1
|
Hu Z, Chen X, Hu Q, Zou M, Liu Z. Role of Chinese Medicine Monomers in Dry Eye Disease: Breaking the Vicious Cycle of Inflammation. Pharmacol Res Perspect 2025; 13:e70077. [PMID: 39979080 PMCID: PMC11842162 DOI: 10.1002/prp2.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/05/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
Dry eye disease (DED) is a chronically inflammatory ocular surface disorder of unknown pathogenesis. Anti-inflammatory medications, artificial tears, autologous serum, and LipiFlow have been shown to be highly beneficial in alleviating symptoms. Nevertheless, these interventions often provide only short-term results and do not address the underlying problems of the disease. There is growing evidence that the risk of DED is associated with a vicious cycle of inflammation. This vicious cycle of inflammation is produced by the interaction of several factors, including tear film hyperosmolarity, tear film instability, inflammation, and apoptosis. Chinese medicine monomers, distinguished by their multicomponent and multitarget advantages, have been shown to help treat DED by modulating tear film status, and inhibiting inflammatory responses, and apoptosis, providing a new way of thinking of the management of DED in Chinese medicine.
Collapse
Affiliation(s)
- Zhuoyu Hu
- The First Hospital of Hunan University of Chinese MedicineChangshaHunanChina
| | - Xiangdong Chen
- The First Hospital of Hunan University of Chinese MedicineChangshaHunanChina
| | - Qi Hu
- Graduate School of Hunan University of Chinese MedicineChangshaHunanChina
| | - Menglong Zou
- Graduate School of Hunan University of Chinese MedicineChangshaHunanChina
| | - Zhimin Liu
- The First Hospital of Hunan University of Chinese MedicineChangshaHunanChina
| |
Collapse
|
2
|
Wang X, Yan C, Wang T, Li Y, Zheng Z. Mechanisms of Luteolin Against Gastro-Esophageal Reflux Disease Based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. Cell Biochem Biophys 2025; 83:403-414. [PMID: 39180676 DOI: 10.1007/s12013-024-01471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 08/26/2024]
Abstract
Luteolin is a naturally occurring flavonoid. The effectiveness of luteolin-rich drugs in treating gastro-esophageal reflux disease (GERD) through traditional Chinese medicine has been demonstrated. This study aimed to identify the potential targets and mechanisms of action of luteolin for the treatment of GERD. An innovative approach combining network pharmacology and molecular dynamics was used to explore the potential therapeutic mechanisms of luteolin and to facilitate the further development of GERD treatment. Drug and disease target information was screened from public databases to obtain 159 intersecting targets through the construction of Venn diagrams. Subsequently, a protein‒protein interaction (PPI) network was constructed, and 10 core targets were identified. Through Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, relevant biological processes, cellular components, and molecular functions related to the treatment of GERD were identified and revealed. KEGG pathway analyses showed enrichment of signaling pathways, including the TNF, IL-17, NF-kappa B, and Toll-like receptor pathways. The molecular docking results indicated that luteolin can effectively bind to 10 core targets. Finally, molecular dynamics simulations confirmed the formation of stable protein‒ligand complexes when IL6 binds to luteolin. In conclusion, network pharmacology, molecular docking, and molecular dynamics simulations were utilized to investigate the mechanism by which luteolin treats GERD. These findings establish a theoretical foundation for future research on the efficacy of luteolin in treating GERD.
Collapse
Affiliation(s)
- Xinyu Wang
- Inner Mongolia Medical University, Hohhot, China
| | | | - Tong Wang
- Inner Mongolia Medical University, Hohhot, China
| | - Yajing Li
- Inner Mongolia Medical University, Hohhot, China
| | - Zeyi Zheng
- Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
3
|
Cui G, Wang M, Liu Z, Chang C, Wu Y, Li X, Sun Z. Investigating the therapeutic effects and potential mechanisms of Zuojin Pill in the treatment of gastroesophageal reflux disease. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119230. [PMID: 39662861 DOI: 10.1016/j.jep.2024.119230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojin Pill (ZJP), a traditional Chinese medicinal formula, is widely recognized for its diverse pharmacological properties in the management of gastrointestinal disorders. However, the precise mechanisms underlying its therapeutic effects in gastroesophageal reflux disease (GERD) remain inadequately understood. AIM OF THE STUDY This study aims to investigate the therapeutic effects of ZJP in GERD and to elucidate the molecular mechanisms involved. MATERIALS AND METHODS The chemical composition of ZJP was characterized using HPLC-Q-Exactive-MS. A rat model of GERD was established through esophagogastric anastomosis, and three different doses of ZJP were administered. Histological changes were assessed via hematoxylin-eosin (H&E) staining, while pro-inflammatory cytokines were quantified to evaluate the anti-inflammatory effects of ZJP. Network pharmacology combined with bioinformatics analysis was employed to predict potential therapeutic targets and signaling pathways of ZJP in GERD. Validation of the mechanisms was conducted through Western blotting, immunofluorescence (IF), transmission electron microscopy (TEM), and immunohistochemistry (IHC). RESULTS The results demonstrated that ZJP effectively alleviated pathological alterations and reduced pro-inflammatory cytokine levels in esophageal tissues of GERD rats. Western blotting and IF analysis of E-cadherin and claudin-1 confirmed that ZJP enhanced the integrity of the esophageal mucosal barrier. TEM imaging revealed that ZJP restored intercellular space (DIS), increased desmosome density, thereby protecting esophageal tissues from the detrimental effects of GERD. Furthermore, ZJP modulated macrophage polarization in the GERD rat model. Mechanistic investigations indicated that ZJP exerted its therapeutic effects by inhibiting MAPK/NF-κB signaling pathway activation and downregulating the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and matrix metalloproteinase 2 (MMP2), consistent with predictions from network pharmacology analysis. CONCLUSIONS This study provides comprehensive evidence for the therapeutic efficacy of ZJP in GERD, acting through modulation of inflammation, mucosal barrier integrity, and macrophage polarization. Additionally, ZJP downregulated PTGS2 and MMP2 expression and suppressed the activation of MAPK/NF-κB signaling pathways, underscoring its potential as a therapeutic intervention for GERD.
Collapse
Affiliation(s)
- Guoliang Cui
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Manli Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhiting Liu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Cheng Chang
- Jiangsu Provincial Hospital of Chinese medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 225200, China.
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhiguang Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Liu H, Bi L, Chen Q, He X, Yan H, Ni W, Wu W, He L, Liu H. Enrichment process, structural prediction, isolation, in vitro cytotoxic and anti-inflammatory effects of triterpenoid saponins in Camellia japonica L. leaves water extract through UPLC-Q-TOF based mass spectrometry similarity networking. Food Chem 2024; 441:138360. [PMID: 38219361 DOI: 10.1016/j.foodchem.2024.138360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Camellia japonica L. is rich in bioactive compounds, but its health-enhancing potential is often overshadowed by its ornamental value. Notably, triterpenoid saponins are prominent due to their surfactant properties. MolNetEnhancer revealed 537 compounds in C. japonica leaves water extract, classified into 32 categories, including 38 triterpenoid saponins. To enrich triterpenoid saponins, the process of D101 resin chromatography was employed. Molecular networking analysis based on UPLC-Q-TOF and quantitative analysis based on HPLC revealed saponins concentrated in fractions 3 and 4 (68.3% transfer). MS2LDA and NAP predicted structures for 38 triterpenoid saponins, revealing nearly half of them are potential new compounds. Comprehensive chromatographic and spectroscopic methods were used for purification and structural illustration of triterpenoid saponins, yielding 13, including 7 new compounds. Statistical analysis and in vitro assays revealed the cytotoxic and anti-inflammatory activities of these triterpenoid saponins played a crucial role in the anticancer effects.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
| | - Lisha Bi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qirun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
| | - Xiaozhi He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huan Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Ni
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
| | - Wenjuan Wu
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Li He
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Skin Health Research Center, Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China.
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China.
| |
Collapse
|
5
|
Wu Y, Hussain SA, Luo M. Columbianadin ameliorates experimental acute reflux esophagitis in rats via suppression of NF-κB pathway. Acta Cir Bras 2024; 39:e391824. [PMID: 38716957 PMCID: PMC11068366 DOI: 10.1590/acb391824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE Reflux esophagitis is a condition characterized by inflammation and irritation of the esophagus, resulting from the backflow of stomach acid and other gastric contents into the esophagus. Columbianadin is a coumarin derivative that exhibits anti-inflammatory and antioxidant effects. In this study, we tried to scrutinize the protective effect of Columbianadin against acute reflux esophagitis in rats. METHODS RAW 264.7 cells were utilized to assess cell viability and measure the production of inflammatory parameters. The rats received anesthesia, and reflux esophagitis was induced via ligation of pylorus and fore stomach and corpus junction. Rats received the oral administration of Columbianadin (25, 50 and 100 mg/kg) and omeprazole (20 mg/kg). The gastric secretion volume, acidity, and pH were measured. Additionally, the levels of oxidative stress parameters, cytokines, and inflammatory markers were determined. At the end of the study, mRNA expression was assessed. RESULTS Columbianadin remarkably suppressed the cell viability and production of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and prostaglandin (PGE2). Columbianadin treatment remarkably suppressed the secretion of gastric volume, total acidity and enhanced the pH level in the stomach. Columbianadin remarkably altered the level of hydrogen peroxidase, free iron, calcium, and plasma scavenging activity, sulfhydryl group; oxidative stress parameters like malonaldehyde, glutathione, superoxide dismutase, catalase, glutathione peroxidase; inflammatory cytokines viz., TNF-α, IL-6, IL-1β, IL-10, IL-17, and monocyte chemoattractant protein-1; inflammatory parameters including PGE2, iNOS, COX-2, and nuclear kappa B factor (NF-κB). Columbianadin remarkably (P < 0.001) suppressed the mRNA expression TNF-α, IL-6, IL-1β and plasminogen activator inhibitor-1. CONCLUSIONS Columbianadin demonstrated a protective effect against acute reflux esophagitis via NF-κB pathway.
Collapse
Affiliation(s)
- Ying Wu
- The Second People’s Hospital of Shaanxi Province – Department of Gastroenterology – Xi ‘an, China
| | - Shaik Althaf Hussain
- King Saud University – College of Science – Department of Zoology – Riyadh, Saudi Arabia
| | - Minghai Luo
- Ankang City Central Hospital – Department of Pediatric – AnKang, China
| |
Collapse
|
6
|
Liu W, Zhong B, Wagner RW, Garcia MK, McQuade JL, Huang W, Li Y, Gonzalez GMN, R. Spano M, Cohen A, Geng Y, Cohen L. Systematic Review and Meta-analysis of Acupuncture for Modulation of Immune and Inflammatory Markers in Cancer Patients. Integr Cancer Ther 2024; 23:15347354241302072. [PMID: 39663880 PMCID: PMC11635873 DOI: 10.1177/15347354241302072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 10/04/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction: Inflammation is associated with tumor initiation, and existing tumors are associated with immune suppression locally and systemically. Cancer treatment is also associated with immune suppression. This review evaluates evidence related to the use of acupuncture for modulation of inflammation and the immune system in cancer patients. Methods: Nine databases were searched for prospective, randomized, controlled trials evaluating the use of acupuncture for modulation of the immune system in cancer patients through March 2024. Only studies involving needle insertion into acupuncture points were included. No language limitations were applied. Studies were assessed for risk of bias (ROB) according to Cochrane criteria. The primary outcomes were levels of immune and inflammatory markers. Results: Of 3607 articles identified, 1526 duplicates were omitted, and 2261 articles were screened. Sixty-four (58 Chinese, 6 English) publications met all inclusion criteria and were evaluated for ROB. Forty-seven studies were rated as unclear ROB, and nine studies were rated as high ROB. However, when the blinding and allocation concealment criteria were removed, 12 studies had low ROB. Fifty-six studies were included in the meta-analysis, which found that acupuncture significantly increased interferon gamma (IFN-γ; P < .01), natural killer (NK) cells (P < .01), immunoglobulin G (IgG; P = .04), immunoglobulin M (IgM; P = .04), CD3 cells (P < .01), CD4 cells (P < .01), and the CD4/CD8 cell ratio (P < .01), and significantly lowered interleukin (IL)-1 (P = .01), IL-4 (P < .01), IL-6 (P < .01), and C-reactive protein (P < .01). Yet except for IFN-γ, there was high heterogeneity of results between studies. No significant differences were found in white blood cells, CD-8, neutrophil levels, IL-2, IL-10, or tumor necrosis factor alpha (TNF-α). Conclusion: The current evidence is insufficient to either support or refute the immunomodulatory effects of acupuncture in cancer patients due to no studies fully meeting the low ROB criterion. The preliminary data, however, are promising. Future studies that are higher powered, with low ROB designs, are warranted.
Collapse
Affiliation(s)
- Wenli Liu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Integrative Medicine Clinic, Bellaire, TX, USA
| | - Baisong Zhong
- American College of Acupuncture and Oriental Medicine, Houston, TX, USA
| | | | - M. Kay Garcia
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Wen Huang
- American College of Acupuncture and Oriental Medicine, Houston, TX, USA
| | - Yisheng Li
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Michael R. Spano
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandro Cohen
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yimin Geng
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lorenzo Cohen
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Zhuo Y, Yuan R, Chen X, He J, Chen Y, Zhang C, Sun K, Yang S, Liu Z, Gao H. Tanshinone I exerts cardiovascular protective effects in vivo and in vitro through inhibiting necroptosis via Akt/Nrf2 signaling pathway. Chin Med 2021; 16:48. [PMID: 34183021 PMCID: PMC8240219 DOI: 10.1186/s13020-021-00458-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tanshinone I (TI) is a primary component of Salvia miltiorrhiza Bunge (Danshen), which confers a favorable role in a variety of pharmacological activities including cardiovascular protection. However, the exact mechanism of the cardiovascular protection activity of TI remains to be illustrated. In this study, the cardiovascular protective effect and its mechanism of TI were investigated. METHODS In this study, tert-butyl hydroperoxide (t-BHP)-stimulated H9c2 cells model was employed to investigate the protective effect in vitro. The cell viability was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) kit. The reactive-oxygen-species (ROS) level and mitochondrial membrane potential (MMP) were investigated by the flow cytometry and JC-1 assay, respectively. While in vivo experiment, the cardiovascular protective effect of TI was determined by using myocardial ischemia-reperfusion (MI/R) model including hematoxylin-eosin (H&E) staining assay and determination of superoxide dismutase (SOD) and malondialdehyde (MDA). Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release were detected by Enzyme-linked immunosorbent assay (ELISA). Receptor interacting protein kinase 1 (RIP1), receptor interacting protein kinase 3 (RIP3), receptor interacting protein kinase 3 (MLKL), protein kinase B (Akt), Nuclear factor erythroid 2 related factor 2 (Nrf2), Heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 (NQO-1) were determined by western blotting. RESULTS Our data demonstrated that TI pretreatment attenuated t-BHP and MI/R injury-induced necroptosis by inhibiting the expression of p-RIP1, p-RIP3, and p-MLKL. TI activated the Akt/Nrf2 pathway to promote the expression of antioxidant-related proteins such as phosphorylation of Akt, nuclear factor erythroid 2 related factor 2 (Nrf2), quinone oxidoreductase-1 (NQO-1) and heme oxygenase-1 (HO-1) expression in t-BHP-stimulated H9c2 cells. TI relieved oxidative stress by mitigating ROS generation and reversing MMP loss. In vivo experiment, TI made electrocardiograph (ECG) recovery better and lessened the degree of myocardial tissue damage. The counts of white blood cell (WBC), neutrophil (Neu), lymphocyte (Lym), and the release of TNF-α and IL-6 were reversed by TI treatment. SOD level was increased, while MDA level was decreased by TI treatment. CONCLUSION Collectively, our findings indicated that TI exerted cardiovascular protective activities in vitro and in vivo through suppressing RIP1/RIP3/MLKL and activating Akt/Nrf2 signaling pathways, which could be developed into a cardiovascular protective agent.
Collapse
Affiliation(s)
- Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Renyikun Yuan
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xinxin Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Yangling Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Chenwei Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Kaili Sun
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Zhenjie Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China.
| |
Collapse
|
8
|
Antimicrobials from Medicinal Plants: An Emergent Strategy to Control Oral Biofilms. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oral microbial biofilms, directly related to oral diseases, particularly caries and periodontitis, exhibit virulence factors that include acidification of the oral microenvironment and the formation of biofilm enriched with exopolysaccharides, characteristics and common mechanisms that, ultimately, justify the increase in antibiotics resistance. In this line, the search for natural products, mainly obtained through plants, and derived compounds with bioactive potential, endorse unique biological properties in the prevention of colonization, adhesion, and growth of oral bacteria. The present review aims to provide a critical and comprehensive view of the in vitro antibiofilm activity of various medicinal plants, revealing numerous species with antimicrobial properties, among which, twenty-four with biofilm inhibition/reduction percentages greater than 95%. In particular, the essential oils of Cymbopogon citratus (DC.) Stapf and Lippia alba (Mill.) seem to be the most promising in fighting microbial biofilm in Streptococcus mutans, given their high capacity to reduce biofilm at low concentrations.
Collapse
|