1
|
Wang W, Chen Z, Zhu J, Xiang Y, Wang Y, Wang X, Huang W. Integrating bioinformatic analysis, network pharmacology, molecular docking and experimental validation to explore the mechanism of Tian Long Cha against influenza virus. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119964. [PMID: 40368255 DOI: 10.1016/j.jep.2025.119964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/25/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tong Long Cha (TLC) has been employed in clinical treatment for respiratory diseases, such as influenza, for over three decades. However, the precise mechanisms underlying its defense against influenza remain poorly understood. AIM OF STUDY This study aimed to investigate the bioactive compounds, pharmacological effects, and underlying mechanisms of TLC in combating influenza viruses. METHODS Ultrahigh-performance liquid chromatography (UPLC)-Q-Exactive analysis was employed to identify the bioactive compounds of TLC. Key therapeutic targets and pathways involved in TLC's treatment for influenza were predicted using bioinformatics analysis, network pharmacology, and molecular docking. The antiviral effects of TLC and its principal active compound against various strains of influenza A viruses (A/Aichi/2/1968 (H3N2), A/PR/8/34 (PR8), A/California/04/2009 (CA04), A/HK/Y280/97(H9N2)) and influenza B virus (B/Lee/1940 (Lee)) were assessed using the cytopathic effect (CPE) inhibition assay and plaque reduction assay in MDCK cells. The therapeutic effects of TLC were evaluated using an influenza H3N2 virus-infected Balb/c mouse model. Quantitative PCR and Western blot analyses were employed to quantify the expression levels of key targets involved in TLC's potential mechanisms within A549 cells and the lungs of mice, as well as to investigate BCL's (baicalin) mechanism in A549 cells post-H3N2 infection. A co-culture model using Jurkat T cells and H3N2-infected A549 cells was also established to verify the modulation of key targets by TLC and BCL by using western blot analyses. RESULTS A total of 25 bioactive compounds were identified in TLC, with BCL being the predominant compound. TLC and BCL significantly inhibited the replication of the aforementioned influenza virus strains in MDCK cells. Additionally, TLC reduced weight loss, lung index, viral titers, lung tissue lesions, and levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IP-10, TNF-α), interferon (IFN-γ), and chemokine (MCP-1) in H3N2-infected mice. Mechanistic studies revealed that TLC and BCL upregulated Interleukin (IL)-2-inducible T cell kinase (ITK) and Tyrosine-protein kinase (FYN) expression while downregulating mitogen-activated protein kinase (MAPK14) expression, thereby modulating the T cell receptor signaling pathway, as predicted by bioinformatics analysis, network pharmacology, and molecular docking. CONCLUSION TLC could inhibit influenza virus replication and mitigate excessive inflammatory responses by modulating the T cell receptor signaling pathway, suggesting that it may serve as a promising therapeutic agent in traditional Chinese medicine for the treatment of influenza.
Collapse
Affiliation(s)
- Wanqi Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China; Institute of Integration of Traditional and Western Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zexing Chen
- Institute of Integration of Traditional and Western Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China.
| | - Jinyi Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China; Institute of Integration of Traditional and Western Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanling Xiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China; Institute of Integration of Traditional and Western Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China; Institute of Integration of Traditional and Western Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China; Institute of Integration of Traditional and Western Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanyi Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China; Institute of Integration of Traditional and Western Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Chen Z, Wang W, Zeng K, Zhu J, Wang X, Huang W. Potential antiviral activity of rhamnocitrin against influenza virus H3N2 by inhibiting cGAS/STING pathway in vitro. Sci Rep 2024; 14:28287. [PMID: 39550441 PMCID: PMC11569172 DOI: 10.1038/s41598-024-79788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024] Open
Abstract
Influenza remains a serious issue for public health and it's urgent to discover more effected drugs against influenza virus. Rhamnocitrin, as a flavonoid, its effect on influenza virus infection remains poorly explored. In this study, rhamnocitrin showed antiviral effect and anti-apoptosis on influenza virus A/Aichi/2/1968 (H3N2) in MDCK cells and A549 cells. In addition, molecular docking revealed that rhamnocitrin have good binding activity with the target proteins cGAS and STING, molecular dynamic simulation and surface plasmon resonance showed that rhamnocitrin could form a stable complex with the above proteins. Moreover, the qPCR and western blot assays further verified that rhamnocitrin could reduce type I IFN and proinflammatory cytokines production by inhibiting the cGAS/STING pathway. Taken together, the results suggest that rhamnocitrin could be a potential anti-viral agent against influenza.
Collapse
Affiliation(s)
- Zexing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanqi Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kefeng Zeng
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinyi Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanyi Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Liu S, Yang S, Blazekovic B, Li L, Zhang J, Wang Y. Bioactivities, Mechanisms, Production, and Potential Application of Bile Acids in Preventing and Treating Infectious Diseases. ENGINEERING 2024; 38:13-26. [DOI: 10.1016/j.eng.2023.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Chen Y, Chen Z, Wang W, Wang Y, Zhu J, Wang X, Huang W. Investigating the effects of Laggera pterodonta on H3N2-Induced inflammatory and immune responses through network pharmacology, molecular docking, and experimental validation in a mice model. Heliyon 2024; 10:e29487. [PMID: 38665556 PMCID: PMC11043942 DOI: 10.1016/j.heliyon.2024.e29487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
For centuries, Laggera pterodonta (LP), a Chinese herbal medicine, has been widely employed for treating respiratory infectious diseases; however, the mechanism underlying LP's effectiveness against the influenza A/Aichi/2/1968 virus (H3N2) remains elusive. This study aims to shed light on the mechanism by which LP combats influenza in H3N2-infected mice. First, we conducted quasi-targeted metabolomics analysis using liquid chromatography-mass spectrometry to identify LP components. Subsequently, network pharmacology, molecular docking, and simulation were conducted to screen candidate targets associated with AKT and NF-κB. In addition, we conducted a series of experiments including qPCR, hematoxylin-eosin staining, flow cytometry, immunohistochemistry, and enzyme-linked immunosorbent assay to provide evidence that LP treatment in H3N2-infected mice can reduce pro-inflammatory cytokine levels (TNF-α, IL-6, IL-1β, and MCP-1) while increasing T cells (CD3+, CD4+, and CD8+) and syndecan-1 and secretory IgA expression. This, in turn, aids in the prevention of excessive inflammation and the fortification of immunity, both of which are compromised by H3N2. Finally, we utilized a Western blot assay to confirm that LP indeed inhibits the AKT/NF-κB signaling cascade. Thus, the efficacy of LP serves as a cornerstone in establishing a theoretical foundation for influenza treatment.
Collapse
Affiliation(s)
- Yaorong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zexing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanqi Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Jinyi Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanyi Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Chen X, Huang X, Ma Q, Kuzmič P, Zhou B, Zhang S, Chen J, Xu J, Liu B, Jiang H, Zhang W, Yang C, Wu S, Huang J, Li H, Long C, Zhao X, Xu H, Sheng Y, Guo Y, Niu C, Xue L, Xu Y, Liu J, Zhang T, Spencer J, Zhu Z, Deng W, Chen X, Chen SH, Zhong N, Xiong X, Yang Z. Preclinical evaluation of the SARS-CoV-2 M pro inhibitor RAY1216 shows improved pharmacokinetics compared with nirmatrelvir. Nat Microbiol 2024; 9:1075-1088. [PMID: 38553607 PMCID: PMC10994847 DOI: 10.1038/s41564-024-01618-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/22/2024] [Indexed: 04/06/2024]
Abstract
Although vaccines are available for SARS-CoV-2, antiviral drugs such as nirmatrelvir are still needed, particularly for individuals in whom vaccines are less effective, such as the immunocompromised, to prevent severe COVID-19. Here we report an α-ketoamide-based peptidomimetic inhibitor of the SARS-CoV-2 main protease (Mpro), designated RAY1216. Enzyme inhibition kinetic analysis shows that RAY1216 has an inhibition constant of 8.4 nM and suggests that it dissociates about 12 times slower from Mpro compared with nirmatrelvir. The crystal structure of the SARS-CoV-2 Mpro:RAY1216 complex shows that RAY1216 covalently binds to the catalytic Cys145 through the α-ketoamide group. In vitro and using human ACE2 transgenic mouse models, RAY1216 shows antiviral activities against SARS-CoV-2 variants comparable to those of nirmatrelvir. It also shows improved pharmacokinetics in mice and rats, suggesting that RAY1216 could be used without ritonavir, which is co-administered with nirmatrelvir. RAY1216 has been approved as a single-component drug named 'leritrelvir' for COVID-19 treatment in China.
Collapse
Affiliation(s)
- Xiaoxin Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Guangdong Raynovent Biotech Co., Ltd, Guangzhou, China
| | - Xiaodong Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Biao Zhou
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Sai Zhang
- Guangzhou National Laboratory, Guangzhou, China
| | | | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bin Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjie Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunguang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiguan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Haijun Li
- Guangdong Raynovent Biotech Co., Ltd, Guangzhou, China
| | - Chaofeng Long
- Guangdong Raynovent Biotech Co., Ltd, Guangzhou, China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou, China
| | - Hongrui Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanan Sheng
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yaoting Guo
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chuanying Niu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lu Xue
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yong Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | | | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
6
|
He Z, Yuan J, Zhang Y, Li R, Mo M, Wang Y, Ti H. Recent advances towards natural plants as potential inhibitors of SARS-Cov-2 targets. PHARMACEUTICAL BIOLOGY 2023; 61:1186-1210. [PMID: 37605622 PMCID: PMC10446791 DOI: 10.1080/13880209.2023.2241518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/29/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023]
Abstract
CONTEXT Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still ongoing and currently the most striking epidemic disease. With the rapid global spread of SARS-CoV-2 variants, new antivirals are urgently needed to avert a more serious crisis. Inhibitors from traditional medicines or natural plants have shown promising results to fight COVID-19 with different mechanisms of action. OBJECTIVES To provide comprehensive and promising approaches to the medical community in the fight against this epidemic by reviewing potential plant-derived anti-SARS-CoV-2 inhibitors. METHODS Structural databases such as TCMSP (http://lsp.nwu.edu.cn/tcmsp.php), TCM Database @ Taiwan (http://tcm.cmu.edu.tw/), BATMAN-TCM (http://bionet.ncpsb.org/batman-tcm/) and TCMID (http://www.megabionet.org/tcmid/), as well as PubMed, Sci Finder, Research Gate, Science Direct, CNKI, Web of Science and Google Scholar were searched for relevant articles on TCMs and natural products against SARS-CoV-2. RESULTS Seven traditional Chinese medicines formulas have unique advantages in regulating the immune system for treating COVID-19. The plant-derived natural compounds as anti-SARS-CoV-2 inhibitors were identified based on 5 SARS-CoV-2 key proteins, namely, angiotensin-converting enzyme 2 (ACE2), 3 C-like protease (3CLpro), papain-like protease (PLpro), spike (S) protein, and nucleocapsid (N) protein. CONCLUSIONS A variety of natural products, such as flavonoids, terpenoids, phenols, and alkaloids, were identified, which could be used as potential SASR-Cov-2 inhibitors. These shed new light on the efficient discovery of SASR-Cov-2 inhibitors from natural products.
Collapse
Affiliation(s)
- Zhouman He
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Jia Yuan
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Yuanwen Zhang
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Meilan Mo
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Huihui Ti
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| |
Collapse
|
7
|
Zhang J, Liu Y, Lei W, Shen J, Lu J, Tao T, Cao X, Yang Z, Huang J, Shi C. Oral Liushen pill for patients with COVID-19: A prospective randomized controlled trial. Pulm Circ 2023; 13:e12187. [PMID: 36733313 PMCID: PMC9886519 DOI: 10.1002/pul2.12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
We examined the efficacy and safety of Liushen pill combined with basic treatment for patients with COVID-19. In total, 181 patients hospitalized with COVID-19, classified as asymptomatic mild type, were randomly divided into the experimental (n = 91) and control (n = 90) groups and were administered placebo (Maizao decoction) and Maizao decoction and Liushen pill, in addition to standard care, respectively. The negative conversion rate of nucleic acid (Day 7), hospital discharge rate (Days 8, 10, and 14), symptom disappearance rate (Days 3, 5, and 7), inflammatory cytokine levels, and adverse events were compared between the groups. The negative viral conversion rate was significantly higher in the experimental than in the control group (48.35 vs. 31.11%, p < 0.05). Subgroup analysis showed a similar significant trend when the Ct value was ≤30 at baseline. After 10 days, the hospital discharge rate was significantly higher in the experimental than in the control group (69.23 vs. 53.33%, p < 0.05). After 3-day medication, the headache symptoms significantly disappeared in the experimental (88.57%) compared to the control group (63.33%) (p < 0.05). After 5 days, the symptom disappearance rates of headache and cough were significantly higher in the experimental (97.14%) than in the control group (97.14 vs. 80.00, p < 0.05; 82.65 vs. 58.93%, p < 0.01, respectively). Posttreatment, the procalcitonin level was significantly lower in the experimental than in the control group (0.09 ± 0.00 vs. 0.14 ± 0.05 ng/L; p < 0.05). There were no significant between-group differences in clinical safety test indices. Early intervention with Liushen pill improved cough and headache and increased negative viral conversion and discharge rate.
Collapse
Affiliation(s)
| | - Yian Liu
- The Fifth People's Hospital of SuzhouSuzhouChina
| | - Wei Lei
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Junheng Shen
- The Fifth People's Hospital of SuzhouSuzhouChina
| | - Jing Lu
- The Fifth People's Hospital of SuzhouSuzhouChina
| | - Tao Tao
- The Fifth People's Hospital of SuzhouSuzhouChina
| | - Xu Cao
- The Second Affiliated People's Hospital of Soochow UniversitySuzhouChina
| | - Zhong Yang
- The Fifth People's Hospital of SuzhouSuzhouChina
| | - Jianan Huang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Cuilin Shi
- The Fifth People's Hospital of SuzhouSuzhouChina
| |
Collapse
|
8
|
Hamza AM, Ali WDK, Hassanein N, Albassam WB, Barry M, AlFaifi AMM, Altayyar KAS, Aboabat NAM, Alshaiddi WKF, AbuSabbah HMH, Alamri AH, Albabtain SAH, Alsayed E. Relation between macrophage inflammatory protein-1 and intercellular adhesion molecule-1 and computed tomography findings in critically-ill saudi covid-19 patients. J Infect Public Health 2022; 15:1497-1502. [PMID: 36423464 PMCID: PMC9617641 DOI: 10.1016/j.jiph.2022.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Several, clinical and biochemical factors were suggested as risk factors for more severe forms of Covid-19. Macrophage inflammatory protein-1 alpha (MIP-1α, CCL3) is a chemokine mainly involved in cell adhesion and migration. Intracellular adhesion molecule 1 (ICAM-1) is an inducible cell adhesion molecule involved in multiple immune processes. The present study aimed to assess the relationship between baseline serum MIP-1α and ICAM-1 level in critically-ill Covid-19 patients and the severity of computed tomography (CT) findings. METHODS The study included 100 consecutive critically-ill patients with Covid-19 infection. Diagnosis of infection was established on the basis of RT-PCR tests. Serum MIP-1α and ICAM-1 levels were assessed using commercially available ELISA kits. All patients were subjected to a high-resolution computed tomography assessment. RESULTS According to the computed tomography severity score, patients were classified into those with moderate/severe (n=49) and mild (n = 51) pulmonary involvement. Severe involvement was associated with significantly higher MIP-1α and ICAM-1 level. Correlation analysis identified significant positive correlations between MIP-1α and age, D-dimer, IL6, in contrast, there was an inverse correlation with INF-alpha. Additionally, ICAM-1 showed significant positive correlations with age, D-Dimer,- TNF-α, IL6,while an inverse correlation with INF-alpha was observed. CONCLUSIONS MIP-1α and ICAM-1 level are related to CT radiological severity in Covid-19 patients. Moreover, these markers are well-correlated with other inflammatory markers suggesting that they can be used as reliable prognostic markers in Covid-19 patients.
Collapse
Affiliation(s)
- Aljohara Mohmoud Hamza
- Department of Anesthesia, Princess Nourah Bint Abdulrahman University, Kingdom of Saudi Arabia
| | | | - Nagwa Hassanein
- Department of Clinical Pathology, Faculty of medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Waddah Bader Albassam
- Radiology Department, King Abdullah Bin Abdulaziz University Hospital, Kingdom of Saudi Arabia
| | - Mohammad Barry
- Radiology Department, King Abdullah Bin Abdulaziz University Hospital, Kingdom of Saudi Arabia
| | - Abdullah Mofareh Mousa AlFaifi
- Department of pathology and Laboratory Medicine, King Abdullah Bin Abdulaziz University Hospital, Kingdom of Saudi Arabia
| | | | - Nuha Abdulrahman M. Aboabat
- Department of pathology and Laboratory Medicine, King Abdullah Bin Abdulaziz University Hospital, Kingdom of Saudi Arabia
| | - Wafa Khaled Fahad Alshaiddi
- Department of pathology and Laboratory Medicine, King Abdullah Bin Abdulaziz University Hospital, Kingdom of Saudi Arabia
| | | | - Ahmed Hameed Alamri
- Department of pathology and Laboratory Medicine, King Abdullah Bin Abdulaziz University Hospital, Kingdom of Saudi Arabia
| | | | - Eman Alsayed
- Department of Clinical Pathology, Minia University, Egypt,Corresponding author
| |
Collapse
|
9
|
Ma Q, Chen R, Zeng J, Lei B, Ye F, Wu Q, Li Z, Zhan Y, Liu B, Chen B, Yang Z. Investigating the effects of Liushen Capsules on the metabolome of seasonal influenza: A randomized clinical trial. Front Pharmacol 2022; 13:968182. [PMID: 36034844 PMCID: PMC9402892 DOI: 10.3389/fphar.2022.968182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 01/28/2023] Open
Abstract
Background: Traditional Chinese Medicines (TCMs) are effective strategies for preventing influenza infection. Liushen Capsules can inhibit influenza virus proliferation, significantly mitigate virus-induced inflammation and improve acute lung injury in vitro or in vivo. However, the efficacy and safety of LS in clinical trials, and the role of LS in regulating metabolites in patients are not well known. Materials and methods: A randomized, double-blind, placebo-controlled clinical trial was designed in this study. All participants were enrolled between December 2019 and November 2020. The efficacy and safety were assessed by primary efficacy endpoint ((area under the curve (AUC) analysis)) and secondary endpoint (individual scores for each symptom, remission of symptoms, and rates of inflammatory factors). The serum samples were collected from patients to detect the levels of inflammatory factors using RT-PCR and to identify metabolites using a non-targeted metabolomics ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS). Results: 81 participants from The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and the First Affiliated Hospital of Guangzhou Medical University were completed the full study. After 14 days of intervention, the area under the curve (AUC) of the total symptom scores in LS group was significantly smaller than that in Placebo group (p < 0.001). Alleviation of sore throat, cough and nasal congestion in the LS group was significantly better than that in the Placebo group. The time and number to alleviation of symptoms or complete alleviation of symptoms in LS group was significantly better than that in Placebo group. The adverse effects of clinical therapy were slightly higher in LS group than in Placebo group, but there was no statistical difference. After 14 days of LS intervention, the levels of IL-1ra, Eotaxin, IFN-γ, IL-6, IL-10, IL-13, SCF and TRAIL in serum of participants with influenza infection were significantly decreased compared with Placebo group. It was observed that there were significant differences in the serum metabolic profiles between start- and end- LS groups. Further correlation analysis showed a potential regulatory crosstalk between glycerophospholipids, sphingolipids fatty acyls and excessive inflammation and clinical symptoms. Importantly, it may be closely related to phospholipid, fatty acid, arachidonic acid and amyl-tRNA synthesis pathway metabolic pathways. Conclusion: The study showed there were no clinically significant adverse effects on LS, and a significant improvement in influenza-like symptomatology and inflammatory response in patients treated with LS. Further analysis showed that LS could significantly correct the metabolic disorders in the serum metabolite profile of the patients. This provided new insights into the potential mechanism of LS for the treatment of influenza.
Collapse
Affiliation(s)
- Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruihan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China,Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, China
| | - Jing Zeng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Biao Lei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China,*Correspondence: Feng Ye, ; Bojun Chen, ; Zifeng Yang,
| | - Qihua Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yangqing Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bojun Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China,*Correspondence: Feng Ye, ; Bojun Chen, ; Zifeng Yang,
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China,Guangzhou Laboratory, Guangdong, China,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China,*Correspondence: Feng Ye, ; Bojun Chen, ; Zifeng Yang,
| |
Collapse
|
10
|
Guo DA, Yao CL, Wei WL, Zhang JQ, Bi QR, Li JY, Khan I, Bauer R. Traditional Chinese medicines against COVID-19: A global overview. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.353502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|