Christ T, Holinski S, Zhigalov K, Zielinski CB, Grubitzsch H. Hemodynamics of Pericardial Aortic Valves: Contemporary Stented versus Stentless Valves in a Matched Comparison.
Ann Thorac Cardiovasc Surg 2017;
23:298-303. [PMID:
28890465 DOI:
10.5761/atcs.oa.17-00061]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE
Hemodynamic performance of aortic valve bioprostheses is essential for reliable function and durability. So far, the supra-annularly implanted stentless Sorin Freedom Solo (SFS) demonstrated unsurpassed hemodynamic properties. As contemporary stented and externally mounted pericardial bioprostheses, like the Labcor Dokimos Plus (LDP), also improve hemodynamic performance, these types of valves were compared in this study.
METHODS
A total of 218 patients, who underwent aortic valve replacement with the LDP or the SFS, were matched retrospectively 1:1 on variables affecting hemodynamic measurements: implanted valve size, age, sex, and body surface area (BSA). With matching tolerance for valve size and gender of 0%, for age and BSA of 5%, 57 patient-pairs were yielded. Operative data, clinical, and hemodynamic outcome were analyzed.
RESULTS
Except for slightly higher left ventricular function and lower procedural times in the SFS group, preoperative, operative, and postoperative characteristics of patient-pairs did not differ significantly. Mean pressure gradients, effective orifice areas (EOAs), and indexed EOAs were comparable. Corresponding to valve sizes of 21, 23, 25, and 27 mm, the indexed EOAs of the LDP and SFS prostheses were 1.08 ± 0.33, 0.92 ± 0.19, 0.93 ± 0.24, 0.99 ± 0.13 cm2/m2 and 0.81 ± 0.13, 0.92 ± 0.28, 0.95 ± 0.20, 1.04 ± 0.27 cm2/m2, respectively.
CONCLUSION
Contemporary stented and stentless pericardial bioprostheses showed excellent hemodynamic properties without significant differences in EOAs and indexed EOAs.
Collapse