1
|
Niu Y, Niu H, Chi L, Li P, Du J, Wang X, He X, Lu B, Pang Z. Trigonella foenum-graecum L. protects against renal function decline in a mouse model of type 2 diabetic nephropathy by modulating the PI3K-Akt-ERK signaling pathway. Front Pharmacol 2025; 16:1566723. [PMID: 40170727 PMCID: PMC11959092 DOI: 10.3389/fphar.2025.1566723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
Objectives Trigonella foenum-graecum L. (HLB) exhibits promising pharmacological properties for the treatment of type 2 diabetic nephropathy (DN). This study aims to enhance the understanding of HLB's pharmacodynamic effects and elucidate the mechanisms underlying its therapeutic potential in DN. Methods The pharmacodynamic effects of HLB were initially evaluated in a murine DN model through the oral administration of an aqueous extract of HLB. The primary bioactive constituents were subsequently identified using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). Network pharmacology analysis was integrated with these data to uncover potential molecular targets of HLB in DN. Key renal metabolites were profiled using untargeted metabolomics, followed by metabolic pathway enrichment analysis conducted with the MetaboAnalyst 6.0 platform, which facilitated the identification of relevant metabolic pathways through which HLB modulates DN. Finally, quantitative real-time polymerase chain reaction (QRT-PCR) and Western blot (WB) techniques were employed to validate the expression levels of key genes and proteins, thereby confirming the molecular mechanisms underlying the effects of HLB in DN. Results Animal experiments indicated that HLB significantly improved blood glucose regulation and renal function while reducing oxidative stress and abnormalities in lipid metabolism in diabetic mice. A total of 34 compounds and 159 potential therapeutic targets were identified as key active components of HLB. The untargeted metabolomics analysis revealed 61 critical metabolites, among which the PI3K-Akt-ERK signaling pathway-known to be involved in diabetes-was highlighted as a crucial pathway. QRT-PCR and WB analyses demonstrated that HLB upregulated the expression of MAPK1, MAPK3, AKT1, and PI3K. Conclusion These results suggest that HLB may alleviate DN by modulating oxidative stress and lipid metabolism. Its effects are likely mediated through the PI3K-Akt-ERK signaling pathway, along with the upregulation of MAPK1, MAPK3, AKT1, and PI3K expression. This study lays the groundwork for further investigations into the molecular mechanisms underlying HLB's action in DN.
Collapse
Affiliation(s)
- Yang Niu
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, Beijing, China
| | - Hongjuan Niu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Luxuan Chi
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, Beijing, China
| | - Peihang Li
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, Beijing, China
| | - Jiyang Du
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, Beijing, China
| | - Xiaoqian Wang
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, Beijing, China
| | - Xu He
- Pharmacy Department, People’s Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - Binan Lu
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, Beijing, China
| | - Zongran Pang
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, Beijing, China
| |
Collapse
|
2
|
Wu H, Dong F, Li Y, Liu Z, Sun J, Gao B, Pehrsson P, He X, Wu X, Yu LL. Chemical profiles of allspice (Pimenta dioica (L.) Merr.) water and ethanol extracts and their antivirus and radical scavenging activities. Food Res Int 2025; 205:115950. [PMID: 40032448 DOI: 10.1016/j.foodres.2025.115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Chemical compositions of the allspice water and ethanol extracts were characterized using UPLC-HRMS/MS. A total of 20 compounds were tentatively identified, with 12 reported for the first time in allspice. Both extracts dose-dependently inhibited the binding of SARS-CoV-2 spike protein to ACE2. The water extract showed 100 % inhibition at a concentration of 33.3 mg allspices botanical equivalents per mL (mg AE/mL), whereas the ethanol extract had a 100 % inhibition at 3.3 mg AE/mL. Both extracts also showed dose-dependent inhibition of ACE2 activities, suggesting their potential in reducing the ACE2 availability. In addition, both extracts had significant phenolic contents, and the radical scavenging capacities against HO, DPPH and ABTS+. These findings support the potential allspice utilization in reducing the risk of SARS-CoV-2 virus infection and the development of COVID-19 severe symptoms.
Collapse
Affiliation(s)
- Huan Wu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States
| | - Fangxiang Dong
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States
| | - Yanfang Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States
| | - Zhihao Liu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States; Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, United States
| | - Jianghao Sun
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, United States
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Pamela Pehrsson
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, United States
| | - Xiaohua He
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States
| | - Xianli Wu
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, United States
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
3
|
Li L, Guan Y, Du Y, Chen Z, Xie H, Lu K, Kang J, Jin P. Exploiting omic-based approaches to decipher Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118936. [PMID: 39413937 DOI: 10.1016/j.jep.2024.118936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM), an ancient health system, faces significant research challenges due to the complexity of its active components and targets, as well as a historical lack of detailed annotation. However, recent advances in omics technologies have begun to unravel these complexities, providing a more informed and nuanced understanding of TCM's therapeutic potential in contemporary healthcare. AIM OF THE REVIEW This review summarizes the application of omics technologies in TCM modernization, emphasizing components analysis, quality control, biomarker discovery, target identification, and treatment optimization. In addition, future perspectives on using omics for precision TCM treatment are also discussed. MATERIALS AND METHODS We have explored several databases (including PubMed, ClinicalTrials, Google Scholar, and Web of Science) to review related articles, focusing on Traditional Chinese Medicine, Omics Strategy, Precision Medicine, Biomarkers, Quality Control, and Molecular Mechanisms. Paper selection criteria involved English grammar, publication date, high citations, and broad applicability, exclusion criteria included low credibility, non-English publications, and those full-text inaccessible ones. RESULTS TCM and the popularity of Chinese herbal medicines (CHMs) are gaining increasing attention worldwide. This is driven, in part, by a large number of technologies, especially omics strategy, which are aiding the modernization of TCM. They contribute to the quality control of CHMs, the identification of cellular targets, discovery of new drugs and, most importantly, the understanding of their mechanisms of action. CONCLUSION To fully integrate TCM into modern medicine, further development of robust omics strategies is essential. This vision includes personalized medicine, backed by advanced computational power and secure data infrastructure, to facilitate global acceptance and seamless integration of TCM practices.
Collapse
Affiliation(s)
- Lei Li
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yueyue Guan
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Yongjun Du
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Zhen Chen
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Haoyang Xie
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Kejin Lu
- Yunnan Yunke Cheracteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China.
| | - Jian Kang
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
4
|
Zhang X, Chu Y, Wang M, Shi Y, Zuo L, Li Z, Liu J, Kang J, Du S, Li B, Sun Z, Zhang X. Rapid and comprehensive identification of chemical constituents in Mai-Luo-Shu-Tong pill by UHPLC-Q-Orbitrap HRMS combined with a data mining strategy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4990-5000. [PMID: 36444489 DOI: 10.1039/d2ay01453j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mai-Luo-Shu-Tong pill is an effective traditional Chinese medicine formula for the treatment of superficial thrombophlebitis, but it was insufficiently chemically scrutinized. In this study, the mass spectral data of Mai-Luo-Shu-Tong pill were acquired by ultra-high performance liquid chromatography coupled with Q Exactive hybrid Quadrupole-Orbitrap high resolution mass spectrometry. Then, a data mining strategy combining multiple data processing methods was used to identify chemical constituents in Mai-Luo-Shu-Tong pill by constructing a database of precursor ions and summarizing the mass spectral fragmentation behaviors. As a result, a total of 211 compounds including 70 flavonoids, 56 terpenoids, 37 phenolic acids and 48 others were identified in positive and negative ion modes. Among them, 66 compounds have passed comparison verification with reference standards, 145 compounds were identified based on the data mining strategy combining the characteristic cleavage behaviour of homologous compounds and fragment ions and 4 compounds were potentially new compounds. This study provides a database for quality evaluation and further study of Mai-Luo-Shu-Tong pill in vivo. Moreover, it provides a reference for the characterization of the chemical constituents of other traditional Chinese medicine formulae.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Yaojuan Chu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Mengli Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Yingying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Zhuolun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Jiyun Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
| | - Shuzhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
| | - Bing Li
- State Key Laboratory of Common Technology of Traditional Chinese Medicine and Pharmaceuticals, Lunan Pharmaceutical Group Co., Ltd., Linyi, P. R. China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| |
Collapse
|
5
|
Pan X, Hou X, Zhang F, Tang P, Wan W, Su Z, Yang Y, Wei W, Du Z, Deng J, Hao E. Gnetum montanum extract induces apoptosis by inhibiting the activation of AKT in SW480 human colon cancer cells. PHARMACEUTICAL BIOLOGY 2022; 60:915-930. [PMID: 35587342 PMCID: PMC9122364 DOI: 10.1080/13880209.2022.2063340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Gnetum montanum Markgr. (Gnetaceae) is used to treat rheumatic arthralgia and bruises in the clinic. OBJECTIVE To exam the activity and mechanism of G. montanum extract (GME) against colon cancer cells SW480. MATERIALS AND METHODS The anti-proliferative activity of GME (0-120 μg/mL) on SW480 cells was determined using MTS assay at 24, 48, and 72 h. The in vitro activity of GME (0-120 μg/mL) on SW480 cells was investigated using flow cytometry and western blotting analysis. The in vivo activity of GME was evaluated using xenograft tumour model of zebrafish and nude mice. The chemical composition of GME was detected by using HPLC-MS/MS. RESULTS The IC50 value SW480 cells viability by GME were 126.50, 78.25, and 50.77 μg/mL, respectively, for 24, 48, and 72 h. The experiments showed that apoptotic cells and G2/M phase cells increased from 20.81 to 61.53% (p < 0.01) and 25.76 to 34.93% with 120 μg/mL GME, respectively. GME also down-regulated the protein expression of P-AKT, P-GSK-3β, P-PDK1, P-c-Raf, caspase-3, and Bcl-2, and up-regulated the expression cleaved caspase-3, cleaved PARP, and Bax. In vivo study found that GME can significantly inhibit the growth and migration of SW480 cells in xenograft zebrafish. GME reduced the nude mice tumour weight to approximately 32.19% at 28 mg/kg/day and to 53.17% (p < 0.01) at 56 mg/kg/day. Forty-two compounds were identified from the GME. DISCUSSION AND CONCLUSIONS GME has a significant antitumor effect on colon cancer cells SW480, and it has the potential to be developed as an anticancer agent.
Collapse
Affiliation(s)
- Xianglong Pan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Peiling Tang
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Wanruo Wan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Zixia Su
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Yeguo Yang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Wei Wei
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| |
Collapse
|
6
|
He C, Huang W, Xue X, Liang Z, Ye H, Li K, Yuan X. UPLC-MS fingerprints, phytochemicals and quality evaluation of flavonoids from Abrus precatorius leaves. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|