1
|
Zhang Z, Xiong R, Hu Q, Zhang Q, Wang S, Chen Y. Review on anti-tumour lipid nano drug delivery systems of traditional Chinese medicine. J Drug Target 2025; 33:704-716. [PMID: 39743936 DOI: 10.1080/1061186x.2024.2448708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
In recent years, the use of traditional Chinese medicine (TCM) in the treatment of cancer has received widespread attention. Treatment of tumours using TCM can effectively reduce the side effects of anti-tumour drugs, meanwhile to improve the treatment efficacy of patients. However, most of the active ingredients in TCM, such as saponins, alkaloids, flavonoids, volatile oils, etc., have defects such as low bioavailability and poor solubility in clinical application, which seriously restrict the application of TCM. Meanwhile, the encapsulation of TCM into lipid nano-delivery systems for cancer therapy has received much attention. Lipid nano-delivery systems are obtained by using phospholipids as the base material and adding other auxiliary materials under a certain preparation process, including, for example, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), microemulsions, and self-microemulsion drug delivery systems (SMEDDS), can resolve the application problems of TCM by improving the efficacy of active ingredients of TCM and reducing the toxicity of anti-tumour drugs. This paper focuses on the categories, development status, and research progress of lipid nano delivery system of TCM, aiming to provide a certain theoretical basis for further in-depth research and rational application of these systems.
Collapse
Affiliation(s)
- Ziwei Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Rui Xiong
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Qiyan Hu
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Qiang Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Shaozhen Wang
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Yunyan Chen
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| |
Collapse
|
2
|
Manupati K, Hao M, Haas M, Yeo SK, Guan JL. Role of NuMA1 in breast cancer stem cells with implications for combination therapy of PIM1 and autophagy inhibition in triple negative breast cancer. RESEARCH SQUARE 2024:rs.3.rs-3953289. [PMID: 38645153 PMCID: PMC11030541 DOI: 10.21203/rs.3.rs-3953289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Nuclear mitotic apparatus protein 1 (NuMA1) is a cell cycle protein and upregulated in breast cancer. However, the role of NuMA1 in TNBC and its regulation in heterogenous populations remains elusive. Methods We performed CRISPR mediated deletion of NuMA1 in mouse TNBC cells, BF3M. FACS was utilized to isolate BCSCs, and bulk cells based on CD29 and CD61 markers. Cell viability, migration, and invasion ability of BCSCs and bulk cells was evaluated using MTT, wound healing and transwell invasion assays, respectively. In vivo mouse breast cancer and lung metastatic models were generated to evaluate the combination treatment of SMI-4a and Lys-o5 inhibitors. Results We identified that high expression of NuMA1 associated with poor survival of breast cancer patients. Further, human tissue microarray results depicted high expression of NuMA1 in TNBC relative to non-adjacent normal tissues. Therefore, we performed CRISPR mediated deletion of NuMA1 in a mouse mammary tumor cell line, BF3M and revealed that NuMA1 deletion reduced mammary tumorigenesis. We also showed that NuMA1 deletion reduced ALDH+ and CD29hiCD61+ breast cancer stem cells (BCSCs), indicating a role of NuMA1 in BCSCs. Further, sorted and characterized BCSCs from BF3M depicted reduced metastasis with NuMA1 KO cells. Moreover, we found that PIM1, an upstream kinase of NuMA1 plays a preferential role in maintenance of BCSCs associated phenotypes, but not in bulk cells. In contrast, PIM1 kinase inhibition in bulk cells depicted increased autophagy (FIP200). Therefore, we applied a combination treatment strategy of PIM1 and autophagy inhibition using SMI-4a and Lys05 respectively, showed higher efficacy against cell viability of both these populations and further reduced breast tumor formation and metastasis. Together, our study demonstrated NuMA1 as a potential therapeutic target and combination treatment using inhibitors for an upstream kinase PIM1 and autophagy inhibitors could be a potentially new therapeutic approach for TNBC. Conclusions Our study demonstrated that combination treatment of PIM1 inhibitor and autophagy inhibitor depicted reduced mammary tumorigenesis and metastasis by targeting NuMA1 in BCSCs and bulk cells of TNBC, demonstrating this combination treatment approach could be a potentially effective therapy for TNBC patients.
Collapse
Affiliation(s)
- Kanakaraju Manupati
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Michael Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
3
|
The ways for ginsenoside Rh2 to fight against cancer: the molecular evidences in vitro and in vivo. J Ginseng Res 2023; 47:173-182. [PMID: 36926617 PMCID: PMC10014223 DOI: 10.1016/j.jgr.2022.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a global public health issue that becomes the second primary cause of death globally. Considering the side effects of radio- or chemo-therapy, natural phytochemicals are promising alternatives for therapeutic interventions to alleviate the side effects and complications. Ginsenoside Rh2 (GRh2) is the main phytochemical extracted from Panax ginseng C.A. Meyer with anticancer activity. GRh2 could induce apoptosis and autophagy of cancer cells and inhibit proliferation, metastasis, invasion, and angiogenesis in vitro and in vivo. In addition, GRh2 could be used as an adjuvant to chemotherapeutics to enhance the anticancer effect and reverse the adverse effects. Here we summarized the understanding of the molecular mechanisms underlying the anticancer effects of GRh2 and proposed future directions to promote the development and application of GRh2.
Collapse
|
4
|
Role of ginsenoside Rh2 in tumor therapy and tumor microenvironment immunomodulation. Biomed Pharmacother 2022; 156:113912. [DOI: 10.1016/j.biopha.2022.113912] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
|
5
|
Wu X, Zhou H, Yu H, Hu R, Zhang G, Hu J, He T. A Method for Medical Microscopic Images' Sharpness Evaluation Based on NSST and Variance by Combining Time and Frequency Domains. SENSORS (BASEL, SWITZERLAND) 2022; 22:7607. [PMID: 36236707 PMCID: PMC9573709 DOI: 10.3390/s22197607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
An algorithm for a sharpness evaluation of microscopic images based on non-subsampled shearlet wave transform (NSST) and variance is proposed in the present study for the purpose of improving the noise immunity and accuracy of a microscope's image autofocus. First, images are decomposed with the NSST algorithm; then, the decomposed sub-band images are subjected to variance to obtain the energy of the sub-band coefficients; and finally, the evaluation value is obtained from the ratio of the energy of the high- and low-frequency sub-band coefficients. The experimental results show that the proposed algorithm delivers better noise immunity performance than other methods reviewed by this study while maintaining high sensitivity.
Collapse
Affiliation(s)
- Xuecheng Wu
- School of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology, Hangzhou 311300, China
| | - Houkui Zhou
- School of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology, Hangzhou 311300, China
| | - Huimin Yu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of CAD & CG, Hangzhou 310027, China
| | - Roland Hu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guangqun Zhang
- School of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology, Hangzhou 311300, China
| | - Junguo Hu
- School of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology, Hangzhou 311300, China
| | - Tao He
- School of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology, Hangzhou 311300, China
| |
Collapse
|
6
|
The application value of CDFI and SMI combined with serological markers in distinguishing benign and malignant thyroid nodules. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2200-2209. [PMID: 35792982 DOI: 10.1007/s12094-022-02880-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE The purpose of this study is to explore the application value of CDFI and SMI combined with serological markers in distinguishing benign and malignant thyroid nodules. METHOD A total of 192 patients with thyroid nodules admitted to our hospital from July 2019 to December 2020 were selected as subjects. Color Doppler blood flow imaging (CDFI) and supermicro blood flow imaging (SMI) methods are used to detect the blood flow of patients and the levels of serum thyroglobulin antibody (TgAb), thyroid peroxidase antibody (TPOAb), and thyroid stimulating hormone (TSH). The receiver operating characteristic curve (ROC curve) was used to observe the sensitivity and specificity of serological markers for distinguishing benign and malignant thyroid nodules, and combined with CDFI and SMI to observe the sensitivity and specificity for distinguishing benign and malignant thyroid nodules. RESULTS The levels of TgAb, TPOAb and TSH in benign thyroid nodules were lower than those of the malignant group, and the difference was statistically significant (P < 0.01). There was no statistically significant difference between benign and malignant thyroid nodules in the presence or absence of the capsule and the presence or absence of vocal halo (P > 0.05), while the differences in the nodule morphology, boundary, internal echo and internal calcification were statistically significant (P < 0.01). CONCLUSION CDFI and SMI combined with serological index detection have higher value in the differential diagnosis of thyroid cancer, which can significantly improve the sensitivity and specificity of differential diagnosis.
Collapse
|
7
|
Xu C, Li L, Wang C, Jiang J, Li L, Zhu L, Jin S, Jin Z, Lee JJ, Li G, Yan G. Effects of G-Rh2 on mast cell-mediated anaphylaxis via AKT-Nrf2/NF-κB and MAPK-Nrf2/NF-κB pathways. J Ginseng Res 2021; 46:550-560. [PMID: 35818417 PMCID: PMC9270651 DOI: 10.1016/j.jgr.2021.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/04/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Background The effect of ginsenoside Rh2 (G-Rh2) on mast cell-mediated anaphylaxis remains unclear. Herein, we investigated the effects of G-Rh2 on OVA-induced asthmatic mice and on mast cell-mediated anaphylaxis. Methods Asthma model was established for evaluating airway changes and ear allergy. RPMCs and RBL-2H3 were used for in vitro experiments. Calcium uptake, histamine release and degranulation were detected. ELISA and Western blot measured cytokine and protein levels, respectively. Results G-Rh2 inhibited OVA-induced airway remodeling, the production of TNF-α, IL-4, IL-8, IL-1β and the degranulation of mast cells of asthmatic mice. G-Rh2 inhibited the activation of Syk and Lyn in lung tissue of OVA-induced asthmatic mice. G-Rh2 inhibited serum IgE production in OVA induced asthmatic mice. Furthermore, G-Rh2 reduced the ear allergy in IgE-sensitized mice. G-Rh2 decreased the ear thickness. In vitro experiments G-Rh2 significantly reduced calcium uptake and inhibited histamine release and degranulation in RPMCs. In addition, G-Rh2 reduced the production of IL-1β, TNF-α, IL-8, and IL-4 in IgE-sensitized RBL-2H3 cells. Interestingly, G-Rh2 was involved in the FcεRI pathway activation of mast cells and the transduction of the Lyn/Syk signaling pathway. G-Rh2 inhibited PI3K activity in a dose-dependent manner. By blocking the antigen-induced phosphorylation of Lyn, Syk, LAT, PLCγ2, PI3K ERK1/2 and Raf-1 expression, G-Rh2 inhibited the NF-κB, AKT-Nrf2, and p38MAPK-Nrf2 pathways. However, G-Rh2 up-regulated Keap-1 expression. Meanwhile, G-Rh2 reduced the levels of p-AKT, p38MAPK and Nrf2 in RBL-2H3 sensitized IgE cells and inhibited NF-κB signaling pathway activation by activating the AKT-Nrf2 and p38MAPK-Nrf2 pathways. Conclusion G-Rh2 inhibits mast cell-induced allergic inflammation, which might be mediated by the AKT-Nrf2/NF-κB and p38MAPK-Nrf2/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Chang Xu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
| | - Lianhua Zhu
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Department of Dermatology, Yanbian University Hospital, Yanji, China
| | - Shan Jin
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Department of Dermatology, Yanbian University Hospital, Yanji, China
| | - Zhehu Jin
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Department of Dermatology, Yanbian University Hospital, Yanji, China
| | - Jung Joon Lee
- College of Pharmacy, Yanbian University, Yanji, China
| | - Guanhao Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Food Research Center of Yanbian University, Yanji, China
- Corresponding author. Food Research Center of Yanbian University, No. 977 Gongyuan Road, Yanji, 133002, PR China.
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Corresponding author. Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, No. 977 Gongyuan Road, Yanji, 133002, PR China.
| |
Collapse
|
8
|
Zhang H, Yi JK, Huang H, Park S, Kwon W, Kim E, Jang S, Kim SY, Choi SK, Yoon D, Kim SH, Liu K, Dong Z, Ryoo ZY, Kim MO. 20 (S)-ginsenoside Rh2 inhibits colorectal cancer cell growth by suppressing the Axl signaling pathway in vitro and in vivo. J Ginseng Res 2021; 46:396-407. [PMID: 35600769 PMCID: PMC9120647 DOI: 10.1016/j.jgr.2021.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background Colorectal cancer (CRC) has a high morbidity and mortality worldwide. 20 (S)-ginsenoside Rh2 (G-Rh2) is a natural compound extracted from ginseng, which exhibits anticancer effects in many cancer types. In this study, we demonstrated the effect and underlying molecular mechanism of G-Rh2 in CRC cells in vitro and in vivo. Methods Cell proliferation, migration, invasion, apoptosis, cell cycle, and western blot assays were performed to evaluate the effect of G-Rh2 on CRC cells. In vitro pull-down assay was used to verify the interaction between G-Rh2 and Axl. Transfection and infection experiments were used to explore the function of Axl in CRC cells. CRC xenograft models were used to further investigate the effect of Axl knockdown and G-Rh2 on tumor growth in vivo. Results G-Rh2 significantly inhibited proliferation, migration, and invasion, and induced apoptosis and G0/G1 phase cell cycle arrest in CRC cell lines. G-Rh2 directly binds to Axl and inhibits the Axl signaling pathway in CRC cells. Knockdown of Axl suppressed the growth, migration and invasion ability of CRC cells in vitro and xenograft tumor growth in vivo, whereas overexpression of Axl promoted the growth, migration, and invasion ability of CRC cells. Moreover, G-Rh2 significantly suppressed CRC xenograft tumor growth by inhibiting Axl signaling with no obvious toxicity to nude mice. Conclusion Our results indicate that G-Rh2 exerts anticancer activity in vitro and in vivo by suppressing the Axl signaling pathway. G-Rh2 is a promising candidate for CRC prevention and treatment.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
| | - Jun-Koo Yi
- Gyeongbuk Livestock Research Institute, Yeongju, Republic of Korea
| | - Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
| | - Sijun Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University, Daegu, Republic of Korea
| | - Wookbong Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University, Daegu, Republic of Korea
| | - Si-Yong Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University, Daegu, Republic of Korea
| | - Seong-kyoon Choi
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Duhak Yoon
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam, Republic of Korea
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University, Daegu, Republic of Korea
- Corresponding author.
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
- Corresponding author. Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Gyeongsangbukdo, 37224, Republic of Korea.
| |
Collapse
|
9
|
Zhang LL, Bao H, Xu YL, Jiang XM, Li W, Zou L, Lin LG, Lu JJ. Phanginin R Induces Cytoprotective Autophagy via JNK/c-Jun Signaling Pathway in Non-Small Cell Lung Cancer A549 Cells. Anticancer Agents Med Chem 2021; 20:982-988. [PMID: 32286950 DOI: 10.2174/1871520620666200414095828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/28/2020] [Accepted: 03/15/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cassane-type diterpenoids are widely distributed in the medical plants of genus Caesalpinia. To date, plenty of cassane diterpenoids have been isolated from the genus Caesalpinia, and some of them were documented to exhibit multiple biological activities. However, the effects of these compounds on autophagy have never been reported. OBJECTIVE To investigate the effects and mechanisms of the cassane diterpenoids including Phanginin R (PR) on autophagy in Non-Small Cell Lung Cancer (NSCLC) A549 cells. METHODS Western blot analysis and immunofluorescence assay were performed to investigate the effects of the compounds on autophagic flux in A549 cells. The pathway inhibitor and siRNA interference were used to investigate the mechanism of PR. MTT assay was performed to detect cell viability. RESULTS PR treatment upregulated the expression of phosphatidylethanolamine-modified microtubule-associated protein Light-Chain 3 (LC3-II) in A549 cells. Immunofluorescence assay showed that PR treatment increased the production of red-fluorescent puncta in mRFP-GFP-LC3 plasmid-transfected cells, indicating PR promoted autophagic flux in A549 cells. PR treatment activated the c-Jun N-terminal Kinase (JNK) signaling pathway while it did not affect the classical Akt/mammalian Target of Rapamycin (mTOR) pathway. Pretreatment with the JNK inhibitor SP600125 or siRNA targeting JNK or c-Jun suppressed PR-induced autophagy. In addition, cotreatment with the autophagy inhibitor Chloroquine (CQ) or inhibition of the JNK/c-Jun signaling pathway increased PR-induced cytotoxicity. CONCLUSION PR induced cytoprotective autophagy in NSCLC A549 cells via the JNK/c-Jun signaling pathway, and autophagy inhibition could further improve the anti-cancer potential of PR.
Collapse
Affiliation(s)
- Le-Le Zhang
- School of Medicine, Chengdu University, Chengdu, China
| | - Han Bao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu-Lian Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Ming Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wei Li
- School of Medicine, Chengdu University, Chengdu, China
| | - Liang Zou
- School of Medicine, Chengdu University, Chengdu, China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
10
|
Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:137-160. [PMID: 33861443 DOI: 10.1007/978-3-030-64872-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Programmed cell death processes such as apoptosis and autophagy strongly contribute to the onset and progression of cancer. Along with these lines, modulation of cell death mechanisms to combat cancer cells and elimination of resistance to apoptosis is of great interest. It appears that modulation of autophagy and endoplasmic reticulum (ER) stress with specific agents would be beneficial in the treatment of several disorders. Interestingly, it has been suggested that herbal natural products may be suitable candidates for the modulation of these processes due to few side effects and significant therapeutic potential. Ginsenosides are derivatives of ginseng and exert modulatory effects on the molecular mechanisms associated with autophagy and ER stress. Ginsenosides act as smart phytochemicals that confer their effects by up-regulating ATG proteins and converting LC3-I to -II, which results in maturation of autophagosomes. Not only do ginsenosides promote autophagy but they also possess protective and therapeutic properties due to their capacity to modulate ER stress and up- and down-regulate and/or dephosphorylate UPR transducers such as IRE1, PERK, and ATF6. Thus, it would appear that ginsenosides are promising agents to potentially restore tissue malfunction and possibly eliminate cancer.
Collapse
|
11
|
Wang Y, Xiu J, Ren C, Yu Z. Protein kinase PIM2: A simple PIM family kinase with complex functions in cancer metabolism and therapeutics. J Cancer 2021; 12:2570-2581. [PMID: 33854618 PMCID: PMC8040705 DOI: 10.7150/jca.53134] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
PIM2 (proviral integration site for Moloney murine leukemia virus 2) kinase plays an important role as an oncogene in multiple cancers, such as leukemia, liver, lung, myeloma, prostate and breast cancers. PIM2 is largely expressed in both leukemia and solid tumors, and it promotes the transcriptional activation of genes involved in cell survival, cell proliferation, and cell-cycle progression. Many tumorigenic signaling molecules have been identified as substrates for PIM2 kinase, and a variety of inhibitors have been developed for its kinase activity, including SMI-4a, SMI-16a, SGI-1776, JP11646 and DHPCC-9. Here, we summarize the signaling pathways involved in PIM2 kinase regulation and PIM2 mechanisms in various neoplastic diseases. We also discuss the current status and future perspectives for the development of PIM2 kinase inhibitors to combat human cancer, and PIM2 will become a therapeutic target in cancers in the future.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Jing Xiu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| |
Collapse
|
12
|
Li Y, Zhang T, Yang Y, Gao Y. Artificial intelligence-aided decision support in paediatrics clinical diagnosis: development and future prospects. J Int Med Res 2020; 48:300060520945141. [PMID: 32924683 PMCID: PMC7493240 DOI: 10.1177/0300060520945141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Artificial intelligence (AI)-aided decision support has developed rapidly to meet the needs for effective analysis of substantial data sets from electronic medical records and medical images generated daily, and computer-assisted intelligent drug design. In clinical practice, paediatricians make medical decisions after obtaining a large amount of information about symptoms, physical examinations, laboratory test indicators, special examinations and treatments. This information is used in combination with paediatricians' knowledge and experience to form the basis of clinical decisions. This diagnosis and therapeutic strategy development based on large amounts of information storage can be applied to both large clinical databases and data for individual patients. To date, AI applications have been of great value in intelligent diagnosis and treatment, intelligent image recognition, research and development of intelligent drugs and intelligent health management. This review aims to summarize recent advances in the research and clinical use of AI in paediatrics.
Collapse
Affiliation(s)
- Yawen Li
- School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing, China
| | - Tiannan Zhang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yushan Yang
- School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yuchen Gao
- School of Economics and Management, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Li X, Chu S, Lin M, Gao Y, Liu Y, Yang S, Zhou X, Zhang Y, Hu Y, Wang H, Chen N. Anticancer property of ginsenoside Rh2 from ginseng. Eur J Med Chem 2020; 203:112627. [PMID: 32702586 DOI: 10.1016/j.ejmech.2020.112627] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Ginseng has been used as a well-known traditional Chinese medicine since ancient times. Ginsenosides as its main active constituents possess a broad scope of pharmacological properties including stimulating immune function, enhancing cardiovascular health, increasing resistance to stress, improving memory and learning, developing social functioning and mental health in normal persons, and chemotherapy. Ginsenoside Rh2 (Rh2) is one of the major bioactive ginsenosides from Panax ginseng. When applied to cancer treatment, Rh2 not only exhibits the anti-proliferation, anti-invasion, anti-metastasis, induction of cell cycle arrest, promotion of differentiation, and reversal of multi-drug resistance activities against multiple tumor cells, but also alleviates the side effects after chemotherapy or radiotherapy. In the past decades, nearly 200 studies on Rh2 in the treatment of cancer have been published, however no specific reviews have been conducted by now. So the purpose of this review is to provide a systematic summary and analysis of the anticancer effects and the potential mechanisms of Rh2 extracted from Ginseng then give a future prospects about it. In the end of this paper the metabolism and derivatives of Rh2 also have been documented.
Collapse
Affiliation(s)
- Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Shifeng Chu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Meiyu Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yan Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yingjiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Xin Zhou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yani Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yaomei Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Huiqin Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Naihong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| |
Collapse
|
14
|
Liu J, Cai Q, Wang W, Lu M, Liu J, Zhou F, Sun M, Wang G, Zhang J. Ginsenoside Rh2 pretreatment and withdrawal reactivated the pentose phosphate pathway to ameliorate intracellular redox disturbance and promoted intratumoral penetration of adriamycin. Redox Biol 2020; 32:101452. [PMID: 32067911 PMCID: PMC7264470 DOI: 10.1016/j.redox.2020.101452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Improving the limited penetration, accumulation and therapeutic effects of antitumor drugs in the avascular region of the tumor mass is crucial during chemotherapy. P-gp inhibitors have achieved little success despite significant efforts. Excessive P-gp inhibition disturbed the kinetic balance between intracellular accumulation and intercellular penetration, thus resulting in a more inhomogeneous distribution of substrate drugs. Here, we found that ginsenoside Rh2 pretreatment mildly downregulated P-gp expression through reactivating the pentose phosphate pathway and rebalancing redox status. This mild P-gp inhibition not only significantly increased the growth inhibition effect and accumulation profile of adriamycin (ADR) throughout the multicellular tumor spheroid (MCTS) but also had unique advantages in improving drug penetration. Furthermore, we developed a novel individual-cell-based PK-PD integrated model and proved that metabolic reprogramming and redox rebalancing-based P-gp regulation was sufficient to increase the ADR effect in both central and peripheral cells of MCTS. Thus, a “ginsenoside Rh2-ADR” sequential regimen was proposed and exhibited a potent antitumor effect in vivo. This novel P-gp inhibition via metabolic reprogramming and redox rebalancing provided a new idea for achieving better antitumor effects in the tumor avascular region during chemotherapy. Rh2 pretreatment downregulated P-gp expression through metabolic reprogramming and redox rebalancing. Rh2-pretreatment improved ADR penetration into the core of MCTS and tumour mass. “Ginsenoside Rh2-ADR” sequential regimen exhibited potent antitumor effects in vivo.
Collapse
Affiliation(s)
- Jiali Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qingyun Cai
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenjie Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meng Lu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jianming Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Minjie Sun
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jingwei Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Wu T, Kwaku OR, Li HZ, Yang CR, Ge LJ, Xu M. Sense Ginsenosides From Ginsengs: Structure-Activity Relationship in Autophagy. Nat Prod Commun 2019; 14. [DOI: 10.1177/1934578x19858223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The term ginseng refers to the dried roots of several plants belonging to the genus Panax of the Araliaceae family. The 3 major commercial ginsengs are Panax notoginseng (Burk.) F.H. Chen (Notoginseng), P. ginseng C.A. Meyer (Ginseng), and P. quinquefolius L. (American ginseng), which have been used as herbal medicines. Over 18,000 papers on ginsengs have been published on the basis of their structural diversity and biological activities. Many reviews have summarized the phytochemistry, pharmacology, and clinical use of ginsengs, but the structure-activity relationship (SAR) of ginsenosides from ginsengs in autophagy is unavailable. Herein, we review the structural diversity of ginsenosides, especially the ones in notoginseng, and the SAR in autophagic activity is discussed in detail.
Collapse
Affiliation(s)
- Tao Wu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Osafo Raymond Kwaku
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Hai-Zhou Li
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, P.R. China
| | - Long-Jiao Ge
- Translational Lab of Primate Brain Research, Kunming Institute of Zoology, Chinese Academy of Sciences, P.R. China
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| |
Collapse
|
16
|
Metwaly AM, Lianlian Z, Luqi H, Deqiang D. Black Ginseng and Its Saponins: Preparation, Phytochemistry and Pharmacological Effects. Molecules 2019; 24:E1856. [PMID: 31091790 PMCID: PMC6572638 DOI: 10.3390/molecules24101856] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/19/2023] Open
Abstract
Black ginseng is a type of processed ginseng that is prepared from white or red ginseng by steaming and drying several times. This process causes extensive changes in types and amounts of secondary metabolites. The chief secondary metabolites in ginseng are ginsenosides (dammarane-type triterpene saponins), which transform into less polar ginsenosides in black ginseng by steaming. In addition, apparent changes happen to other secondary metabolites such as the increase in the contents of phenolic compounds, reducing sugars and acidic polysaccharides in addition to the decrease in concentrations of free amino acids and total polysaccharides. Furthermore, the presence of some Maillard reaction products like maltol was also engaged. These obvious chemical changes were associated with a noticeable superiority for black ginseng over white and red ginseng in most of the comparative biological studies. This review article is an attempt to illustrate different methods of preparation of black ginseng, major chemical changes of saponins and other constituents after steaming as well as the reported biological activities of black ginseng, its major saponins and other metabolites.
Collapse
Affiliation(s)
- Ahmed M Metwaly
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Zhu Lianlian
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
| | - Huang Luqi
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Mennei South street, Dong-Cheng District, Beijing 100700, China.
| | - Dou Deqiang
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
| |
Collapse
|
17
|
Jiang W, Chen Y, Song X, Shao Y, Ning Z, Gu W. Pim-1 inhibitor SMI-4a suppresses tumor growth in non-small cell lung cancer via PI3K/AKT/mTOR pathway. Onco Targets Ther 2019; 12:3043-3050. [PMID: 31114247 PMCID: PMC6497832 DOI: 10.2147/ott.s203142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023] Open
Abstract
Background: In the present study, we aimed to investigate the effect of proviral integration site for moloney murine leukemia virus-1 (Pim-1) inhibitor (SMI-4a) on the progression of non-small cell lung cancer (NSCLC). Materials and methods: The effects of SMI-4a on proliferation, apoptosis, and cell cycle of NSCLC cells were examined by in vitro experiments using human NSCLC cell lines (A549 and Ltep-a-2). The pathway regulated by SMI-4a was detected using Western blot. Furthermore, we performed in vivo experiments to assess the effects of SMI-4a on tumor growth using mouse models with NSCLC. Results: Our data demonstrated that SMI-4a could inhibit the proliferation of A549 and Ltep-a-2 cells markedly in a dose-dependent manner (P<0.05). Treatment with 80 μmol/L of SMI-4a for 48 h significantly induced the apoptosis rate of NSCLC cells (P<0.05), and blocked the cell cycle of NSCLC cells in G2/M phase (P<0.05). The phosphorylation levels of PI3K, AKT, and mTOR in NSCLC cells were significantly downregulated by SMI-4a (P<0.05). Result from in vivo experiments demonstrated that SMI-4a could suppress the tumor growth in mouse models with NSCLC (P<0.05). Conclusions: SMI-4a suppresses the progression of NSCLC by blocking the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Wenjie Jiang
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, People's Republic of China
| | - Yuan Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, People's Republic of China
| | - Xing Song
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, People's Republic of China
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, People's Republic of China
| | - Zhonghua Ning
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, People's Republic of China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, People's Republic of China
| |
Collapse
|