1
|
Wang Z, Cao B, Ma Y, Xu W, Fu J, Zhang Z, Du J, Deng T, Pang J, Yang M, Han J. Exploration of biophoton characteristics of fresh Isatis indigotica fort leaves under salt and drought stresses and the feasibility analysis for the quality prediction of Isatidis Folium. FRONTIERS IN PLANT SCIENCE 2025; 16:1523636. [PMID: 40144761 PMCID: PMC11937020 DOI: 10.3389/fpls.2025.1523636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/19/2025] [Indexed: 03/28/2025]
Abstract
Introduction Isatidis Folium, derived from the dried leaves of Isatis indigotica Fort, has been used for centuries as a traditional Chinese herb with antibacterial and antiviral properties. However, both the cultivation conditions and the growth status of Isatis indigotica Fort have been negatively affected by climatic and environmental degradation, which has made it challenging to accurately assess the quality of Isatidis Folium. The current quality control system for Isatidis Folium lacks precision and comprehensive identification indices, and importantly, the cultivation process has not been integrated into this system. Methods In this study, we proposed a novel method to distinguish between different stress subtypes in Isatis indigotica Fort based on biophoton emission and attempted to explore the potential relationship between the biophoton characteristics of fresh Isatis indigotica Fort leaves and the quality of Isatidis Folium. The delayed luminescence (DL) and spontaneous photon emission (SPE) characteristics of fresh Isatis indigotica Fort leaves under different stress conditions were detected using a biophoton detection system. An attempt was made to differentiate samples subjected to various stress treatments using biophoton characteristic parameters. Additionally, the content of active ingredients was determined by ultra-high performance liquid chromatography, and the inhibitory activity against Escherichia coli and Staphylococcus aureus was evaluated to identify the quality of Isatidis Folium. Several physiological indicators of fresh Isatis indigotica Fort leaves, including the photosynthetic pigment content, relative electrical conductivity, and reactive oxygen species production rate were also determined. Result The differences in physiological indices, active ingredient content, and inhibitory activity indicated that the stress conditions significantly inhibited the growth status of Isatis indigotica Fort leaves and the herbal quality. Meanwhile, biophoton characteristic parameters were obtained that could accurately and efficiently distinguish fresh Isatis indigotica Fort leaves between different stress subtypes: initial intensity of DL and counts per second of SPE. Both characteristic parameters were highly correlated with the physiological indicators and quality of Isatidis Folium. Discussion This study has preliminarily demonstrated the feasibility of utilizing biophoton detection technology for the quality evaluation of Isatidis Folium during cultivation for the first time and provided an improved method for distinguishing samples of various qualities.
Collapse
Affiliation(s)
- Zhiying Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Baorui Cao
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yueyue Ma
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Weifan Xu
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jialei Fu
- Institute of Traditional Chinese Medicine Pharmacology, Shandong Academy of Traditional Chinese Medicine, Jinan, China
| | - Zhongwen Zhang
- Department of Endocrinology and Geriatrics, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jinxin Du
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Tingting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingxiang Pang
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Meina Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jinxiang Han
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
2
|
Gerbovits B, Keszthelyi S, Jócsák I. Biophoton emission-based approach of the effects of systemic insecticides on the survival of Eurydema ventralis Kolenati, 1846 (Hemiptera: Pentatomidae) and on the photosynthetic activity of oilseed rape. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:417-424. [PMID: 38804855 DOI: 10.1080/03601234.2024.2358632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
The choice of effective crop protection technologies is a key factors in the economical production of oilseed rape. Insecticides belonging to the group of active substances butenolides and diamides are active substances available as seed treatments in oilseed rape and promising control tools in the crop protection technologies. Our laboratory experiment demonstrated that the experimental insecticides flupyradifurone and cyantraniliprole are both effective against Eurydema ventralis (Hemiptera: Pentatomidae) when used as a seed and in-crop treatments, but there is a fundamental difference in their insect mortality inducing effects. Flupyradifurone was found to have a total mortality 96 h after application based on basipetal translocation. In the case of cyantraniliprole, the insecticidal effect of the same treatment was 27% less. The experiment showed that the acropetal translocation of the tested active substances after seed treatment did not induce efficacy comparable to that of the basipetal translocation. The study of the biophoton emission of the plants demonstrated a verifiable correlation between the different application methods of the insecticides and the photon emission intensity per unit plant surface area. In conclusion, the systematic insecticides tested, in addition to having the expected insecticidal effect, interfere with plant life processes by enhancing photosynthetic activity.
Collapse
Affiliation(s)
- Bálint Gerbovits
- Department of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Sándor Keszthelyi
- Department of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Ildikó Jócsák
- Department of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| |
Collapse
|
3
|
Yue-Hong G, Yu-Kun L, Zhi-le G, Xiao-Yan Z, Wei-Ting Z, Bing L, Hong-Yi G, Qiong-Shuai L. A novel detection method for wheat aging based on the delayed luminescence. Sci Rep 2024; 14:1134. [PMID: 38212378 PMCID: PMC10784558 DOI: 10.1038/s41598-024-51563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
Wheat aging plays an important role in assessing storage wheat quality and its subsequent processing purposes. The conventional detection methods for wheat aging are mainly involved in chemical techniques, which are time-consuming as well as waste part of wheat samples for each detection. Although some physical detection methods have obtained gratifying results, it is extremely hard to expand their application fields but to stay in the theory stage. For this reason, a novel nondestructive detection model for wheat aging based on the delayed luminescence (DL) has been proposed in this paper. Specifically, after collecting enough sample data, we first took advantage of certain hyperbolic function to fit DL signal, and then used four parameters of the hyperbolic function to feature the decay trend of the DL signal. Secondly, in order to better feature the DL signal, we extracted other six features together with above four features to form the input feature vector. Finally, as the bidirectional long short-term memory (Bi-LSTM) network lacked error-correcting performance, the Bi-LSTM network based on Walsh coding (Walsh-Bi-LSTM) mechanism was proposed to establish the detection model, which made the detection model have the error-correcting performance by reasonably splitting the multi-classification target task. Shown by experimental results, the newly proposed wheat aging detection model is able to achieve 94.00% accuracy in the testing dataset, which can be used as a green and nondestructive method to timely reflect wheat aging states.
Collapse
Affiliation(s)
- Gong Yue-Hong
- School of Software, Pingdingshan University, Pingdingshan, 467000, China
- Henan International Joint Laboratory for Multidimensional Topology and Carcinogenic Characteristics Analysis of Atmospheric Particulate Matter PM2.5, Pingdingshan, 467000, China
| | - Liu Yu-Kun
- School of Software, Pingdingshan University, Pingdingshan, 467000, China.
| | - Gong Zhi-le
- School of Computer and Software, Pingdingshan Polytechnic College, Pingdingshan, 467000, China
| | - Zhong Xiao-Yan
- School of Software, Pingdingshan University, Pingdingshan, 467000, China
| | - Zhao Wei-Ting
- School of Software, Pingdingshan University, Pingdingshan, 467000, China
| | - Li Bing
- School of Software, Pingdingshan University, Pingdingshan, 467000, China
| | - Ge Hong-Yi
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Lyu Qiong-Shuai
- School of Software, Pingdingshan University, Pingdingshan, 467000, China
| |
Collapse
|
4
|
Binder A, Jócsák I, Varga Z, Knolmajer B, Keszthelyi S. Non-Invasive Evaluation of Different Soil Tillage and Seed Treatment Effects on the Microbial Originating Physiological Reactions of Developing Juvenile Maize. PLANTS 2022; 11:plants11192506. [PMID: 36235372 PMCID: PMC9571952 DOI: 10.3390/plants11192506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
The successful production of maize is fundamentally determined by a good choice of tillage type. Options include conventional tillage based on soil rotation, as well as a more recent conservation approach. Our aims were to determine the stress physiological effects of the plant remains left behind by different tillage procedures on the juvenile maize plants, combined with the effects of fungicide treatment on the seeds. These effects were followed and investigated by means of biophoton emission measurement, an in vivo and non-invasive imaging technique, along with chlorophyll content estimation, as well as microbial- and polymerase chain reaction-based identification of fungi presence. Our results confirmed the response reactions of maize triggered by a soil covering plant remains on the initial development and physiological involvement of maize. The positive effects of seed treatment on initial development are manifested only at the final stage of the experiment. The fungal microbiological analysis confirmed the dominant presence of necrotrophic parasites on plant residues, the stress-inducing properties of which were possible to monitor by biophoton emission. Furthermore, the presence of Fusarium spp. was confirmed by PCR analysis from samples treated with plant residues.
Collapse
Affiliation(s)
- Antal Binder
- Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor Street 40, H-7400 Kaposvár, Hungary
| | - Ildikó Jócsák
- Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor Street 40, H-7400 Kaposvár, Hungary
- Correspondence:
| | - Zsolt Varga
- Plant-Treat Ltd., Ady Endre Str. 12, H-8900 Zalaegerszeg, Hungary
| | - Bence Knolmajer
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Str. 16, H-8360 Keszthelyi, Hungary
| | - Sándor Keszthelyi
- Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor Street 40, H-7400 Kaposvár, Hungary
| |
Collapse
|
5
|
Naumova EV, Vladimirov YA, Beloussov LV, Tuchin VV, Volodyaev IV. Methods of Studying Ultraweak Photon Emission from Biological Objects: I. History, Types and Properties, Fundamental and Application Significance. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921050158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
6
|
Sun M, Wu H, He M, Jia Y, Wang L, Liu T, Hui L, Li L, Wei S, Van Wijk E, Van Wijk R, Tsim KWK, Li C, Wang M. Integrated assessment of medicinal rhubarb by combination of delayed luminescence and HPLC fingerprint with emphasized on bioactivities based quality control. Chin Med 2020; 15:72. [PMID: 32684945 PMCID: PMC7362467 DOI: 10.1186/s13020-020-00352-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/03/2020] [Indexed: 12/26/2022] Open
Abstract
Background To promote herbal medicine depends largely on its quality. Chromatographic fingerprint is a frequent approach for quality assessment of herbs however with challenges on robust and reproducibility. To develop rapid, cheap and comprehensive measurements as complementary tools for herbal quality control are still urgently needed. Moreover, biological activities are essential for herbal quality, and should be taken into consideration with emphasized in quality control. Methods In this research, HPLC fingerprint and delayed luminescence (DL, a rapid and systematic tool) were used to measure the rhubarb samples of multiple species. Statistics were explored to classify these rhubarb samples using data obtained from two analytic methods. In addition, DL properties were linked to specific chemical components which may reflect bioactivities of rhubarb using Spearman's rank correlation. Moreover, mice model was used to evaluate the cathartic effect between rhubarb samples stratifying by two analytic methods. Results We found that there was no significant difference of chemical fingerprints and DL signals among the different species of medicinal rhubarb. However, our results show a high similarity between HPLC fingerprint analysis and DL measurements in classification of these rhubarb samples into two sub-groups. In addition, the two sub-groups of rhubarb samples that may have different cathartic activities. Conclusion This approach provides new leads for development of herbal quality assessment based on bioactivity. In conclusion, integrated assessment by measuring HPLC fingerprint and DL with emphasized on bioactivity may provide novel strategy for herbal quality control.
Collapse
Affiliation(s)
- Mengmeng Sun
- LU-European Center for Chinese Medicine and Natural compounds, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China.,SKL of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22 Avenida da Universidade, Taipa, Macau, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Min He
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Yusheng Jia
- LU-European Center for Chinese Medicine and Natural compounds, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Lixue Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Ting Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Lianqiang Hui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Li Li
- Capital Medical University subsidiary Beijing Hospital of Traditional Chinese Medicine, No. 23 Backstreet of Art Gallery, Dongcheng District, Beijing, 100010 China.,Beijing Institute of Chinese Medicine, No. 13 Shuiche Alley Xinjiekou, Xicheng District, Beijing, 100035 China
| | - Shengli Wei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuan South Street, Chaoyang District, Beijing, 100102 China
| | - Eduard Van Wijk
- Meluna Research, Koppelsedijk 1-a, 4191LC, Geldermalsen, The Netherlands
| | - Roeland Van Wijk
- Meluna Research, Koppelsedijk 1-a, 4191LC, Geldermalsen, The Netherlands
| | - Karl Wah-Keung Tsim
- Division of Life Science and Center for Chinese Medicine R&D,, Kowloon, Hong Kong, China, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Mei Wang
- LU-European Center for Chinese Medicine and Natural compounds, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,SU BioMedicine, Post Bus 546, 2300 AM Leiden, The Netherlands.,Shenzhen HUAKAI TCM and Natural Medicine Research Center, NO. 2, Boya Building, Zone A, Dawang Cultural and Creative Industrial Park, Wutong Mountain, No. 197, Kengbei Village, Luohu District, Shenzhen, 518114 China
| |
Collapse
|