1
|
Krauze A, Fus-Kujawa A, Bajdak-Rusinek K, Żyła-Uklejewicz D, Fernandez C, Bednarek I, Gałka S, Sieroń Ł, Bogunia E, Hermyt M, Nożyński J, Milewski K, Czekaj P, Wojakowski W. Impact of local delivery of allogeneic chondrocytes on the biological response and healing of the sternum bones after sternotomy. Sci Rep 2023; 13:15971. [PMID: 37749290 PMCID: PMC10520054 DOI: 10.1038/s41598-023-43255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023] Open
Abstract
Median sternotomy is the surgical method of choice for many procedures where one of the main problems is the long post-operative wound healing process leading to sternal dehiscence and the development of infection. This leads to prolonged hospital stay and increased mortality due to post-operative complications. A promising solution seems to be the use of allogeneic chondrocytes for wound treatment, whose properties in the field of cartilage reconstruction are widely used in medicine, mainly in orthopedics. In the present study, we investigated the effect of local delivery of allogeneic chondrocytes on the biological response and healing of the sternum after sternotomy. We optimized the culture conditions for the isolated chondrocytes, which were then applied to the sternal incision wound. Chondrocytes in the culture were assessed on the basis of the presence of chondrocyte-specific genes: Sox9, Aggrecan and Collagen II. In turn, the histopathological and immunohistochemical evaluation was used to assess the safety of implantation. In our work, we demonstrated the possibility of obtaining a viable culture of chondrocytes, which were successfully introduced into the sternal wound after sternotomy. Importantly, implantation of allogeneic chondrocytes showed no significant side effects. The obtained results open new possibilities for research on the use of allogeneic chondrocytes in the process of accelerating wound healing after median sternotomy.
Collapse
Affiliation(s)
- Agata Krauze
- Center for Cardiovascular Research and Development, American Heart of Poland SA, 43-450, Ustroń 1, Poland
| | - Agnieszka Fus-Kujawa
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18 Street, 40-752, Katowice, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18 Street, 40-752, Katowice, Poland.
| | - Dorota Żyła-Uklejewicz
- Center for Cardiovascular Research and Development, American Heart of Poland SA, 43-450, Ustroń 1, Poland
| | - Carlos Fernandez
- Center for Cardiovascular Research and Development, American Heart of Poland SA, 43-450, Ustroń 1, Poland
| | - Ilona Bednarek
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055, Katowice, Poland
| | - Sabina Gałka
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055, Katowice, Poland
| | - Łukasz Sieroń
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18 Street, 40-752, Katowice, Poland
| | - Edyta Bogunia
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18 Street, 40-752, Katowice, Poland
| | - Mateusz Hermyt
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18 Street, 40-752, Katowice, Poland
| | - Jerzy Nożyński
- Department of Histopathology, Silesian Centre for Heart Diseases, 41-800, Zabrze, Poland
| | - Krzysztof Milewski
- Center for Cardiovascular Research and Development, American Heart of Poland SA, 43-450, Ustroń 1, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18 Street, 40-752, Katowice, Poland
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
2
|
Joutsen A, Hautalahti J, Jaatinen E, Goebeler S, Paldanius A, Viik J, Laurikka J, Hyttinen J. A device for measuring sternal bone connectivity using vibration analysis techniques. Proc Inst Mech Eng H 2019; 234:81-90. [DOI: 10.1177/0954411919884802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives: Stability of bone splitting sternotomy is essential for normal healing after open cardiac surgery. Mechanical vibration transmittance may offer a means for early detection of separation of bone (diastasis) in the sternotomy and prevent further complications. This article describes the technical implementation and validation of vibration analysis–based prototype device built for measuring sternal bone connectivity after sternotomy. Methods: An in-house built measurement system, sternal vibration device, consisting of actuator, sensor, and main controller and signal acquisition unit was designed and manufactured. The system was validated, and three different test settings were studied in mockups (polylactide rods in ballistic gel) and in two human sternums: intact, stable wire fixation, and unstable wire fixation with a gap mimicking bone diastasis. The transmittance of vibration stimulus across the median sternotomy was measured. Results: The validation showed that the force produced by the actuator was stable, and the sensor could be calibrated to precisely measure the acceleration values. The vibration transmittance response to material cut and sternotomy was evident and detectable in the 20 Hz to 2 kHz band. The transmittance decreased when the connectivity between the sternal halves became unstable. The trend was visible in all the settings. Conclusion: Technical solutions and description of validation process were given. The device was calibrated, and the vibration transmittance analysis differentiated intact and cut polylactide rod. In the sternum, intact bone, wire fixation with exact apposition, and with a gap were identified separately. Although further studies are needed to assess the accuracy of the method to detect different levels of diastases, the method appears to be feasible.
Collapse
Affiliation(s)
- Atte Joutsen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Cardiothoracic Surgery, Tampere Heart Hospital, Tampere, Finland
| | - Juha Hautalahti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Cardiothoracic Surgery, Tampere Heart Hospital, Tampere, Finland
| | | | - Sirkka Goebeler
- Forensic Medicine, National Institute for Health and Welfare, Tampere, Finland
| | - Antti Paldanius
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jari Viik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jari Laurikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Cardiothoracic Surgery, Tampere Heart Hospital, Tampere, Finland
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
3
|
Sternotomi fiksasyon metodlarının karşılaştırılması: Sert-rijit fiksasyona karşı aşırı kuvvet karşısında esnekliği ayarlanabilen yarı-esnek fiksasyon: Deneysel biyomekanik çalışma. JOURNAL OF CONTEMPORARY MEDICINE 2019. [DOI: 10.16899/jcm.609633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|