1
|
Xie W, Wang X, Cai J, Bai H, Shao Y, Li Z, Cai L, Zhang S, Li J, Cui W, Jiang Y, Tang L. Optimum Fermentation Conditions for Bovine Lactoferricin-Lactoferrampin-Encoding LimosiLactobacillus reuteri and Regulation of Intestinal Inflammation. Foods 2023; 12:4068. [PMID: 38002126 PMCID: PMC10670345 DOI: 10.3390/foods12224068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The multifunctional antibacterial peptide lactoferricin-lactoferrampin (LFCA) is derived from bovine lactoferrin. Optimization of the fermentation process should be studied since different microorganisms have their own favorable conditions and processes for growth and the production of metabolites. In this study, the culture conditions of a recombinant strain, pPG-LFCA-E/LR-CO21 (LR-LFCA), expressing LFCA was optimized, utilizing the high-density fermentation process to augment the biomass of LimosiLactobacillus reuteri and the expression of LFCA. Furthermore, an assessment of the protective effect of LR-LFCA on intestinal inflammation induced by lipopolysaccharide (LPS) was conducted to evaluate the impact of LR-LFCA on the disease resistance of piglets. The findings of this study indicate that LR-LFCA fermentation conditions optimally include 2% inoculation volume, 36.5 °C fermentation temperature, 9% dissolved oxygen concentration, 200 revolutions/minute stirring speed, pH 6, 10 mL/h glucose flow, and 50% glucose concentration. The inclusion of fermented LR-LFCA in the diet resulted in an elevation of immunoglobulin levels, significant upregulation of tight junction proteins ZO-1 and occludin, reinforcement of the intestinal barrier function, and significant amelioration of the aberrant alterations in blood physiological parameters induced by LPS. These results offer a theoretical framework for the implementation of this micro-ecological preparation in the field of piglet production to enhance intestinal well-being.
Collapse
Affiliation(s)
- Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Jiyao Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Huitao Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Zhuoran Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Limeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Senhao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Ma J, Li K, Shi S, Li J, Tang S, Liu L. The Application of UHPLC-HRMS for Quality Control of Traditional Chinese Medicine. Front Pharmacol 2022; 13:922488. [PMID: 35721122 PMCID: PMC9201421 DOI: 10.3389/fphar.2022.922488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
UHPLC-HRMS (ultra-high-performance liquid chromatography-high resolution mass spectrometry) is a new technique that unifies the application of UHPLC with HRMS. Because of the high sensitivity and good separation ability of UHPLC and the sensitivity of HRMS, this technique has been widely used for structure identification, quantitative determination, fingerprint analysis, and elucidation of the mechanisms of action of traditional Chinese medicines (TCMs) in recent years. This review mainly outlines the advantages of using UHPLC-HRMS and provides a survey of the research advances on UHPLC-HRMS for the quality control of TCMs.
Collapse
Affiliation(s)
- Jieyao Ma
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Silin Shi
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Jian Li
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Sunv Tang
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - LiangHong Liu
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
3
|
Dong Y, Wei X, Qiang T, Liu J, Che P, Qi Y, Zhang B, Liu H. RAD-Seq and Ecological Niche Reveal Genetic Diversity, Phylogeny, and Geographic Distribution of Kadsura interior and Its Closely Related Species. FRONTIERS IN PLANT SCIENCE 2022; 13:857016. [PMID: 35557741 PMCID: PMC9087809 DOI: 10.3389/fpls.2022.857016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Most plants of Kadsura have economic value and medicinal application. Among them, K. interior and its closely related species have been demonstrated to have definite efficacy. However, the taxonomy and phylogenetic relationship of Kadsura in terms of morphology and commonly used gene regions remain controversial, which adversely affects its rational application. In this study, a total of 107 individuals of K. interior, K. heteroclita, K. longipedunculata, K. oblongifolia, and K. coccinea were studied from the perspectives of genetic diversity, phylogeny, and ecology via single nucleotide polymorphisms (SNPs) developed through restriction site-associated DNA sequencing (RAD-seq). Based on these SNPs, the genetic diversity, phylogenetic reconstruction, and population genetic structure were analyzed. Subsequently, divergence time estimation and differentiation scenario simulation were performed. Meanwhile, according to the species distribution records and bioclimatic variables, the Last Glacial Maximum and current potential distributions of five species were constructed, and the main ecological factors affecting the distribution of different species were extracted. The F ST calculated showed that there was a moderate degree of differentiation among K. heteroclita, K. longipedunculata, and K. oblongifolia, and there was a high degree of genetic differentiation between K. interior and the above species. The phylogenetic tree indicated that each of the species was monophyletic. The results of population genetic structure and divergence scenario simulation and D-statistics showed that there were admixture and gene flow among K. heteroclita, K. longipedunculata, and K. oblongifolia. The results of ecological niche modeling indicated that the distribution areas and the bioclimatic variables affecting the distribution of K. interior and its related species were different. This study explored the differences in the genetic divergence and geographical distribution patterns of K. interior and its related species, clarifying the uniqueness of K. interior compared to its relatives and providing a reference for their rational application in the future.
Collapse
Affiliation(s)
- Yuqing Dong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xueping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tingyan Qiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiushi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peng Che
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yaodong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bengang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|