnani
- Orthopaedics, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Ankit Barosani
- Orthopaedics, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| |
Collapse
|
2
|
Zhou Z, Wang S, Zhang S, Pan X, Yang H, Zhuang Y, Lu Z. Deep learning-based spinal canal segmentation of computed tomography image for disease diagnosis: A proposed system for spinal stenosis diagnosis. Medicine (Baltimore) 2024; 103:e37943. [PMID: 38701305 PMCID: PMC11062721 DOI: 10.1097/md.0000000000037943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Lumbar disc herniation was regarded as an age-related degenerative disease. Nevertheless, emerging reports highlight a discernible shift, illustrating the prevalence of these conditions among younger individuals. METHODS This study introduces a novel deep learning methodology tailored for spinal canal segmentation and disease diagnosis, emphasizing image processing techniques that delve into essential image attributes such as gray levels, texture, and statistical structures to refine segmentation accuracy. RESULTS Analysis reveals a progressive increase in the size of vertebrae and intervertebral discs from the cervical to lumbar regions. Vertebrae, bearing weight and safeguarding the spinal cord and nerves, are interconnected by intervertebral discs, resilient structures that counteract spinal pressure. Experimental findings demonstrate a lack of pronounced anteroposterior bending during flexion and extension, maintaining displacement and rotation angles consistently approximating zero. This consistency maintains uniform anterior and posterior vertebrae heights, coupled with parallel intervertebral disc heights, aligning with theoretical expectations. CONCLUSIONS Accuracy assessment employs 2 methods: IoU and Dice, and the average accuracy of IoU is 88% and that of Dice is 96.4%. The proposed deep learning-based system showcases promising results in spinal canal segmentation, laying a foundation for precise stenosis diagnosis in computed tomography images. This contributes significantly to advancements in spinal pathology understanding and treatment.
Collapse
Affiliation(s)
- Zhiyi Zhou
- Department of Orthopaedics, Wuxi The Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Shenjun Wang
- Department of Orthopaedics, Wuxi The Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Shujun Zhang
- Department of Orthopaedics, Wuxi The Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Xiang Pan
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Haoxia Yang
- Department of Orthopaedics, Wuxi The Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Yin Zhuang
- Department of Orthopaedics, Wuxi The Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Zhengfeng Lu
- Department of Orthopaedics, Wuxi The Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| |
Collapse
|
3
|
Zhao Y, Zhou X, Pan T, Gao S, Zhang W. Correspondence-based Generative Bayesian Deep Learning for semi-supervised volumetric medical image segmentation. Comput Med Imaging Graph 2024; 113:102352. [PMID: 38341947 DOI: 10.1016/j.compmedimag.2024.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
Automated medical image segmentation plays a crucial role in diverse clinical applications. The high annotation costs of fully-supervised medical segmentation methods have spurred a growing interest in semi-supervised methods. Existing semi-supervised medical segmentation methods train the teacher segmentation network using labeled data to establish pseudo labels for unlabeled data. The quality of these pseudo labels is constrained as these methods fail to effectively address the significant bias in the data distribution learned from the limited labeled data. To address these challenges, this paper introduces an innovative Correspondence-based Generative Bayesian Deep Learning (C-GBDL) model. Built upon the teacher-student architecture, we design a multi-scale semantic correspondence method to aid the teacher model in generating high-quality pseudo labels. Specifically, our teacher model, embedded with the multi-scale semantic correspondence, learns a better-generalized data distribution from input volumes by feature matching with the reference volumes. Additionally, a double uncertainty estimation schema is proposed to further rectify the noisy pseudo labels. The double uncertainty estimation takes the predictive entropy as the first uncertainty estimation and takes the structural similarity between the input volume and its corresponding reference volumes as the second uncertainty estimation. Four groups of comparative experiments conducted on two public medical datasets demonstrate the effectiveness and the superior performance of our proposed model. Our code is available on https://github.com/yumjoo/C-GBDL.
Collapse
Affiliation(s)
- Yuzhou Zhao
- Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
| | - Xinyu Zhou
- Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
| | - Tongxin Pan
- Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
| | - Shuyong Gao
- Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China.
| | - Wenqiang Zhang
- Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China; Shanghai Engineering Research Center of AI & Robotics, Academy for Engineering and Technology, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Abdulahi AT, Ogundokun RO, Adenike AR, Shah MA, Ahmed YK. PulmoNet: a novel deep learning based pulmonary diseases detection model. BMC Med Imaging 2024; 24:51. [PMID: 38418987 PMCID: PMC10903074 DOI: 10.1186/s12880-024-01227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 02/11/2024] [Indexed: 03/02/2024] Open
Abstract
Pulmonary diseases are various pathological conditions that affect respiratory tissues and organs, making the exchange of gas challenging for animals inhaling and exhaling. It varies from gentle and self-limiting such as the common cold and catarrh, to life-threatening ones, such as viral pneumonia (VP), bacterial pneumonia (BP), and tuberculosis, as well as a severe acute respiratory syndrome, such as the coronavirus 2019 (COVID-19). The cost of diagnosis and treatment of pulmonary infections is on the high side, most especially in developing countries, and since radiography images (X-ray and computed tomography (CT) scan images) have proven beneficial in detecting various pulmonary infections, many machine learning (ML) models and image processing procedures have been utilized to identify these infections. The need for timely and accurate detection can be lifesaving, especially during a pandemic. This paper, therefore, suggested a deep convolutional neural network (DCNN) founded image detection model, optimized with image augmentation technique, to detect three (3) different pulmonary diseases (COVID-19, bacterial pneumonia, and viral pneumonia). The dataset containing four (4) different classes (healthy (10,325), COVID-19 (3,749), BP (883), and VP (1,478)) was utilized as training/testing data for the suggested model. The model's performance indicates high potential in detecting the three (3) classes of pulmonary diseases. The model recorded average detection accuracy of 94%, 95.4%, 99.4%, and 98.30%, and training/detection time of about 60/50 s. This result indicates the proficiency of the suggested approach when likened to the traditional texture descriptors technique of pulmonary disease recognition utilizing X-ray and CT scan images. This study introduces an innovative deep convolutional neural network model to enhance the detection of pulmonary diseases like COVID-19 and pneumonia using radiography. This model, notable for its accuracy and efficiency, promises significant advancements in medical diagnostics, particularly beneficial in developing countries due to its potential to surpass traditional diagnostic methods.
Collapse
Affiliation(s)
- AbdulRahman Tosho Abdulahi
- Department of Computer Science, Institute of Information and Communication Technology, Kwara State Polytechnic, Ilorin, Nigeria
| | - Roseline Oluwaseun Ogundokun
- Department of Multimedia Engineering, Kaunas University of Technology, Kaunas, Lithuania
- Department of Computer Science, Landmark University Omu Aran, Omu Aran, Nigeria
| | - Ajiboye Raimot Adenike
- Department of Statistics, Institute of Applied Sciences, Kwara State Polytechnic, Ilorin, Nigeria
| | - Mohd Asif Shah
- Department of Economics, Kebri Dehar University, Kebri Dehar, 250, Somali, Ethiopia.
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, 174103, India.
| | - Yusuf Kola Ahmed
- Department of Biomedical Engineering, University of Ilorin, Ilorin, Nigeria
- Department of Occupational Therapy, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Talab F, Alam A, Zainab, Ullah S, Elhenawy AA, Shah SAA, Ali M, Halim SA, Khan A, Latif A, Al-Harrasi A, Ahmad M. Novel hydrazone schiff's base derivatives of polyhydroquinoline: synthesis, in vitro prolyl oligopeptidase inhibitory activity and their Molecular docking study. J Biomol Struct Dyn 2024:1-15. [PMID: 38385366 DOI: 10.1080/07391102.2024.2319677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
This research work reports the synthesis of new derivatives of the hydrazone Schiff bases (1-17) based on polyhydroquinoline nucleus through multistep reactions. HR-ESIMS,1H- and 13C-NMR spectroscopy were used to structurally infer all of the synthesized compounds and lastly evaluated for prolyl oligopeptidase inhibitory activity. All the prepared products displayed good to excellent inhibitory activity when compared with standard z-prolyl-prolinal. Three derivatives 3, 15 and 14 showed excellent inhibition with IC50 values 3.21 ± 0.15 to 5.67 ± 0.18 µM, while the remaining 12 compounds showed significant activity. Docking studies indicated a good correlation with the biochemical potency of compounds estimated in the in-vitro test and showed the potency of compounds 3, 15 and 14. The MD simulation results confirmed the stability of the most potent inhibitors 3, 15 and 14 at 250 ns using the parameters RMSD, RMSF, Rg and number of hydrogen bonds. The RMSD values indicate the stability of the protein backbone in complex with the inhibitors over the simulation time. The RMSF values of the binding site residues indicate that the potent inhibitors contributed to stabilizing these regions of the protein, through formed stable interactions with the protein. The Rg. analysis assesses the overall size and compactness of the complexes. The maintenance of stable hydrogen bonds suggests the existence of favorable binding interactions. SASA analysis suggests that they maintained stable conformations without large-scale exposure to the solvent. These results indicate that the ligand-protein interactions are stable and could be exploited to design new drugs for disease treatment.
Collapse
Affiliation(s)
- Faiz Talab
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Alam
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Zainab
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science and Art, Al Baha University, Al Bahah, Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Selangor D. E, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Selangor D. E, Malaysia
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
6
|
Gul S, Jan F, Alam A, Shakoor A, Khan A, AlAsmari AF, Alasmari F, Khan M, Bo L. Synthesis, molecular docking and DFT analysis of novel bis-Schiff base derivatives with thiobarbituric acid for α-glucosidase inhibition assessment. Sci Rep 2024; 14:3419. [PMID: 38341468 PMCID: PMC10858901 DOI: 10.1038/s41598-024-54021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
A library of novel bis-Schiff base derivatives based on thiobarbituric acid has been effectively synthesized by multi-step reactions as part of our ongoing pursuit of novel anti-diabetic agents. All these derivatives were subjected to in vitro α-glucosidase inhibitory potential testing after structural confirmation by modern spectroscopic techniques. Among them, compound 8 (IC50 = 0.10 ± 0.05 µM), and 9 (IC50 = 0.13 ± 0.03 µM) exhibited promising inhibitory activity better than the standard drug acarbose (IC50 = 0.27 ± 0.04 µM). Similarly, derivatives (5, 6, 7, 10 and 4) showed significant to good inhibitory activity in the range of IC50 values from 0.32 ± 0.03 to 0.52 ± 0.02 µM. These derivatives were docked with the target protein to elucidate their binding affinities and key interactions, providing additional insights into their inhibitory mechanisms. The chemical nature of these compounds were reveal by performing the density functional theory (DFT) calculation using hybrid B3LYP functional with 6-311++G(d,p) basis set. The presence of intramolecular H-bonding was explored by DFT-d3 and reduced density gradient (RGD) analysis. Furthermore, various reactivity parameters were explored by performing TD-DFT at CAM-B3LYP/6-311++G(d,p) method.
Collapse
Affiliation(s)
- Saba Gul
- Department of Chemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Faheem Jan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chineses Academy of Sciences, Shenyang, 110016, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, Liaoning, China
| | - Aftab Alam
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| | - Abdul Shakoor
- Department of Chemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, PO Box 33, Nizwa, Oman
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Li Bo
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, China.
| |
Collapse
|
7
|
Luo X, Zheng R, Zhang J, He J, Luo W, Jiang Z, Li Q. CT-based radiomics for predicting Ki-67 expression in lung cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1329801. [PMID: 38384802 PMCID: PMC10879429 DOI: 10.3389/fonc.2024.1329801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Background Radiomics, an emerging field, presents a promising avenue for the accurate prediction of biomarkers in different solid cancers. Lung cancer remains a significant global health challenge, contributing substantially to cancer-related mortality. Accurate assessment of Ki-67, a marker reflecting cellular proliferation, is crucial for evaluating tumor aggressiveness and treatment responsiveness, particularly in non-small cell lung cancer (NSCLC). Methods A systematic review and meta-analysis conducted following the preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA) guidelines. Two authors independently conducted a literature search until September 23, 2023, in PubMed, Embase, and Web of Science. The focus was on identifying radiomics studies that predict Ki-67 expression in lung cancer. We evaluated quality using both Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and the Radiomics Quality Score (RQS) tools. For statistical analysis in the meta-analysis, we used STATA 14.2 to assess sensitivity, specificity, heterogeneity, and diagnostic values. Results Ten retrospective studies were pooled in the meta-analysis. The findings demonstrated that the use of computed tomography (CT) scan-based radiomics for predicting Ki-67 expression in lung cancer exhibited encouraging diagnostic performance. Pooled sensitivity, specificity, and area under the curve (AUC) in training cohorts were 0.78, 0.81, and 0.85, respectively. In validation cohorts, these values were 0.78, 0.70, and 0.81. Quality assessment using QUADAS-2 and RQS indicated generally acceptable study quality. Heterogeneity in training cohorts, attributed to factors like contrast-enhanced CT scans and specific Ki-67 thresholds, was observed. Notably, publication bias was detected in the training cohort, indicating that positive results are more likely to be published than non-significant or negative results. Thus, journals are encouraged to publish negative results as well. Conclusion In summary, CT-based radiomics exhibit promise in predicting Ki-67 expression in lung cancer. While the results suggest potential clinical utility, additional research efforts should concentrate on enhancing diagnostic accuracy. This could pave the way for the integration of radiomics methods as a less invasive alternative to current procedures like biopsy and surgery in the assessment of Ki-67 expression.
Collapse
Affiliation(s)
- Xinmin Luo
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Renying Zheng
- Department of Oncology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Jiao Zhang
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Juan He
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Wei Luo
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Zhi Jiang
- Department of Radiology, People’s Hospital of Yuechi County, Guang’an, Sichuan, China
| | - Qiang Li
- Department of Radiology, Yuechi County Traditional Chinese Medicine Hospital in Sichuan Province, Guang’an, Sichuan, China
| |
Collapse
|
8
|
Wang G, Huo L, Xu Y, Dai G, Yang Z, Hu J, Liu W. Clinical observation on the treatment of displaced distal radial and ulnar fractures in children by closed manipulation combined with splinting. Front Surg 2023; 10:1199437. [PMID: 37795148 PMCID: PMC10546061 DOI: 10.3389/fsurg.2023.1199437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Objective The aim of this study was to investigate the clinical efficacy of closed manipulation combined with splinting in the treatment of displaced distal radial and ulnar fractures in children. Methods A total of 82 children with displaced fractures of the distal radial and ulnar segment who met the inclusion criteria and were treated as outpatients or inpatients in the orthopedic department of Guangzhou Orthopedic Hospital, from January 2016 to June 2022 were randomly divided into an observation group and a control group: 41 children in the observation group were treated with closed manipulation combined with splint fixation; 41 children in the control group were fixed with incisional repositioning elastic nails combined with internal plates. The Anderson efficacy grading, visual analog scale (VAS) score, fracture healing time, treatment cost, hospital days, and complications were observed and compared between the two groups. Result The efficacy was evaluated according to the Anderson forearm fracture efficacy evaluation criteria, and the results of statistical analysis showed no statistically significant differences between the two groups (P > 0.05). At 3 and 7 weeks after treatment, the VAS scores of children in both groups decreased (P < 0.05), and the VAS scores in the observation group were significantly lower than those in the control group (P < 0.05), indicating that the observation group had a significant advantage in the relief of pain after treatment. The fractures healed in both groups after treatment with the two different methods, and the difference in healing time between the two groups was not statistically significant (P > 0.05). The length of hospital stay, treatment cost, and complication ratio were significantly lower in the observation group than in the control group (P < 0.05). Conclusion In children with displaced fractures of the distal radial and ulnar segments, treatment by manual repositioning with external splinting can achieve satisfactory results with simple operation, low cost, short hospital stay, and few complications, which is especially suitable to be promoted in primary hospitals and has good social benefits.
Collapse
Affiliation(s)
- Guangwei Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Orthopaedics, Guangzhou Orthopedic Hospital, Guangzhou, China
| | - Liwei Huo
- Department of Orthopaedics, Guangzhou Orthopedic Hospital, Guangzhou, China
| | - Yidong Xu
- Department of Orthopaedics, Guangzhou Orthopedic Hospital, Guangzhou, China
| | - Gerong Dai
- Department of Orthopaedics, Guangzhou Orthopedic Hospital, Guangzhou, China
| | - Zhong Yang
- Department of Orthopaedics, Guangzhou Orthopedic Hospital, Guangzhou, China
| | - Jianwei Hu
- Department of Orthopaedics, Guangzhou Orthopedic Hospital, Guangzhou, China
| | - Weinian Liu
- Department of Orthopaedics, Guangzhou Orthopedic Hospital, Guangzhou, China
| |
Collapse
|
9
|
高 飞, 段 洪, 覃 达, 王 洪, 王 青, 李 显, 张 宇. [An MRI study of lateral vascular safety zones in oblique lumbar interbody fusion surgery]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2023; 37:1119-1126. [PMID: 37718425 PMCID: PMC10505623 DOI: 10.7507/1002-1892.202305077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Indexed: 09/19/2023]
Abstract
Objective To study the anatomical characteristics of blood vessels in the lateral segment of the vertebral body through the surgical approach of oblique lumbar interbody fusion (OLIF) using MRI imaging, and evaluate its potential vascular safety zone. Methods The lumbar MRI data of 107 patients with low back and leg pain who met the selection criteria between October 2019 and November 2022 were retrospectively analyzed. The vascular emanation angles, vascular travel angles, and the length of vessels in the lateral segments of the left vertebral body of L 1-L 5, as well as the distance between the segmental vessels in different Moro junctions of the vertebral body and their distances from the edges of the vertebrae in the same sequence (bottom marked as I, top as S) were measured. The gap between the large abdominal vessels and the lateral vessels of the vertebral body was set as the lateral vascular safe zones of the lumbar spine, and the extent of the safe zones (namely the area between the vessels) was measured. The anterior 1/3 of the lumbar intervertebral disc was taken as the simulated puncture center, and the area with a diameter of 22 mm around it as the simulated channel area. The proportion of vessels in the channel was further counted. In addition, the proportions of segmental vessels at L 5 without a clear travel and with an emanation angel less than 90° were calculated. Results Except for the differences in the vascular emanation angles between L 4 and L 5, the vascular travel angles between L 1, L 2 and L 4, L 5, and the length of vessels in the lateral segments of the vertebral body among L 1-L 4 were not significant ( P>0.05), the differences in the vascular emanation angles, vascular travel angles, and the length of vessels between the rest segments were all significant ( P<0.05). There was no significant difference in the distance between vessels of L 1, L 2 and L 2, L 3 at Moro Ⅰ-Ⅳ junctions ( P>0.05), in L 3, L 4 and L 4, L 5 at Ⅱ and Ⅲ junction ( P>0.05). There was no significant difference in the vascular distance of L 2, L 3 between Ⅱ, Ⅲ junction and Ⅲ, Ⅳ junction, and the vascular distance of L 3, L 4 between Ⅰ, Ⅱ junction and Ⅲ, Ⅳ junction ( P>0.05). The vascular distance of the other adjacent vertebral bodies was significant different between different Moro junctions ( P<0.05). Except that there was no significant difference in the distance between L 2I and L 3S at Ⅰ, Ⅱ junction, L 3I and L 4S at Ⅱ, Ⅲ junction, and L 2I and L 3S at Ⅲ, Ⅳ junction ( P>0.05), there was significant difference of the vascular distance between the bottom of one segment and the top of the next in the other segments ( P<0.05). Comparison between junctions: Except for the L 3S between Ⅰ, Ⅱ junction and Ⅱ, Ⅲ junction, and L 5S between Ⅰ, Ⅱ junction and Ⅱ, Ⅲ and Ⅲ, Ⅳ junctions had no significant difference ( P>0.05), there were significant differences in the distance between the other segmental vessels and the vertebral edge of the same sequence in different Moro junctions ( P<0.05). The overall proportion of vessels in the simulated channels was 40.19% (43/107), and the proportion of vessels in L 1 (41.12%, 44/107) and L 5 (18.69%, 20/107) was higher than that in the other segments. The proportion of vessels in the channel of Moro zone Ⅰ (46.73%, 50/107) and zone Ⅱ (32.71%, 35/107) was higher than that in the zone Ⅲ, while no segmental vessels in L 1 and L 2 were found in the channel of zone Ⅲ ( χ 2=74.950, P<0.001). Moreover, 26.17% (28/107) of the segmental vessels of lateral L 5 showed no movement, and 27.10% (29/107) vascular emanation angles of lateral L 5 were less than 90°. Conclusion L 1 and L 5 segmental vessels are most likely to be injured in Moro zones Ⅰ and Ⅱ, and the placement of OLIF channels in L 4, 5 at Ⅲ, Ⅳ junction should be avoided. It is usually safe to place fixation pins at the vertebral body edge on the cephalic side of the intervertebral space, but it is safer to place them on the caudal side in L 1, 2 (Ⅰ, Ⅱ junction), L 3, 4 (Ⅲ, Ⅳ junction), and L 4, 5 (Ⅱ, Ⅲ, Ⅳ junctions).
Collapse
Affiliation(s)
- 飞 高
- 东莞东华医院骨科(广东东莞 523413)Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan Guangdong, 523413, P. R. China
| | - 洪凯 段
- 东莞东华医院骨科(广东东莞 523413)Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan Guangdong, 523413, P. R. China
| | - 达贤 覃
- 东莞东华医院骨科(广东东莞 523413)Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan Guangdong, 523413, P. R. China
| | - 洪伟 王
- 东莞东华医院骨科(广东东莞 523413)Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan Guangdong, 523413, P. R. China
| | - 青云 王
- 东莞东华医院骨科(广东东莞 523413)Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan Guangdong, 523413, P. R. China
| | - 显 李
- 东莞东华医院骨科(广东东莞 523413)Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan Guangdong, 523413, P. R. China
| | - 宇 张
- 东莞东华医院骨科(广东东莞 523413)Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan Guangdong, 523413, P. R. China
| |
Collapse
|