1
|
Yoshida S, Yamaguchi Y, Maruo K, Gosho M. Permutation-based global rank test with adaptive weights for multiple primary endpoints. Stat Methods Med Res 2025:9622802251334886. [PMID: 40368380 DOI: 10.1177/09622802251334886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Multiple efficacy endpoints are investigated in clinical trials, and selecting the appropriate primary endpoints is key to the study's success. The global test is an analysis approach that can handle multiple endpoints without multiplicity adjustment. This test, which aggregates the statistics from multiple primary endpoints into a single statistic using weights for the statistical comparison, has been gaining increasing attention. A key consideration in the global test is determination of the weights. In this study, we propose a novel global rank test in which the weights for each endpoint are estimated based on the current study data to maximize the test statistic, and the permutation test is applied to control the type I error rate. Simulation studies conducted to compare the proposed test with other global tests show that the proposed test can control the type I error rate at the nominal level, regardless of the number of primary endpoints and correlations between endpoints. Additionally, the proposed test offers higher statistical powers when the efficacy is considerably different between endpoints or when endpoints are moderately correlated, such as when the correlation coefficient is greater than or equal to 0.5.
Collapse
Affiliation(s)
- Satoshi Yoshida
- Data Science, Astellas Pharma Inc., Tokyo, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yusuke Yamaguchi
- Data Science, Astellas Pharma Global Development Inc., Northbrook, IL, USA
| | - Kazushi Maruo
- Department of Biostatistics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masahiko Gosho
- Department of Biostatistics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Ketabforoush A, Faghihi F, Azedi F, Ariaei A, Habibi MA, Khalili M, Ashtiani BH, Joghataei MT, Arnold WD. Sodium Phenylbutyrate and Tauroursodeoxycholic Acid: A Story of Hope Turned to Disappointment in Amyotrophic Lateral Sclerosis Treatment. Clin Drug Investig 2024; 44:495-512. [PMID: 38909349 DOI: 10.1007/s40261-024-01371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 06/24/2024]
Abstract
The absence of a definitive cure for amyotrophic lateral sclerosis (ALS) emphasizes the crucial need to explore new and improved treatment approaches for this fatal, progressive, and disabling neurodegenerative disorder. As at the end of 2023, five treatments - riluzole, edaravone, dextromethorphan hydrobromide + quinidine sulfate (DHQ), tofersen, and sodium phenylbutyrate-tauroursodeoxycholic acid (PB-TUDCA) - were FDA approved for the treatment of patients with ALS. Among them PB-TUDCA has been shown to impact DNA processing impairments, mitochondria dysfunction, endoplasmic reticulum stress, oxidative stress, and pathologic folded protein agglomeration defects, which have been associated with ALS pathophysiology. The Phase 2 CENTAUR trial demonstrated significant impact of PB-TUDCA on the ALS Functional Rating Scale-Revised (ALSFRS-R) risk of death, hospitalization, and the need for tracheostomy or permanent assisted ventilation in patients with ALS based on post hoc analyses. More recently, contrasting with the CENTAUR trial results, results from the Phase 3 PHOENIX trial (NCT05021536) showed no change in ALSFRS-R total score at 48 weeks. Consequently, the sponsor company initiated the process with the US FDA and Health Canada to voluntarily withdraw the marketing authorizations for PB-TUDCA. In the present article, we review ALS pathophysiology, with a focus on PB-TUDCA's proposed mechanisms of action and recent clinical trial results and discuss the implications of conflicting trial data for ALS and other neurological disorders.
Collapse
Affiliation(s)
- Arsh Ketabforoush
- NextGen Precision Health, University of Missouri, 1030 Hitt St., Columbia, MO, 65211, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armin Ariaei
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Amin Habibi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Maryam Khalili
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Haghi Ashtiani
- Department of Neurology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - W David Arnold
- NextGen Precision Health, University of Missouri, 1030 Hitt St., Columbia, MO, 65211, USA.
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA.
- Department of Neurology, University of Missouri, Columbia, MO, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Zambon AA, Falzone YM, Bolino A, Previtali SC. Molecular mechanisms and therapeutic strategies for neuromuscular diseases. Cell Mol Life Sci 2024; 81:198. [PMID: 38678519 PMCID: PMC11056344 DOI: 10.1007/s00018-024-05229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Neuromuscular diseases encompass a heterogeneous array of disorders characterized by varying onset ages, clinical presentations, severity, and progression. While these conditions can stem from acquired or inherited causes, this review specifically focuses on disorders arising from genetic abnormalities, excluding metabolic conditions. The pathogenic defect may primarily affect the anterior horn cells, the axonal or myelin component of peripheral nerves, the neuromuscular junction, or skeletal and/or cardiac muscles. While inherited neuromuscular disorders have been historically deemed not treatable, the advent of gene-based and molecular therapies is reshaping the treatment landscape for this group of condition. With the caveat that many products still fail to translate the positive results obtained in pre-clinical models to humans, both the technological development (e.g., implementation of tissue-specific vectors) as well as advances on the knowledge of pathogenetic mechanisms form a collective foundation for potentially curative approaches to these debilitating conditions. This review delineates the current panorama of therapies targeting the most prevalent forms of inherited neuromuscular diseases, emphasizing approved treatments and those already undergoing human testing, offering insights into the state-of-the-art interventions.
Collapse
Affiliation(s)
- Alberto Andrea Zambon
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Yuri Matteo Falzone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bolino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Carlo Previtali
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy.
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
4
|
Abstract
The diagnostic and referral workflow for children with neuromuscular disorders is evolving, particularly as newborn screening programs are expanding in tandem with novel therapeutic developments. However, for the children who present with symptoms and signs of potential neuromuscular disorders, anatomic localization, guided initially by careful history and physical examination, continues to be the cardinal initial step in the diagnostic evaluation. It is important to consider whether the localization is more likely to be in the lower motor neuron, peripheral nerve, neuromuscular junction, or muscle. After that, disease etiologies can be divided broadly into inherited versus acquired categories. Considerations of localization and etiologies will help generate a differential diagnosis, which in turn will guide diagnostic testing. Once a diagnosis is made, it is important to be aware of current treatment options, as a number of new therapies for some of these disorders have been approved in recent years. Families are also increasingly interested in clinical research, which may include natural history studies and interventional clinical trials. Such research has proliferated for rare neuromuscular diseases, leading to exciting advances in diagnostic and therapeutic technologies, promising dramatic changes in the landscape of these disorders in the years to come.
Collapse
Affiliation(s)
- Geetanjali Rathore
- Division of Neurology, Department of Pediatrics, University of Nebraska College of Medicine, Omaha, Nebraska
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
5
|
Nair MA, Niu Z, Madigan NN, Shin AY, Brault JS, Staff NP, Klein CJ. Clinical trials in Charcot-Marie-Tooth disorders: a retrospective and preclinical assessment. Front Neurol 2023; 14:1251885. [PMID: 37808507 PMCID: PMC10556688 DOI: 10.3389/fneur.2023.1251885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Objective This study aimed to evaluate the progression of clinical and preclinical trials in Charcot-Marie-Tooth (CMT) disorders. Background CMT has historically been managed symptomatically and with genetic counseling. The evolution of molecular and pathologic understanding holds a therapeutic promise in gene-targeted therapies. Methods ClinicalTrials.gov from December 1999 to June 2022 was data extracted for CMT with preclinical animal gene therapy trials also reviewed by PubMed search. Results The number of active trials was 1 in 1999 and 286 in 2022. Academic settings accounted for 91% and pharmaceutical companies 9%. Of the pharmaceutical and academic trials, 38% and 28%, respectively, were controlled, randomized, and double-blinded. Thirty-two countries participated: the United States accounted for 26% (75/286). In total, 86% of the trials were classified as therapeutic: 50% procedural (21% wrist/elbow surgery; 22% shock wave and hydrodissection therapy), 23% investigational drugs, 15% devices, and 11% physical therapy. Sixty-seven therapeutic trials (49%) were designated phases 1-2 and 51% phases 3-4. The remaining 14% represent non-therapeutic trials: diagnostic testing (3%), functional outcomes (4%), natural history (4%), and standard of care (3%). One-hundred and three (36%) resulted in publications. Phase I human pharmaceutical trials are focusing on the safety of small molecule therapies (n = 8) and AAV and non-viral gene therapy (n = 3). Preclinical animal gene therapy studies include 11 different CMT forms including viral, CRISPR-Cas9, and nanoparticle delivery. Conclusion Current CMT trials are exploring procedural and molecular therapeutic options with substantial participation of the pharmaceutical industry worldwide. Emerging drug therapies directed at molecular pathogenesis are being advanced in human clinical trials; however, the majority remain within animal investigations.
Collapse
Affiliation(s)
- Malavika A. Nair
- Department of Graduate Education, Alix School of Medicine, Rochester, MN, United States
| | - Zhiyv Niu
- Department of Laboratory Medicine and Pathology, Rochester, MN, United States
- Department of Clinical Genomics, Rochester, MN, United States
| | | | - Alexander Y. Shin
- Division of Hand Surgery, Department of Orthopaedic, Rochester, MN, United States
| | - Jeffrey S. Brault
- Department of Physical Medicine and Rehabilitation Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Christopher J. Klein
- Department of Laboratory Medicine and Pathology, Rochester, MN, United States
- Department of Neurology, Rochester, MN, United States
| |
Collapse
|
6
|
Pisciotta C, Pareyson D. Gene therapy and other novel treatment approaches for Charcot-Marie-Tooth disease. Neuromuscul Disord 2023; 33:627-635. [PMID: 37455204 DOI: 10.1016/j.nmd.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
There is still no effective drug treatment available for Charcot-Marie-Tooth disease (CMT). Current management relies on rehabilitation therapy, surgery for skeletal deformities, and symptomatic treatment. The challenge is to find disease-modifying therapies. Several approaches, including gene silencing (by means of ASO, siRNA, shRNA, miRNA, CRISPR-Cas9 editing), to counteract the PMP22 gene overexpression in the most frequent CMT1A type are under investigation. PXT3003 is the compound in the most advanced phase for CMT1A, as a second phase-III trial is ongoing. Gene therapy to substitute defective genes (particularly in recessive forms associated with loss-of-function mutations) or insert novel ones (e.g., NT3 gene) are being developed and tested in animal models and in still exceptional cases have reached the clinical trial phase in humans. Novel treatment approaches are also aimed at developing compounds acting on pathways important for different CMT types. Modulation of the neuregulin pathway determining myelin thickness is promising for both hypo-demyelinating and hypermyelinating neuropathies; intervention on Unfolded Protein Response seems effective for rescuing misfolded myelin proteins such as MPZ in CMT1B. HDAC6 inhibitors improved axonal transport and ameliorated phenotypes in different CMT models. Other potential therapeutic strategies include targeting macrophages, lipid metabolism, and Nav1.8 sodium channel in demyelinating CMT and the P2×7 receptor, which regulates calcium influx into Schwann cells, in CMT1A. Further approaches are aimed at correcting metabolic abnormalities, including the accumulation of sorbitol caused by biallelic mutations in the sorbitol dehydrogenase (SORD) gene and of neurotoxic glycosphingolipids in HSN1.
Collapse
Affiliation(s)
- Chiara Pisciotta
- Unit of Rare Neurological Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurological Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
7
|
Hustinx M, Shorrocks AM, Servais L. Novel Therapeutic Approaches in Inherited Neuropathies: A Systematic Review. Pharmaceutics 2023; 15:1626. [PMID: 37376074 DOI: 10.3390/pharmaceutics15061626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The management of inherited neuropathies relies mostly on the treatment of symptoms. In recent years, a better understanding of the pathogenic mechanisms that underlie neuropathies has allowed for the development of disease-modifying therapies. Here, we systematically review the therapies that have emerged in this field over the last five years. An updated list of diseases with peripheral neuropathy as a clinical feature was created based on panels of genes used clinically to diagnose inherited neuropathy. This list was extended by an analysis of published data by the authors and verified by two experts. A comprehensive search for studies of human patients suffering from one of the diseases in our list yielded 28 studies that assessed neuropathy as a primary or secondary outcome. Although the use of various scales and scoring systems made comparisons difficult, this analysis identified diseases associated with neuropathy for which approved therapies exist. An important finding is that the symptoms and/or biomarkers of neuropathies were assessed only in a minority of cases. Therefore, further investigation of treatment efficacy on neuropathies in future trials must employ objective, consistent methods such as wearable technologies, motor unit indexes, MRI or sonography imaging, or the use of blood biomarkers associated with consistent nerve conduction studies.
Collapse
Affiliation(s)
- Manon Hustinx
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre and, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 3DW, UK
- Centre de Référence des Maladies Neuromusculaires, Department of Neurology, University Hospital Liège, and University of Liège, 4000 Liège, Belgium
| | - Ann-Marie Shorrocks
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre and, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 3DW, UK
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre and, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 3DW, UK
- Centre de Référence des Maladies Neuromusculaires, Department of Paediatrics, University Hospital Liège, and University of Liège, 4000 Liège, Belgium
| |
Collapse
|
8
|
Barnett HY, Villar SS, Geys H, Jaki T. A novel statistical test for treatment differences in clinical trials using a response-adaptive forward-looking Gittins Index Rule. Biometrics 2023; 79:86-97. [PMID: 34669968 PMCID: PMC7614356 DOI: 10.1111/biom.13581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/30/2021] [Indexed: 11/28/2022]
Abstract
The most common objective for response-adaptive clinical trials is to seek to ensure that patients within a trial have a high chance of receiving the best treatment available by altering the chance of allocation on the basis of accumulating data. Approaches that yield good patient benefit properties suffer from low power from a frequentist perspective when testing for a treatment difference at the end of the study due to the high imbalance in treatment allocations. In this work we develop an alternative pairwise test for treatment difference on the basis of allocation probabilities of the covariate-adjusted response-adaptive randomization with forward-looking Gittins Index (CARA-FLGI) Rule for binary responses. The performance of the novel test is evaluated in simulations for two-armed studies and then its applications to multiarmed studies are illustrated. The proposed test has markedly improved power over the traditional Fisher exact test when this class of nonmyopic response adaptation is used. We also find that the test's power is close to the power of a Fisher exact test under equal randomization.
Collapse
Affiliation(s)
| | - Sofía S. Villar
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | | | - Thomas Jaki
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Medical and Pharmaceutical Statistics Research Unit, Lancaster University, Lancaster, UK
| |
Collapse
|
9
|
Combination pharmacotherapy for the treatment of neuropathic pain in adults: systematic review and meta-analysis. Pain 2023; 164:230-251. [PMID: 35588148 DOI: 10.1097/j.pain.0000000000002688] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Neuropathic pain causes substantial morbidity and healthcare utilization. Monotherapy with antidepressants or anticonvulsants often fails to provide relief. Combining different drugs sometimes provides improved analgesia and/or tolerability. More than half of patients receive 2 or more analgesics, and combination trials continue to emerge. This review comprehensively searched CENTRAL, MEDLINE, and EMBASE for relevant trials. Included studies are double-blind randomized controlled trials evaluating combinations of 2 or more drugs vs placebo or at least one monotherapy in adults with neuropathic pain. Outcomes included measures of efficacy and adverse effects. Risk of bias was assessed. Meta-analyses compared combination to monotherapy wherever 2 or more similar studies were available. Forty studies (4741 participants) were included. Studies were heterogenous with respect to various characteristics, including dose titration methods and administration (ie, simultaneous vs sequential) of the combination. Few combinations involved a nonsedating drug, and several methodological problems were identified. For opioid-antidepressant, opioid-gabapentinoid, and gabapentinoid-antidepressant combinations, meta-analyses failed to demonstrate superiority over both monotherapies. In general, adverse event profiles were not substantially different for combination therapy compared with monotherapy. Despite widespread use and a growing number of trials, convincing evidence has not yet emerged to suggest superiority of any combination over its respective monotherapies. Therefore, implementing combination therapy-as second- or third-line treatment-in situations where monotherapy is insufficient, should involve closely monitored individual dosing trials to confirm safety and overall added benefit. Further research is needed, including trials of combinations involving nonsedating agents, and to identify clinical settings and specific combinations that safely provide added benefit.
Collapse
|
10
|
Beloribi-Djefaflia S, Attarian S. Treatment of Charcot-Marie-Tooth neuropathies. Rev Neurol (Paris) 2023; 179:35-48. [PMID: 36588067 DOI: 10.1016/j.neurol.2022.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/31/2022]
Abstract
Charcot-Marie-Tooth (CMT) is a heterogeneous group of inherited neuropathies that affect the peripheral nerves and slowly cause progressive disability. Currently, there is no effective therapy. Patients' management is based on rehabilitation and occupational therapy, fatigue, and pain treatment with regular follow-up according to the severity of the disease. In the last three decades, much progress has been made to identify mutations involved in the different types of CMT, decipher the pathophysiology of the disease, and identify key genes and pathways that could be targeted to propose new therapeutic strategies. Genetic therapy is one of the fields of interest to silence genes such as PMP22 in CMT1A or to express GJB1 in CMT1X. Among the most promising molecules, inhibitors of the NRG-1 axis and modulators of UPR or the HDACs enzyme family could be used in different types of CMT.
Collapse
Affiliation(s)
- S Beloribi-Djefaflia
- Reference center for neuromuscular disorders and ALS, AP-HM, CHU La Timone, Marseille, France
| | - S Attarian
- Reference center for neuromuscular disorders and ALS, AP-HM, CHU La Timone, Marseille, France; FILNEMUS, European Reference Network for Rare Diseases (ERN), Marseille, France; Medical Genetics, Aix Marseille Université-Inserm UMR_1251, 13005 Marseille, France.
| |
Collapse
|
11
|
Pazzaglia C, Padua L, Stancanelli C, Fusco A, Loreti C, Castelli L, Imbimbo I, Giovannini S, Coraci D, Vita GL, Vita G. Role of Sport Activity on Quality of Life in Charcot-Marie-Tooth 1A Patients. J Clin Med 2022; 11:7032. [PMID: 36498606 PMCID: PMC9740468 DOI: 10.3390/jcm11237032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The present study aims to investigate the benefits induced by physical activity/practiced sport in Charcot-Marie-Tooth 1A (CMT1A). Patients were divided into sport and no-sport groups according to their sports performance habit. Thirty-one patients were enrolled, of which 14 practiced sports and 17 did not. Clinical assessments were administered to evaluate disability, self-esteem, depression, quality of life, and pain. Statistical analysis revealed significant differences in terms of gender in the no-sport group compared to the sport group (p = 0.04). Regarding the quality of life, physical function (p = 0.001), general health (p = 0.03), social function (p = 0.04), and mental health (p = 0.006) showed better patterns in the sport group than no-sport group. Moreover, neuropathic pain was reduced in the sport group according to the Neuropathic Pain Symptom Inventory (p = 0.001) and ID-PAIN (p = 0.03). The other administered questionnaires showed no significant differences. Our study confirms that CMT1A patients, who practice sports, with a similar severity of disability, may have a better physical quality of life while suffering less neuropathic pain than their peers who do not practice sports. Results recommend the prescription of sport in CMT1A patients.
Collapse
Affiliation(s)
- Costanza Pazzaglia
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Padua
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Claudia Stancanelli
- Nemo Sud Clinical Centre for Neuromuscular Disorders, 98125 Messina, Italy
- Department of Clinical and Experimental Medicine, Unit of Neurology, University of Messina, 98100 Messina, Italy
| | - Augusto Fusco
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudia Loreti
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Letizia Castelli
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Isabella Imbimbo
- UOS Psicologia Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Silvia Giovannini
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- UOS Riabilitazione Post-Acuzie, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Daniele Coraci
- Department of Neuroscience, University of Padua, 35121 Padua, Italy
| | - Gian Luca Vita
- Unit of Neurology, Department of Emergency, P.O. Piemonte, IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy
| | - Giuseppe Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, 98125 Messina, Italy
- Department of Clinical and Experimental Medicine, Unit of Neurology, University of Messina, 98100 Messina, Italy
| |
Collapse
|
12
|
Zhou L, Zhan W, Wei X. Clinical pharmacology and pharmacogenetics of prostaglandin analogues in glaucoma. Front Pharmacol 2022; 13:1015338. [PMID: 36313286 PMCID: PMC9596770 DOI: 10.3389/fphar.2022.1015338] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/29/2022] [Indexed: 07/30/2023] Open
Abstract
Glaucoma is the main cause of irreversible visual loss worldwide, and comprises a group of progressive, age-related, and chronic optic neuropathies. Prostaglandin analogs are considered a first-line treatment in the management of glaucoma and have the best efficacy in reducing intraocular pressure. When comparing these therapeutic agents between them, long-term therapy with 0.03% bimatoprost is the most effective followed by treatment with 0.005% latanoprost and 0.004% travoprost. The prevalence of adverse events is lower for latanoprost than for other prostaglandin analogs. However, some patients do not respond to the treatment with prostaglandin analogs (non-responders). Intraocular pressure-lowering efficacy differs significantly between individuals partly owing to genetic factors. Rs1045642 in ABCB1, rs4241366 in SLCO2A1, rs9503012 in GMDS, rs10306114 in PTGS1, rs11568658 in MRP4, rs10786455 and rs6686438 in PTGFR were reported to be positive with the response to prostaglandin analogs in patients with glaucoma. A negative association was found between single nucleotide polymorphisms of PTGFR (rs11578155 and rs6672484) and the response to prostaglandin analogs in patients with glaucoma. The current review is an analysis of the information relevant to prostaglandin analog treatments based on previous literatures. It describes in detail the clinical pharmacology and pharmacogenetics of drugs belonging to this therapeutical class to provide a sound pharmacological basis for their proper use in ophthalmological clinical practice.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyi Zhan
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Thomas FP, Brannagan TH, Butterfield RJ, Desai U, Habib AA, Herrmann DN, Eichinger KJ, Johnson NE, Karam C, Pestronk A, Quinn C, Shy ME, Statland JM, Subramony SH, Walk D, Stevens-Favorite K, Miller B, Leneus A, Fowler M, van de Rijn M, Attie KM. Randomized Phase 2 Study of ACE-083 in Patients With Charcot-Marie-Tooth Disease. Neurology 2022; 98:e2356-e2367. [PMID: 35545446 PMCID: PMC9202530 DOI: 10.1212/wnl.0000000000200325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The goal of this work was to determine whether locally acting ACE-083 is safe and well tolerated and increases muscle volume, motor function, and quality of life (QoL) in adults with Charcot-Marie-Tooth disease (CMT) type 1. METHODS This phase 2 study enrolled adults with CMT1 or CMTX (N = 63). Part 1 was open label and evaluated the safety and tolerability of different dose levels of ACE-083 for use in part 2. Part 2 was a randomized, placebo-controlled, 6-month study of 240 mg/muscle ACE-083 injected bilaterally into the tibialis anterior muscle, followed by a 6-month, open-label extension in which all patients received ACE-083. Pharmacodynamic endpoints included total muscle volume (TMV; primary endpoint), contractile muscle volume (CMV), and fat fraction. Additional secondary endpoints included 6-minute walk test, 10-m walk/run, muscle strength, and QoL. Safety was assessed with treatment-emergent adverse events (TEAEs) and clinical laboratory tests. RESULTS In part 1 (n = 18), ACE-083 was generally safe and well tolerated at all dose levels, with no serious adverse events, TEAEs of grade 3 or greater, or death reported. In part 2 (n = 45 enrolled, n = 44 treated), there was significantly greater change in TMV with ACE-083 compared with placebo (least-squares mean difference 13.5%; p = 0.0096). There was significant difference between ACE-083 and placebo for CMV and change in ankle dorsiflexion strength. Fat fraction and all other functional outcomes were not significantly improved by ACE-083. Moderate to mild injection-site reactions were the most common TEAEs. DISCUSSION Despite significantly increased TMV and CMV, patients with CMT receiving ACE-083 in tibialis anterior muscles did not demonstrate greater functional improvement compared with those receiving placebo. TRIAL REGISTRATION INFORMATION Clinical Trials Registration: NCT03124459. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that intramuscular ACE-083 is safe and well tolerated and increases total muscle volume after 6 months of treatment in adults with CMT1 or CMTX.
Collapse
Affiliation(s)
- Florian P Thomas
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA.
| | - Thomas H Brannagan
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Russell J Butterfield
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Urvi Desai
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Ali A Habib
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - David N Herrmann
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Katy J Eichinger
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Nicholas E Johnson
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Chafic Karam
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Alan Pestronk
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Colin Quinn
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Michael E Shy
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Jeffrey M Statland
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Sub H Subramony
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - David Walk
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Katherine Stevens-Favorite
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Barry Miller
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Ashley Leneus
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Marcie Fowler
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Marc van de Rijn
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Kenneth M Attie
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| |
Collapse
|
14
|
Kramarz C, Rossor AM. Neurological update: hereditary neuropathies. J Neurol 2022; 269:5187-5191. [PMID: 35596796 PMCID: PMC9363318 DOI: 10.1007/s00415-022-11164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
In this update, we review the recent discovery of autosomal recessive variants in sorbitol dehydrogenase as one of the commonest and potentially treatable causes of hereditary motor neuropathy and CMT2. We also report on recent therapeutic advances in hereditary neuropathy including the use of lipid nanoparticle sequestered antisense oligonucleotides in CMT1A and lipid nanoparticle delivered CRISPR-Cas9 gene editing in ATTR amyloidosis.
Collapse
Affiliation(s)
- Caroline Kramarz
- Department of Neuromuscular Disease, Queen Square UCL Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Alexander M Rossor
- Department of Neuromuscular Disease, Queen Square UCL Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, WC1N 3BG, UK.
| |
Collapse
|
15
|
Stavrou M, Kagiava A, Choudury SG, Jennings MJ, Wallace LM, Fowler AM, Heslegrave A, Richter J, Tryfonos C, Christodoulou C, Zetterberg H, Horvath R, Harper SQ, Kleopa KA. A translatable RNAi-driven gene therapy silences PMP22/Pmp22 genes and improves neuropathy in CMT1A mice. J Clin Invest 2022; 132:159814. [PMID: 35579942 PMCID: PMC9246392 DOI: 10.1172/jci159814] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A), the most common inherited demyelinating peripheral neuropathy, is caused by PMP22 gene duplication. Overexpression of WT PMP22 in Schwann cells destabilizes the myelin sheath, leading to demyelination and ultimately to secondary axonal loss and disability. No treatments currently exist that modify the disease course. The most direct route to CMT1A therapy will involve reducing PMP22 to normal levels. To accomplish this, we developed a gene therapy strategy to reduce PMP22 using artificial miRNAs targeting human PMP22 and mouse Pmp22 mRNAs. Our lead therapeutic miRNA, miR871, was packaged into an adeno-associated virus 9 (AAV9) vector and delivered by lumbar intrathecal injection into C61-het mice, a model of CMT1A. AAV9-miR871 efficiently transduced Schwann cells in C61-het peripheral nerves and reduced human and mouse PMP22 mRNA and protein levels. Treatment at early and late stages of the disease significantly improved multiple functional outcome measures and nerve conduction velocities. Furthermore, myelin pathology in lumbar roots and femoral motor nerves was ameliorated. The treated mice also showed reductions in circulating biomarkers of CMT1A. Taken together, our data demonstrate that AAV9-miR871–driven silencing of PMP22 rescues a CMT1A model and provides proof of principle for treating CMT1A using a translatable gene therapy approach.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Sarah G Choudury
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lindsay M Wallace
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Allison M Fowler
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Amanda Heslegrave
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jan Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Henrik Zetterberg
- Institute of Laboratory Medicine, Göteborgs University, Göteborg, Sweden
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Scott Q Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
16
|
Desvaux E, Aussy A, Hubert S, Keime-Guibert F, Blesius A, Soret P, Guedj M, Pers JO, Laigle L, Moingeon P. Model-based computational precision medicine to develop combination therapies for autoimmune diseases. Expert Rev Clin Immunol 2021; 18:47-56. [PMID: 34842494 DOI: 10.1080/1744666x.2022.2012452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION The complex pathophysiology of autoimmune diseases (AIDs) is being progressively deciphered, providing evidence for a multiplicity of pro-inflammatory pathways underlying heterogeneous clinical phenotypes and disease evolution. AREAS COVERED Treatment strategies involving drug combinations are emerging as a preferred option to achieve remission in a vast majority of patients affected by systemic AIDs. The design of appropriate drug combinations can benefit from AID modeling following a comprehensive multi-omics molecular profiling of patients combined with Artificial Intelligence (AI)-powered computational analyses. Such disease models support patient stratification in homogeneous subgroups, shed light on dysregulated pro-inflammatory pathways and yield hypotheses regarding potential therapeutic targets and candidate biomarkers to stratify and monitor patients during treatment. AID models inform the rational design of combination therapies interfering with independent pro-inflammatory pathways related to either one of five prominent immune compartments contributing to the pathophysiology of AIDs, i.e. pro-inflammatory signals originating from tissues, innate immune mechanisms, T lymphocyte activation, autoantibodies and B cell activation, as well as soluble mediators involved in immune cross-talk. EXPERT OPINION The optimal management of AIDs in the future will rely upon rationally designed combination therapies, as a modality of a model-based Computational Precision Medicine taking into account the patients' biological and clinical specificities.
Collapse
Affiliation(s)
- Emiko Desvaux
- Servier, Research and Development, Suresnes Cedex, France.,U1227 -Laboratoire d'Immunologie, Univ Brest, CHRU Morvan, Brest Cedex, France
| | - Audrey Aussy
- Servier, Research and Development, Suresnes Cedex, France
| | - Sandra Hubert
- Servier, Research and Development, Suresnes Cedex, France
| | | | - Alexia Blesius
- Servier, Research and Development, Suresnes Cedex, France
| | - Perrine Soret
- Servier, Research and Development, Suresnes Cedex, France
| | - Mickaël Guedj
- Servier, Research and Development, Suresnes Cedex, France
| | | | | | | |
Collapse
|
17
|
Pisciotta C, Saveri P, Pareyson D. Challenges in Treating Charcot-Marie-Tooth Disease and Related Neuropathies: Current Management and Future Perspectives. Brain Sci 2021; 11:1447. [PMID: 34827446 PMCID: PMC8615778 DOI: 10.3390/brainsci11111447] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
There is still no effective drug treatment available for Charcot-Marie-Tooth neuropathies (CMT). Current management relies on rehabilitation therapy, surgery for skeletal deformities, and symptomatic treatment of pain; fatigue and cramps are frequent complaints that are difficult to treat. The challenge is to find disease-modifying therapies. Several approaches, including gene silencing, to counteract the PMP22 gene overexpression in the most frequent CMT1A type are under investigation. PXT3003 is the compound in the most advanced phase for CMT1A, as a second-phase III trial is ongoing. Gene therapy to substitute defective genes or insert novel ones and compounds acting on pathways important for different CMT types are being developed and tested in animal models. Modulation of the Neuregulin pathway determining myelin thickness is promising for both hypo-demyelinating and hypermyelinating neuropathies; intervention on Unfolded Protein Response seems effective for rescuing misfolded myelin proteins such as P0 in CMT1B. HDAC6 inhibitors improved axonal transport and ameliorated phenotypes in different CMT models. Other potential therapeutic strategies include targeting macrophages, lipid metabolism, and Nav1.8 sodium channel in demyelinating CMT and the P2X7 receptor, which regulates calcium influx into Schwann cells, in CMT1A. Further approaches are aimed at correcting metabolic abnormalities, including the accumulation of sorbitol caused by biallelic mutations in the sorbitol dehydrogenase (SORD) gene and of neurotoxic glycosphingolipids in HSN1.
Collapse
Affiliation(s)
| | | | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.P.); (P.S.)
| |
Collapse
|
18
|
Attarian S, Young P, Brannagan TH, Adams D, Van Damme P, Thomas FP, Casanovas C, Kafaie J, Tard C, Walter MC, Péréon Y, Walk D, Stino A, de Visser M, Verhamme C, Amato A, Carter G, Magy L, Statland JM, Felice K. A double-blind, placebo-controlled, randomized trial of PXT3003 for the treatment of Charcot-Marie-Tooth type 1A. Orphanet J Rare Dis 2021; 16:433. [PMID: 34656144 PMCID: PMC8520617 DOI: 10.1186/s13023-021-02040-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 1A (CMT1A) is a rare, orphan, hereditary neuromuscular disorder with no cure and for which only symptomatic treatment is currently available. A previous phase 2 trial has shown preliminary evidence of efficacy for PXT3003 in treating CMT1A. This phase 3, international, randomized, double-blind, placebo-controlled study further investigated the efficacy and safety of high- or low-dose PXT3003 (baclofen/naltrexone/D-sorbitol [mg]: 6/0.70/210 or 3/0.35/105) in treating subjects with mild to moderate CMT1A. METHODS In this study, 323 subjects with mild-to-moderate CMT1A were randomly assigned in a 1:1:1 ratio to receive 5 mL of high- or low-dose PXT3003, or placebo, orally twice daily for up to 15 months. Efficacy was assessed using the change in Overall Neuropathy Limitations Scale total score from baseline to months 12 and 15 (primary endpoint). Secondary endpoints included the 10-m walk test and other assessments. The high-dose group was discontinued early due to unexpected crystal formation in the high-dose formulation, which resulted in an unanticipated high discontinuation rate, overall and especially in the high-dose group. The statistical analysis plan was adapted to account for the large amount of missing data before database lock, and a modified full analysis set was used in the main analyses. Two sensitivity analyses were performed to check the interpretation based on the use of the modified full analysis set. RESULTS High-dose PXT3003 demonstrated significant improvement in the Overall Neuropathy Limitations Scale total score vs placebo (mean difference: - 0.37 points; 97.5% CI [- 0.68 to - 0.06]; p = 0.008), and consistent treatment effects were shown in the sensitivity analyses. Both PXT3003 doses were safe and well-tolerated. CONCLUSION The high-dose group demonstrated a statistically significant improvement in the primary endpoint and a good safety profile. Overall, high-dose PXT3003 is a promising treatment option for patients with Charcot-Marie-Tooth disease type 1A.
Collapse
Affiliation(s)
- Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, CHU La Timone, Marseille, France.
| | - Peter Young
- Department of Neurology, Medical Park Bad Feilnbach, Bad Feilnbach, Germany
| | - Thomas H Brannagan
- Columbia University Medical Center, The Neurological Institute, New York, USA
| | - David Adams
- French Reference Center for Rare Peripheral Neuropathies, Service de Neurologie Adulte, APHP, CHU Bicêtre, Le Kremlin Bicêtre, France
| | - Philip Van Damme
- Department of Neurology, University Hospitals Leuven, KU, Leuven, Belgium
- Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Florian P Thomas
- Department of Neurology, Hackensack University Medical Center, Hackensack, USA
- Department of Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - Carlos Casanovas
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Barcelona, Spain
- Neurometabolic Diseases Group, Bellvitge Research Institute (IDIBELL) and CIBERER, Barcelona, Spain
| | - Jafar Kafaie
- Department of Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - Céline Tard
- U1171, Centre de référence des maladies neuromusculaires Nord Est Ile de France, Hôpital Salengro CHU de Lille, Lille, France
| | - Maggie C Walter
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Yann Péréon
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, CHU Nantes, Hôtel-Dieu, Nantes, France
| | - David Walk
- Clinical Neuroscience Research Unit, University of Minnesota, Minneapolis, USA
| | - Amro Stino
- University of Michigan Health System, Ann Arbor, MI, USA
| | - Marianne de Visser
- Department of Neurology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Camiel Verhamme
- Department of Neurology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Anthony Amato
- Department of Neurology, Brigham and Women's Hospital, Boston, USA
| | - Gregory Carter
- St. Luke's Rehabilitation Institute, Physical Medicine and Rehabilitation, Spokane, USA
| | | | | | - Kevin Felice
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, USA
| |
Collapse
|
19
|
Abstract
Demyelinating forms of Charcot-Marie-Tooth disease (CMT) are genetically and phenotypically heterogeneous and result from highly diverse biological mechanisms including gain of function (including dominant negative effects) and loss of function. While no definitive treatment is currently available, rapid advances in defining the pathomechanisms of demyelinating CMT have led to promising pre-clinical studies, as well as emerging clinical trials. Especially promising are the recently completed pre-clinical genetic therapy studies in PMP-22, GJB1, and SH3TC2-associated neuropathies, particularly given the success of similar approaches in humans with spinal muscular atrophy and transthyretin familial polyneuropathy. This article focuses on neuropathies related to mutations in PMP-22, MPZ, and GJB1, which together comprise the most common forms of demyelinating CMT, as well as on select rarer forms for which promising treatment targets have been identified. Clinical characteristics and pathomechanisms are reviewed in detail, with emphasis on therapeutically targetable biological pathways. Also discussed are the challenges facing the CMT research community in its efforts to advance the rapidly evolving biological insights to effective clinical trials. These considerations include the limitations of currently available animal models, the need for personalized medicine approaches/allele-specific interventions for select forms of demyelinating CMT, and the increasing demand for optimal clinical outcome assessments and objective biomarkers.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA.
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
20
|
Sieberg CB, Lebel A, Silliman E, Holmes S, Borsook D, Elman I. Left to themselves: Time to target chronic pain in childhood rare diseases. Neurosci Biobehav Rev 2021; 126:276-288. [PMID: 33774086 PMCID: PMC8738995 DOI: 10.1016/j.neubiorev.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Chronic pain is prevalent among patients with rare diseases (RDs). However, little is understood about how biopsychosocial mechanisms may be integrated in the unique set of clinical features and therapeutic challenges inherent in their pain conditions. METHODS This review presents examples of major categories of RDs with particular pain conditions. In addition, we provide translational evidence on clinical and scientific rationale for psychosocially- and neurodevelopmentally-informed treatment of pain in RD patients. RESULTS Neurobiological and functional overlap between various RD syndromes and pain states suggests amalgamation and mutual modulation of the respective conditions. Emotional sequelae could be construed as an emotional homologue of physical pain mediated via overlapping brain circuitry. Given their clearly defined genetic and molecular etiologies, RDs may serve as heuristic models for unraveling pathophysiological processes inherent in chronic pain. CONCLUSIONS Systematic evaluation of chronic pain in patients with RD contributes to sophisticated insight into both pain and their psychosocial correlates, which could transform treatment.
Collapse
Affiliation(s)
- Christine B Sieberg
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry & Behavioral Sciences, Boston Children's Hospital, Boston, MA, 02115, USA; Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
| | - Alyssa Lebel
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anesthesiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Erin Silliman
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry & Behavioral Sciences, Boston Children's Hospital, Boston, MA, 02115, USA; Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Scott Holmes
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anesthesiology, Harvard Medical School, Boston, MA, 02115, USA
| | - David Borsook
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anesthesiology, Harvard Medical School, Boston, MA, 02115, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
21
|
Miniou P, Fontes M. Therapeutic Development in Charcot Marie Tooth Type 1 Disease. Int J Mol Sci 2021; 22:ijms22136755. [PMID: 34201736 PMCID: PMC8268813 DOI: 10.3390/ijms22136755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/04/2023] Open
Abstract
Charcot–Marie–Tooth disease (CMT) is the most frequent hereditary peripheral neuropathies. It is subdivided in two main groups, demyelinating (CMT1) and axonal (CMT2). CMT1 forms are the most frequent. The goal of this review is to present published data on 1—cellular and animal models having opened new potential therapeutic approaches. 2—exploration of these tracks, including clinical trials. The first conclusion is the great increase of publications on CMT1 subtypes since 2000. We discussed two points that should be considered in the therapeutic development toward a regulatory-approved therapy to be proposed to patients. The first point concerns long term safety if treatments will be a long-term process. The second point relates to the evaluation of treatment efficiency. Degradation of CMT clinical phenotype is not linear and progressive.
Collapse
Affiliation(s)
- Pierre Miniou
- InFlectis BioScience SAS, 21 Rue La Noue Bras de Fer, 44200 Nantes, France;
| | - Michel Fontes
- Centre de recherche en CardioVasculaire et Nutrition, Aix-Marseille Université, INRA 1260—INSERM 1263, 13005 Marseille, France
- Repositioning SAS, 8 Rue Napoleon, 20210 Calenzana, France
- Correspondence:
| |
Collapse
|
22
|
Pisciotta C, Saveri P, Pareyson D. Updated review of therapeutic strategies for Charcot-Marie-Tooth disease and related neuropathies. Expert Rev Neurother 2021; 21:701-713. [PMID: 34033725 DOI: 10.1080/14737175.2021.1935242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Charcot-Marie-Tooth disease (CMT) and related neuropathies represent the most prevalent inherited neuromuscular disorders. Nonetheless, there is still no pharmacological treatment available for any CMT type. However, the landscape is rapidly evolving and several novel approaches are providing encouraging results in preclinical studies and leading to clinical trials.Areas covered: The authors review the most promising therapies under study and the ongoing/planned clinical trials. Several approaches to address PMP22 overexpression underlying CMT1A, the most frequent subtype, are being tested. Gene silencing, targeting PMP22, and gene therapy, to introduce specific genes or to substitute or modulate defective ones, are being experimented in animal models. Compounds acting on ER stress, unfolded protein response, neuregulin pathways, phosphoinositides metabolism, axonal transport and degeneration, inflammation, polyol pathway, deoxysphingolipid metabolism, purine nucleotide pool are potential therapeutic candidates for different forms of CMT and related neuropathies.Expert opinion: We are getting closer to find effective therapies for CMT, but are far behind the exciting examples of other genetic neuromuscular disorders. The authors analyze the possible reasons for this gap and the way to fill it. Preclinical and clinical research is ongoing with coordinated efforts and they are confident that in the next few years we will see the first effective treatments.
Collapse
Affiliation(s)
- Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Saveri
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
23
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
24
|
Wang H, Davison M, Wang K, Xia TH, Call KM, Luo J, Wu X, Zuccarino R, Bacha A, Bai Y, Gutmann L, Feely SME, Grider T, Rossor AM, Reilly MM, Shy ME, Svaren J. MicroRNAs as Biomarkers of Charcot-Marie-Tooth Disease Type 1A. Neurology 2021; 97:e489-e500. [PMID: 34031204 DOI: 10.1212/wnl.0000000000012266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To determine whether microRNAs (miRs) are elevated in the plasma of individuals with the inherited peripheral neuropathy Charcot-Marie-Tooth disease type 1A (CMT1A), miR profiling was employed to compare control and CMT1A plasma. METHODS We performed a screen of CMT1A and control plasma samples to identify miRs that are elevated in CMT1A using next-generation sequencing, followed by validation of selected miRs by quantitative PCR, and correlation with protein biomarkers and clinical data: Rasch-modified CMT Examination and Neuropathy Scores, ulnar compound muscle action potentials, and motor nerve conduction velocities. RESULTS After an initial pilot screen, a broader screen confirmed elevated levels of several muscle-associated miRNAs (miR1, -133a, -133b, and -206, known as myomiRs) along with a set of miRs that are highly expressed in Schwann cells of peripheral nerve. Comparison to other candidate biomarkers for CMT1A (e.g., neurofilament light) measured on the same sample set shows a comparable elevation of several miRs (e.g., miR133a, -206, -223) and ability to discriminate cases from controls. Neurofilament light levels were most highly correlated with miR133a. In addition, the putative Schwann cell miRs (e.g., miR223, -199a, -328, -409, -431) correlate with the recently described transmembrane protease serine 5 (TMPRSS5) protein biomarker that is most highly expressed in Schwann cells and also elevated in CMT1A plasma. CONCLUSIONS These studies identify a set of miRs that are candidate biomarkers for clinical trials in CMT1A. Some of the miRs may reflect Schwann cell processes that underlie the pathogenesis of the disease. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that a set of plasma miRs are elevated in patients with CMT1A.
Collapse
Affiliation(s)
- Hongge Wang
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Matthew Davison
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Kathryn Wang
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Tai-He Xia
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Katherine M Call
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Jun Luo
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Xingyao Wu
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Riccardo Zuccarino
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Alexa Bacha
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Yunhong Bai
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Laurie Gutmann
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Shawna M E Feely
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Tiffany Grider
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Alexander M Rossor
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Mary M Reilly
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Michael E Shy
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - John Svaren
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison.
| |
Collapse
|
25
|
Ghosh S, Tourtellotte WG. The Complex Clinical and Genetic Landscape of Hereditary Peripheral Neuropathy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:487-509. [PMID: 33497257 DOI: 10.1146/annurev-pathol-030320-100822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hereditary peripheral neuropathy (HPN) is a complex group of neurological disorders caused by mutations in genes expressed by neurons and Schwann cells. The inheritance of a single mutation or multiple mutations in several genes leads to disease phenotype. Patients exhibit symptoms during development, at an early age or later in adulthood. Most of the mechanistic understanding about these neuropathies comes from animal models and histopathological analyses of postmortem human tissues. Diagnosis is often very complex due to the heterogeneity and overlap in symptoms and the frequent overlap between various genes and different mutations they possess. Some symptoms in HPN are common through different subtypes such as axonal degeneration, demyelination, and loss of motor and sensory neurons, leading to similar physiologic abnormalities. Recent advances in gene-targeted therapies, genetic engineering, and next-generation sequencing have augmented our understanding of the underlying pathogenetic mechanisms of HPN.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Pathology and Laboratory Medicine, Neurology, and Neurological Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA;
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Neurology, and Neurological Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA;
| |
Collapse
|
26
|
High-density surface electromyography to assess motor unit firing rate in Charcot-Marie-Tooth disease type 1A patients. Clin Neurophysiol 2021; 132:812-818. [DOI: 10.1016/j.clinph.2020.11.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/24/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
|
27
|
Hwang SH, Chang EH, Kwak G, Jeon H, Choi BO, Hong YB. Gait parameters as tools for analyzing phenotypic alterations of a mouse model of Charcot-Marie-Tooth disease. Anim Cells Syst (Seoul) 2021; 25:11-18. [PMID: 33717412 PMCID: PMC7935128 DOI: 10.1080/19768354.2021.1880967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT), a genetically heterogeneous group of diseases in the peripheral nervous system, is characterized by progressive and symmetrical distal weakness resulting in gait abnormality. The necessity of the diagnostic and prognostic biomarkers has been raised for both basic research and clinical practice in CMT. Since biomarkers for animal study of CMT are limited, we evaluated the feasibility of gait parameters as tool for measuring disease phenotype of CMT mouse model. Using a Trembler-J (Tr-J) mouse, a CMT type 1 (CMT1) mouse model, we analyzed kinematic parameters such as angles of hip, knee and ankle (sagittal plane), and spatial parameters including step width and stride length (transverse plane). Regarding of kinematic parameters, Tr-J mice exhibited less plantarflexed ankle during the swing phase and more dorsiflexed ankle at the terminal stance compared to control mice. The range of motion in ankle angle of Tr-J mice was significantly greater than that of control mice. In spatial parameter, Tr-J mice exhibited wider step width compared to control mice. These results are similar to previously reported gait patterns of CMT1 patients. In comparison with other markers such as nerve conduction study and rotarod test, gait parameters dynamically reflected the disease progression of CMT1 mice. Therefore, these data imply that gait parameters can be used as useful tools to analyzed the disease phenotype and progression during preclinical study of peripheral neuropathy such as CMT.
Collapse
Affiliation(s)
- Sun Hee Hwang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Hyuk Chang
- Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Seoul, Republic of Korea
| | - Geon Kwak
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyeonjin Jeon
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea.,Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea.,Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Korea
| |
Collapse
|
28
|
Boutary S, Echaniz-Laguna A, Adams D, Loisel-Duwattez J, Schumacher M, Massaad C, Massaad-Massade L. Treating PMP22 gene duplication-related Charcot-Marie-Tooth disease: the past, the present and the future. Transl Res 2021; 227:100-111. [PMID: 32693030 DOI: 10.1016/j.trsl.2020.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most frequent inherited neuropathy, affecting 1/1500 to 1/10000. CMT1A represents 60%-70% of all CMT and is caused by a duplication on chromosome 17p11.2 leading to an overexpression of the Peripheral Myelin Protein 22 (PMP22). PMP22 gene is under tight regulation and small changes in its expression influences myelination and affect motor and sensory functions. To date, CMT1A treatment is symptomatic and classic pharmacological options have been disappointing. Here, we review the past, present, and future treatment options for CMT1A, with a special emphasis on the highly promising potential of PMP22-targeted small interfering RNA and antisense oligonucleotides.
Collapse
Affiliation(s)
- Suzan Boutary
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Andoni Echaniz-Laguna
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - David Adams
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Julien Loisel-Duwattez
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | | | - Charbel Massaad
- Faculty of Basic and Biomedical Sciences, Paris Descartes University, INSERM UMRS 1124, Paris, France
| | | |
Collapse
|
29
|
Flotats-Bastardas M, Hahn A. New Therapeutics Options for Pediatric Neuromuscular Disorders. Front Pediatr 2020; 8:583877. [PMID: 33330280 PMCID: PMC7719776 DOI: 10.3389/fped.2020.583877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Neuromuscular disorders (NMDs) of Childhood onset are a genetically heterogeneous group of diseases affecting the anterior horn cell, the peripheral nerve, the neuromuscular junction, or the muscle. For many decades, treatment of NMDs has been exclusively symptomatic. But this has changed fundamentally in recent years due to the development of new drugs attempting either to ameliorate secondary pathophysiologic consequences or to modify the underlying genetic defect itself. While the effects on the course of disease are still modest in some NMDs (e.g., Duchenne muscular dystrophy), new therapies have substantially prolonged life expectancy and improved motor function in others (e.g., spinal muscular atrophy and infantile onset Pompe disease). This review summarizes recently approved medicaments and provides an outlook for new therapies that are on the horizon in this field.
Collapse
Affiliation(s)
| | - Andreas Hahn
- Department of Child Neurology, University of Giessen, Giessen, Germany
| |
Collapse
|
30
|
Lee JH, Yoon YC, Kim HS, Kim JH, Choi BO. Texture analysis using T1-weighted images for muscles in Charcot-Marie-Tooth disease patients and volunteers. Eur Radiol 2020; 31:3508-3517. [PMID: 33125561 DOI: 10.1007/s00330-020-07435-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVES To explore whether texture features using T1-weighted images correlate with fat fraction, and whether they differ between Charcot-Marie-Tooth (CMT) disease patients and volunteers. METHODS The institutional review board approved this retrospective study, and the requirement for informed consent was waived; data of eighteen CMT patients and eighteen healthy volunteers from a previous study was used. Texture features of the muscles including mean, standard deviation (SD), skewness, kurtosis, and entropy of the signal intensity were derived from T1-weighted images. Spearman's correlation analysis was used to assess the relationship between texture features and fat fraction measured by 3D multiple gradient echo Dixon-based sequence. Mann-Whitney U test was used to compare the texture features between CMT patients and volunteers. Intraobserver and interobserver agreements for the texture features were assessed using the intraclass correlation coefficient. RESULTS The SD (ρ = 0.256, p < 0.001) and entropy (ρ = 0.263, p < 0.001) were significantly and positively correlated with fat fraction; skewness (ρ = - 0.110, p = 0.027) and kurtosis (ρ = - 0.149, p = 0.003) were significantly and inversely correlated with fat fraction. The CMT patients showed a significantly higher SD (63.45 vs. 49.26; p < 0.001), skewness (1.06 vs. 0.56; p < 0.001), kurtosis (4.00 vs. 1.81; p < 0.001), and entropy (3.20 vs. 3.02; p < 0.001) than did the volunteers. Intraobserver and interobserver agreements were almost perfect for mean, SD, and entropy. CONCLUSIONS Texture features using T1-weighted images correlated with fat fraction and differed between CMT patients and volunteers. KEY POINTS • Standard deviation and entropy of muscles derived from T1-weighted images were significantly and positively correlated with the muscle fat fraction. • Mean, standard deviation, and entropy were considered highly reliable in muscle analyses. • Texture features may have the potential to diagnose early stage of intramuscular fatty infiltration.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Ilwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Young Cheol Yoon
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Ilwon-Ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Ilwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Jae-Hun Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Ilwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Ilwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW This article provides an overview of Charcot-Marie-Tooth disease (CMT) and other inherited neuropathies. These disorders encompass a broad spectrum with variable motor, sensory, autonomic, and other organ system involvement. Considerable overlap exists, both phenotypically and genetically, among these separate categories, all eventually exhibiting axonal injury and neurologic impairment. Depending on the specific neural and non-neural localizations, patients experience varying morbidity and mortality. Neurologic evaluations, including neurophysiologic testing, can help diagnose and predict patient disabilities. Diagnosis is often complex, especially when genetic and acquired components overlap. RECENT FINDINGS Next-generation sequencing has greatly improved genetic diagnosis, with many third-party reimbursement parties now embracing phenotype-based panel evaluations. Through the advent of comprehensive gene panels, symptoms previously labeled as idiopathic or atypical now have a better chance to receive a specific diagnosis. A definitive molecular diagnosis affords patients improved care and counsel. The new classification scheme for inherited neuropathies emphasizes the causal gene names. A specific genetic diagnosis is important as considerable advances are being made in gene-specific therapeutics. Emerging therapeutic approaches include small molecule chaperones, antisense oligonucleotides, RNA interference, and viral gene delivery therapies. New therapies for hereditary transthyretin amyloidosis and Fabry disease are discussed. SUMMARY Comprehensive genetic testing through a next-generation sequencing approach is simplifying diagnostic algorithms and affords significantly improved decision-making processes in neuropathy care. Genetic diagnosis is essential for pathogenic understanding and for gene therapy development. Gene-targeted therapies have begun entering the clinic. Currently, for most inherited neuropathy categories, specific symptomatic management and family counseling remain the mainstays of therapy.
Collapse
|
32
|
Boussicault L, Laffaire J, Schmitt P, Rinaudo P, Callizot N, Nabirotchkin S, Hajj R, Cohen D. Combination of acamprosate and baclofen (PXT864) as a potential new therapy for amyotrophic lateral sclerosis. J Neurosci Res 2020; 98:2435-2450. [PMID: 32815196 PMCID: PMC7693228 DOI: 10.1002/jnr.24714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/16/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
There is currently no therapy impacting the course of amyotrophic lateral sclerosis (ALS). The only approved treatments are riluzole and edaravone, but their efficacy is modest and short‐lasting, highlighting the need for innovative therapies. We previously demonstrated the ability of PXT864, a combination of low doses of acamprosate and baclofen, to synergistically restore cellular and behavioral activity in Alzheimer's and Parkinson's disease models. The overlapping genetic, molecular, and cellular characteristics of these neurodegenerative diseases supported investigating the effectiveness of PXT864 in ALS. As neuromuscular junction (NMJ) alterations is a key feature of ALS, the effects of PXT864 in primary neuron‐muscle cocultures injured by glutamate were studied. PXT864 significantly and synergistically preserved NMJ and motoneuron integrity following glutamate excitotoxicity. PXT864 added to riluzole significantly improved such protection. PXT864 activity was then assessed in primary cultures of motoneurons derived from SOD1G93A rat embryos. These motoneurons presented severe maturation defects that were significantly improved by PXT864. In this model, glutamate application induced an accumulation of TDP‐43 protein in the cytoplasm, a hallmark that was completely prevented by PXT864. The anti‐TDP‐43 aggregation effect was also confirmed in a cell line expressing TDP‐43 fused to GFP. These results demonstrate the value of PXT864 as a promising therapeutic strategy for the treatment of ALS.
Collapse
|
33
|
Thenmozhi R, Lee JS, Park NY, Choi BO, Hong YB. Gene Therapy Options as New Treatment for Inherited Peripheral Neuropathy. Exp Neurobiol 2020; 29:177-188. [PMID: 32624504 PMCID: PMC7344374 DOI: 10.5607/en20004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited peripheral neuropathy (IPN) is caused by heterogeneous genetic mutations in more than 100 genes. So far, several treatment options for IPN have been developed and clinically evaluated using small molecules. However, gene therapy-based therapeutic strategies have not been aggressively investigated, likely due to the complexities of inheritance in IPN. Indeed, because the majority of the causative mutations of IPN lead to gain-of-function rather than loss-of-function, developing a therapeutic strategy is more difficult, especially considering gene therapy for genetic diseases began with the simple idea of replacing a defective gene with a functional copy. Recent advances in gene manipulation technology have brought novel approaches to gene therapy and its clinical application for IPN treatment. For example, in addition to the classically used gene replacement for mutant genes in recessively inherited IPN, other techniques including gene addition to modify the disease phenotype, modulations of target gene expression, and techniques to edit mutant genes have been developed and evaluated as potent therapeutic strategies for dominantly inherited IPN. In this review, the current status of gene therapy for IPN and future perspectives will be discussed.
Collapse
Affiliation(s)
| | - Ji-Su Lee
- Stem Cell & Regenerative Medicne Institute, Samsung Medical Center, Seoul 06351, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Na Young Park
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Byung-Ok Choi
- Stem Cell & Regenerative Medicne Institute, Samsung Medical Center, Seoul 06351, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| |
Collapse
|
34
|
Pantera H, Hu B, Moiseev D, Dunham C, Rashid J, Moran JJ, Krentz K, Rubinstein CD, Won S, Li J, Svaren J. Pmp22 super-enhancer deletion causes tomacula formation and conduction block in peripheral nerves. Hum Mol Genet 2020; 29:1689-1699. [PMID: 32356557 PMCID: PMC7322568 DOI: 10.1093/hmg/ddaa082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 11/12/2022] Open
Abstract
Copy number variation of the peripheral nerve myelin gene Peripheral Myelin Protein 22 (PMP22) causes multiple forms of inherited peripheral neuropathy. The duplication of a 1.4 Mb segment surrounding this gene in chromosome 17p12 (c17p12) causes the most common form of Charcot-Marie-Tooth disease type 1A, whereas the reciprocal deletion of this gene causes a separate neuropathy termed hereditary neuropathy with liability to pressure palsies (HNPP). PMP22 is robustly induced in Schwann cells in early postnatal development, and several transcription factors and their cognate regulatory elements have been implicated in coordinating the gene's proper expression. We previously found that a distal super-enhancer domain was important for Pmp22 expression in vitro, with particular impact on a Schwann cell-specific alternative promoter. Here, we investigate the consequences of deleting this super-enhancer in vivo. We find that loss of the super-enhancer in mice reduces Pmp22 expression throughout development and into adulthood, with greater impact on the Schwann cell-specific promoter. Additionally, these mice display tomacula formed by excessive myelin folding, a pathological hallmark of HNPP, as have been previously observed in heterozygous Pmp22 mice as well as sural biopsies from patients with HNPP. Our findings demonstrate a mechanism by which smaller copy number variations, not including the Pmp22 gene, are sufficient to reduce gene expression and phenocopy a peripheral neuropathy caused by the HNPP-associated deletion encompassing PMP22.
Collapse
Affiliation(s)
- Harrison Pantera
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bo Hu
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Daniel Moiseev
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Chris Dunham
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Jibraan Rashid
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - John J Moran
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kathleen Krentz
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - C Dustin Rubinstein
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Seongsik Won
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jun Li
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
35
|
Prukop T, Wernick S, Boussicault L, Ewers D, Jäger K, Adam J, Winter L, Quintes S, Linhoff L, Barrantes-Freer A, Bartl M, Czesnik D, Zschüntzsch J, Schmidt J, Primas G, Laffaire J, Rinaudo P, Brureau A, Nabirotchkin S, Schwab MH, Nave KA, Hajj R, Cohen D, Sereda MW. Synergistic PXT3003 therapy uncouples neuromuscular function from dysmyelination in male Charcot-Marie-Tooth disease type 1A (CMT1A) rats. J Neurosci Res 2020; 98:1933-1952. [PMID: 32588471 DOI: 10.1002/jnr.24679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/13/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth disease 1 A (CMT1A) is caused by an intrachromosomal duplication of the gene encoding for PMP22 leading to peripheral nerve dysmyelination, axonal loss, and progressive muscle weakness. No therapy is available. PXT3003 is a low-dose combination of baclofen, naltrexone, and sorbitol which has been shown to improve disease symptoms in Pmp22 transgenic rats, a bona fide model of CMT1A disease. However, the superiority of PXT3003 over its single components or dual combinations have not been tested. Here, we show that in a dorsal root ganglion (DRG) co-culture system derived from transgenic rats, PXT3003 induced myelination when compared to its single and dual components. Applying a clinically relevant ("translational") study design in adult male CMT1A rats for 3 months, PXT3003, but not its dual components, resulted in improved performance in behavioral motor and sensory endpoints when compared to placebo. Unexpectedly, we observed only a marginally increased number of myelinated axons in nerves from PXT3003-treated CMT1A rats. However, in electrophysiology, motor latencies correlated with increased grip strength indicating a possible effect of PXT3003 on neuromuscular junctions (NMJs) and muscle fiber pathology. Indeed, PXT3003-treated CMT1A rats displayed an increased perimeter of individual NMJs and a larger number of functional NMJs. Moreover, muscles of PXT3003 CMT1A rats displayed less neurogenic atrophy and a shift toward fast contracting muscle fibers. We suggest that ameliorated motor function in PXT3003-treated CMT1A rats result from restored NMJ function and muscle innervation, independent from myelination.
Collapse
Affiliation(s)
- Thomas Prukop
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephanie Wernick
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - David Ewers
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Karoline Jäger
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Adam
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lorenz Winter
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Susanne Quintes
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Lisa Linhoff
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Michael Bartl
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Czesnik
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | | - Markus H Schwab
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
36
|
Fortanier E, Ogier AC, Delmont E, Lefebvre MN, Viout P, Guye M, Bendahan D, Attarian S. Quantitative assessment of sciatic nerve changes in Charcot-Marie-Tooth type 1A patients using magnetic resonance neurography. Eur J Neurol 2020; 27:1382-1389. [PMID: 32391944 DOI: 10.1111/ene.14303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/23/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE Nerve tissue alterations have rarely been quantified in Charcot-Marie-Tooth type 1A (CMT1A) patients. The aim of the present study was to quantitatively assess the magnetic resonance imaging (MRI) anomalies of the sciatic and tibial nerves in CMT1A disease using quantitative neurography MRI. It was also intended to seek for correlations with clinical variables. METHODS Quantitative neurography MRI was used in order to assess differences in nerve volume, proton density and magnetization transfer ratio in the lower limbs of CMT1A patients and healthy controls. Disease severity was evaluated using the Charcot-Marie-Tooth Neuropathy Score version 2, Charcot-Marie-Tooth examination scores and Overall Neuropathy Limitations Scale scores. Electrophysiological measurements were performed in order to assess the compound motor action potential and the Motor Unit Number Index. Clinical impairment was evaluated using muscle strength measurements and Charcot-Marie-Tooth examination scores. RESULTS A total of 32 CMT1A patients were enrolled and compared to 13 healthy subjects. The 3D nerve volume, magnetization transfer ratio and proton density were significantly different in CMT1A patients for the whole sciatic and tibial nerve volume. The sciatic nerve volume was significantly correlated with the whole set of clinical scores whereas no correlation was found between the tibial nerve volume and the clinical scores. CONCLUSION Nerve injury could be quantified in vivo using quantitative neurography MRI and the corresponding biomarkers were correlated with clinical disability in CMT1A patients. The sensitivity of the selected metrics will have to be assessed through repeated measurements over time during longitudinal studies to evaluate structural nerve changes under treatment.
Collapse
Affiliation(s)
- E Fortanier
- Neurology Department, APHM, Reference Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - A C Ogier
- CNRS, Center for Magnetic Resonance in Biology, UMR 7339, Aix-Marseille University, Marseille, France.,CNRS, LIS, Aix Marseille University, Toulon University, Marseille, France
| | - E Delmont
- Neurology Department, APHM, Reference Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France.,UMR 7286, Aix-Marseille University, Marseille, France
| | - M-N Lefebvre
- APHM, CIC-CPCET, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - P Viout
- CNRS, Center for Magnetic Resonance in Biology, UMR 7339, Aix-Marseille University, Marseille, France
| | - M Guye
- CNRS, Center for Magnetic Resonance in Biology, UMR 7339, Aix-Marseille University, Marseille, France
| | - D Bendahan
- CNRS, Center for Magnetic Resonance in Biology, UMR 7339, Aix-Marseille University, Marseille, France
| | - S Attarian
- Neurology Department, APHM, Reference Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France.,Inserm, GMGF, Aix-Marseille University, Marseille, France
| |
Collapse
|
37
|
Rossor AM, Shy ME, Reilly MM. Are we prepared for clinical trials in Charcot-Marie-Tooth disease? Brain Res 2020; 1729:146625. [PMID: 31899213 PMCID: PMC8418667 DOI: 10.1016/j.brainres.2019.146625] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022]
Abstract
There has been considerable progress in developing treatments for Charcot-Marie-Tooth disease with a number of therapies either completing or nearing clinical trials. In the case of CMT1A, the commonest subtype of CMT, there have been more than five randomised, double blind placebo-controlled trials. Although these trials were negative for the primary outcome measure, considerable lessons have been learnt leading to the collection of large prospective natural history data sets with which to inform future trial design as well as the development of new and sensitive outcome measures. In this review we summarise the difficulties of conducting clinical trials in a slowly progressive disease such as CMT1A and the requirement for sensitive, reproducible and clinically relevant outcome measures. We summarise the current array of CMT specific outcome measures subdivided into clinical outcome measures, functional outcome measures, patient reported outcome measures, biomarkers of disease burden and treatment specific biomarkers of target engagement. Although there is now an array of CMT specific outcome measures, which collectively incorporate clinically relevant, sensitive and reproducible outputs, a single outcome measure incorporating all three qualities remains elusive.
Collapse
Affiliation(s)
- A M Rossor
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, United Kingdom.
| | - M E Shy
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - M M Reilly
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
38
|
Hartmannsberger B, Doppler K, Stauber J, Schlotter-Weigel B, Young P, Sereda MW, Sommer C. Intraepidermal nerve fibre density as biomarker in Charcot-Marie-Tooth disease type 1A. Brain Commun 2020; 2:fcaa012. [PMID: 32954280 PMCID: PMC7425304 DOI: 10.1093/braincomms/fcaa012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/24/2020] [Indexed: 01/03/2023] Open
Abstract
Charcot-Marie-Tooth disease type 1A, caused by a duplication of the gene peripheral myelin protein 22 kDa, is the most frequent subtype of hereditary peripheral neuropathy with an estimated prevalence of 1:5000. Patients suffer from sensory deficits, muscle weakness and foot deformities. There is no treatment approved for this disease. Outcome measures in clinical trials were based mainly on clinical features but did not evaluate the actual nerve damage. In our case-control study, we aimed to provide objective and reproducible outcome measures for future clinical trials. We collected skin samples from 48 patients with Charcot-Marie-Tooth type 1A, 7 patients with chronic inflammatory demyelinating polyneuropathy, 16 patients with small fibre neuropathy and 45 healthy controls. To analyse skin innervation, 40-µm cryosections of glabrous skin taken from the lateral index finger were double-labelled by immunofluorescence. The disease severity of patients with Charcot-Marie-Tooth type 1A was assessed by the Charcot-Marie-Tooth neuropathy version 2 score, which ranged from 3 (mild) to 27 (severe) and correlated with age (P < 0.01, R = 0.4). Intraepidermal nerve fibre density was reduced in patients with Charcot-Marie-Tooth type 1A compared with the healthy control group (P < 0.01) and negatively correlated with disease severity (P < 0.05, R = -0.293). Meissner corpuscle (MC) density correlated negatively with age in patients with Charcot-Marie-Tooth type 1A (P < 0.01, R = -0.45) but not in healthy controls (P = 0.07, R = 0.28). The density of Merkel cells was reduced in patients with Charcot-Marie-Tooth type 1A compared with healthy controls (P < 0.05). Furthermore, in patients with Charcot-Marie-Tooth type 1A, the fraction of denervated Merkel cells was highly increased and correlated with age (P < 0.05, R = 0.37). Analysis of nodes of Ranvier revealed shortened paranodes and a reduced fraction of long nodes in patients compared with healthy controls (both P < 0.001). Langerhans cell density was increased in chronic inflammatory demyelinating polyneuropathy, but not different in Charcot-Marie-Tooth type 1A compared with healthy controls. Our data suggest that intraepidermal nerve fibre density might be used as an outcome measure in Charcot-Marie-Tooth type 1A disease, as it correlates with disease severity. The densities of Meissner corpuscles and Merkel cells might be an additional tool for the evaluation of the disease progression. Analysis of follow-up biopsies will clarify the effects of Charcot-Marie-Tooth type 1A disease progression on cutaneous innervation.
Collapse
Affiliation(s)
| | - Kathrin Doppler
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Julia Stauber
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Beate Schlotter-Weigel
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Peter Young
- Medical Park Bad Feilnbach Reithofpark, Department of Neurology, 83075 Bad Feilnbach, Germany
| | - Michael W Sereda
- Department of Clinical Neurophysiology, University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
39
|
Nerve damage induced skeletal muscle atrophy is associated with increased accumulation of intramuscular glucose and polyol pathway intermediates. Sci Rep 2020; 10:1908. [PMID: 32024865 PMCID: PMC7002415 DOI: 10.1038/s41598-020-58213-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/23/2019] [Indexed: 01/21/2023] Open
Abstract
Perturbations in skeletal muscle metabolism have been reported for a variety of neuromuscular diseases. However, the role of metabolism after constriction injury to a nerve and the associated muscle atrophy is unclear. We have analyzed rat tibialis anterior (TA) four weeks after unilateral constriction injury to the sciatic nerve (DMG) and in the contralateral control leg (CTRL) (n = 7) to investigate changes of the metabolome, immunohistochemistry and protein levels. Untargeted metabolomics identified 79 polar metabolites, 27 of which were significantly altered in DMG compared to CTRL. Glucose concentrations were increased 2.6-fold in DMG, while glucose 6-phosphate (G6-P) was unchanged. Intermediates of the polyol pathway were increased in DMG, particularly fructose (1.7-fold). GLUT4 localization was scattered as opposed to clearly at the sarcolemma. Despite the altered localization, we found GLUT4 protein levels to be increased 7.8-fold while GLUT1 was decreased 1.7-fold in nerve damaged TA. PFK1 and GS levels were both decreased 2.1-fold, indicating an inability of glycolysis and glycogen synthesis to process glucose at sufficient rates. In conclusion, chronic nerve constriction causes increased GLUT4 levels in conjunction with decreased glycolytic activity and glycogen storage in skeletal muscle, resulting in accumulation of intramuscular glucose and polyol pathway intermediates.
Collapse
|
40
|
Nabirotchkin S, Peluffo AE, Rinaudo P, Yu J, Hajj R, Cohen D. Next-generation drug repurposing using human genetics and network biology. Curr Opin Pharmacol 2020; 51:78-92. [PMID: 31982325 DOI: 10.1016/j.coph.2019.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Drug repurposing has attracted increased attention, especially in the context of drug discovery rates that remain too low despite a recent wave of approvals for biological therapeutics (e.g. gene therapy). These new biological entities-based treatments have high costs that are difficult to justify for small markets that include rare diseases. Drug repurposing, involving the identification of single or combinations of existing drugs based on human genetics data and network biology approaches represents a next-generation approach that has the potential to increase the speed of drug discovery at a lower cost. This Pharmacological Perspective reviews progress and perspectives in combining human genetics, especially genome-wide association studies, with network biology to drive drug repurposing for rare and common diseases with monogenic or polygenic etiologies. Also, highlighted here are important features of this next generation approach to drug repurposing, which can be combined with machine learning methods to meet the challenges of personalized medicine.
Collapse
Affiliation(s)
- Serguei Nabirotchkin
- Network Biology & Drug Discovery Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Alex E Peluffo
- Data Science Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France.
| | - Philippe Rinaudo
- Data Science Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Jinchao Yu
- Data Science Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Rodolphe Hajj
- Preclinical Research and Pharmacology Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Daniel Cohen
- Chief Executive Officer, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| |
Collapse
|
41
|
Wang H, Davison M, Wang K, Xia T, Kramer M, Call K, Luo J, Wu X, Zuccarino R, Bacon C, Bai Y, Moran JJ, Gutmann L, Feely SME, Grider T, Rossor AM, Reilly MM, Svaren J, Shy ME. Transmembrane protease serine 5: a novel Schwann cell plasma marker for CMT1A. Ann Clin Transl Neurol 2020; 7:69-82. [PMID: 31833243 PMCID: PMC6952315 DOI: 10.1002/acn3.50965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Development of biomarkers for Charcot-Marie-Tooth (CMT) disease is critical for implementing effective clinical trials. The most common form of CMT, type 1A, is caused by a genomic duplication surrounding the PMP22 gene. A recent report (Neurology 2018;90:e518-3524) showed elevation of neurofilament light (NfL) in plasma of CMT1A disease patients, which correlated with disease severity. However, no plasma/serum biomarker has been identified that is specific to Schwann cells, the most directly affected cells in CMT1A. METHODS We used the Olink immuno PCR platform to profile CMT1A patient (n = 47, 2 cohorts) and normal control plasma (n = 41, two cohorts) on five different Olink panels to screen 398 unique proteins. RESULTS The TMPRSS5 protein (Transmembrane protease serine 5) was elevated 2.07-fold (P = <0.0001) in two independent cohorts of CMT1A samples relative to controls. TMPRSS5 is most highly expressed in Schwann cells of peripheral nerve. Consistent with early myelination deficits in CMT1A, TMPRSS5 was not significantly correlated with disease score (CMTES-R, CMTNS-R), nerve conduction velocities (Ulnar CMAP, Ulnar MNCV), or with age. TMPRSS5 was not significantly elevated in smaller sample sets from patients with CMT2A, CMT2E, CMT1B, or CMT1X. The Olink immuno PCR assays confirmed elevated levels of NfL (average 1.58-fold, P < 0.0001), which correlated with CMT1A patient disease score. INTERPRETATION These data identify the first Schwann cell-specific protein that is elevated in plasma of CMT1A patients, and may provide a disease marker and a potentially treatment-responsive biomarker with good disease specificity for clinical trials.
Collapse
Affiliation(s)
- Hongge Wang
- Translational SciencesSanofi ResearchSanofiFraminghamMassachusetts
| | - Matthew Davison
- Translational SciencesSanofi ResearchSanofiFraminghamMassachusetts
| | - Kathryn Wang
- Translational SciencesSanofi ResearchSanofiFraminghamMassachusetts
| | - Tai‐He Xia
- Translational SciencesSanofi ResearchSanofiFraminghamMassachusetts
| | - Martin Kramer
- Translational SciencesSanofi ResearchSanofiFraminghamMassachusetts
| | - Katherine Call
- Translational SciencesSanofi ResearchSanofiFraminghamMassachusetts
| | - Jun Luo
- Research StatisticsSanofi ResearchSanofiFraminghamMassachusetts
| | - Xingyao Wu
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Riccardo Zuccarino
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Chelsea Bacon
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Yunhong Bai
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - John J. Moran
- Waisman Center and Department of Comparative BiosciencesUniversity of WisconsinMadisonWisconsin
| | - Laurie Gutmann
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Shawna M. E. Feely
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Tiffany Grider
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Alexander M. Rossor
- National Hospital for Neurology and NeurosurgeryUniversity College LondonLondonUnited Kingdom
| | - Mary M. Reilly
- National Hospital for Neurology and NeurosurgeryUniversity College LondonLondonUnited Kingdom
| | - John Svaren
- Waisman Center and Department of Comparative BiosciencesUniversity of WisconsinMadisonWisconsin
| | - Michael E. Shy
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| |
Collapse
|
42
|
Tkatchenko TV, Tkatchenko AV. Pharmacogenomic Approach to Antimyopia Drug Development: Pathways Lead the Way. Trends Pharmacol Sci 2019; 40:833-852. [PMID: 31676152 DOI: 10.1016/j.tips.2019.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022]
Abstract
Myopia is the most common eye disorder in the world which is caused by a mismatch between the optical power of the eye and its excessively long axial length. Recent studies revealed that the regulation of the axial length of the eye occurs via a complex signaling cascade, which originates in the retina and propagates across all ocular tissues to the sclera. The complexity of this regulatory cascade has made it particularly difficult to develop effective antimyopia drugs. The current pharmacological treatment options for myopia are limited to atropine and 7-methylxanthine, which have either significant adverse effects or low efficacy. In this review, we focus on the recent advances in genome-wide studies of the signaling pathways underlying myopia development and discuss the potential of systems genetics and pharmacogenomic approaches for the development of antimyopia drugs.
Collapse
Affiliation(s)
| | - Andrei V Tkatchenko
- Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
43
|
Pantera H, Shy ME, Svaren J. Regulating PMP22 expression as a dosage sensitive neuropathy gene. Brain Res 2019; 1726:146491. [PMID: 31586623 DOI: 10.1016/j.brainres.2019.146491] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Structural variation in the human genome has emerged as a major cause of disease as genomic data have accumulated. One of the most common structural variants associated with human disease causes the heritable neuropathy known as Charcot-Marie-Tooth (CMT) disease type 1A. This 1.4 Mb duplication causes nearly half of the CMT cases that are genetically diagnosed. The PMP22 gene is highly induced in Schwann cells during development, although its precise role in myelin formation and homeostasis is still under active investigation. The PMP22 gene can be considered as a nucleoprotein complex with enzymatic activity to produce the PMP22 transcript, and the complex is allosterically regulated by transcription factors that respond to intracellular signals and epigenomic modifications. The control of PMP22 transcript levels has been one of the major therapeutic targets of therapy development, and this review summarizes those approaches as well as efforts to characterize the regulation of the PMP22 gene.
Collapse
Affiliation(s)
- Harrison Pantera
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin, Madison, WI, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
44
|
Charcot-Marie-Tooth: From Molecules to Therapy. Int J Mol Sci 2019; 20:ijms20143419. [PMID: 31336816 PMCID: PMC6679156 DOI: 10.3390/ijms20143419] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) is the most prevalent category of inherited neuropathy. The most common inheritance pattern is autosomal dominant, though there also are X-linked and autosomal recessive subtypes. In addition to a variety of inheritance patterns, there are a myriad of genes associated with CMT, reflecting the heterogeneity of this disorder. Next generation sequencing (NGS) has expanded and simplified the diagnostic yield of genes/molecules underlying and/or associated with CMT, which is of paramount importance in providing a substrate for current and future targeted disease-modifying treatment options. Considerable research attention for disease-modifying therapy has been geared towards the most commonly encountered genetic mutations (PMP22, GJB1, MPZ, and MFN2). In this review, we highlight the clinical background, molecular understanding, and therapeutic investigations of these CMT subtypes, while also discussing therapeutic research pertinent to the remaining less common CMT subtypes.
Collapse
|
45
|
Kim HS, Yoon YC, Choi BO, Jin W, Cha JG. Muscle fat quantification using magnetic resonance imaging: case-control study of Charcot-Marie-Tooth disease patients and volunteers. J Cachexia Sarcopenia Muscle 2019; 10:574-585. [PMID: 30873759 PMCID: PMC6596397 DOI: 10.1002/jcsm.12415] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/27/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the potential value of 3D multiple gradient echo Dixon-based magnetic resonance imaging (MRI) sequence as a tool for thigh intramuscular fat quantification in Charcot-Marie-Tooth disease (CMT) patients. METHODS A prospective comparison study comprising 18 CMT patients and 18 age/sex-matched volunteers was performed. MRI including 3D multiple gradient echo Dixon-based imaging was performed for each subject. Region of interest analyses were performed at the upper and lower third of both thighs. The two-sample t-test or Wilcoxon rank sum test was used for intergroup comparison of the mean muscle fat fraction. Intraclass correlation coefficients were used to evaluate the interobserver agreement and test-retest reproducibility. Semiquantitive analysis using the Goutallier classification (Grades 0-4) was performed on T1-weighted images in upper thigh muscles. For Goutallier Grade 0 muscles, comparison of the mean intramuscular fat fraction between volunteers and CMT patients was performed. RESULTS The interobserver agreements were excellent for all measurements (intraclass correlation coefficients > 0.8). Mean muscle fat fractions were significantly higher in all the measured muscles of CMT patients (P < 0.05) except in the adductor magnus in the upper thigh (P = 0.109). Goutallier Grade 0 muscles of the CMT patients showed a significantly higher mean fat fraction compared with that of the volunteers (P < 0.05). CONCLUSIONS 3D multiple gradient echo Dixon-based MRI is a reproducible and sensitive technique which can reveal a significant difference in the fat fraction of thigh muscle, including comparison between Goutallier Grade 0 muscles, between CMT patients and volunteers.
Collapse
Affiliation(s)
- Hyun Su Kim
- Department of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Young Cheol Yoon
- Department of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Wook Jin
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Jang Gyu Cha
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| |
Collapse
|
46
|
Lee JS, Kwak G, Kim HJ, Park HT, Choi BO, Hong YB. miR-381 Attenuates Peripheral Neuropathic Phenotype Caused by Overexpression of PMP22. Exp Neurobiol 2019; 28:279-288. [PMID: 31138995 PMCID: PMC6526106 DOI: 10.5607/en.2019.28.2.279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Charcot-Marie Tooth disease type 1A (CMT1A), the major type of CMT, is caused by duplication of peripheral myelin protein 22 (PMP22) gene whose overexpression causes structural and functional abnormalities in myelination. We investigated whether miRNA-mediated regulation of PMP22 expression could reduce the expression level of PMP22, thereby alleviating the demyelinating neuropathic phenotype of CMT1A. We found that several miRNAs were down-regulated in C22 mouse, a CMT1A mouse model. Among them, miR-381 could target 3′ untranslated region (3′UTR) of PMP22 in vitro based on Western botting and quantitative Real Time-PCR (qRT-PCR) results. In vivo efficacy of miR-381 was assessed by administration of LV-miR-381, an miR-381 expressing lentiviral vector, into the sciatic nerve of C22 mice by a single injection at postnatal day 6 (p6). Administration of LV-miR-381 reduced expression level of PMP22 along with elevated level of miR-381 in the sciatic nerve. Rotarod performance analysis revealed that locomotor coordination of LV-miR-381 administered C22 mice was significantly enhanced from 8 weeks post administration. Electrophysiologically, increased motor nerve conduction velocity was observed in treated mice. Histologically, toluidine blue staining and electron microscopy revealed that structural abnormalities of myelination were improved in sciatic nerves of LV-miR-381 treated mice. Therefore, delivery of miR-381 ameliorated the phenotype of peripheral neuropathy in CMT1A mouse model by down-regulating PMP22 expression. These data suggest that miRNA can be used as a potent therapeutic strategy to control diseases with copy number variations such as CMT1A.
Collapse
Affiliation(s)
- Ji-Su Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Geon Kwak
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Hye Jin Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Hwan-Tae Park
- Department of Physiology, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| |
Collapse
|
47
|
Svaren J, Moran JJ, Wu X, Zuccarino R, Bacon C, Bai Y, Ramesh R, Gutmann L, Anderson DM, Pavelec D, Shy ME. Schwann cell transcript biomarkers for hereditary neuropathy skin biopsies. Ann Neurol 2019; 85:887-898. [PMID: 30945774 DOI: 10.1002/ana.25480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Charcot-Marie-Tooth (CMT) disease is most commonly caused by duplication of a chromosomal segment surrounding Peripheral Myelin Protein 22, or PMP22 gene, which is classified as CMT1A. Several candidate therapies reduce Pmp22 mRNA levels in CMT1A rodent models, but development of biomarkers for clinical trials in CMT1A is a challenge given its slow progression and difficulty in obtaining nerve samples. Quantitative PCR measurements of PMP22 mRNA in dermal nerves were performed using skin biopsies in human clinical trials for CMT1A, but this approach did not show increased PMP22 mRNA in CMT1A patients compared to controls. One complicating factor is the variable amounts of Schwann cells (SCs) in skin. The objective of the study was to develop a novel method for precise evaluation of PMP22 levels in skin biopsies that can discriminate CMT1A patients from controls. METHODS We have developed methods to normalize PMP22 transcript levels to SC-specific genes that are not altered by CMT1A status. Several CMT1A-associated genes were assembled into a custom Nanostring panel to enable precise transcript measurements that can be normalized to variable SC content. RESULTS The digital expression data from Nanostring analysis showed reproducible elevation of PMP22 levels in CMT1A versus control skin biopsies, particularly after normalization to SC-specific genes. INTERPRETATION This platform should be useful in clinical trials for CMT1A as a biomarker of target engagement that can be used to optimize dosing, and the same normalization framework is applicable to other types of CMT. ANN NEUROL 2019;85:887-898.
Collapse
Affiliation(s)
- John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI
| | - John J Moran
- Waisman Center, University of Wisconsin-Madison, Madison, WI
| | - Xingyao Wu
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Riccardo Zuccarino
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA.,Neuromuscular Omnicentre (NEMO)-Fondazione Serena Onlus, Arenzano, Italy
| | - Chelsea Bacon
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Yunhong Bai
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Raghu Ramesh
- Waisman Center, University of Wisconsin-Madison, Madison, WI
| | - Laurie Gutmann
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Daniel M Anderson
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Derek Pavelec
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
48
|
Pazzaglia C, Padua L, Pareyson D, Schenone A, Aiello A, Fabrizi GM, Cavallaro T, Santoro L, Manganelli F, Coraci D, Gemignani F, Vitetta F, Quattrone A, Mazzeo A, Russo M, Vita G. Are novel outcome measures for Charcot–Marie–Tooth disease sensitive to change? The 6-minute walk test and StepWatch™ Activity Monitor in a 12-month longitudinal study. Neuromuscul Disord 2019; 29:310-316. [DOI: 10.1016/j.nmd.2019.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 11/25/2022]
|
49
|
Schorling E, Thiele S, Gumbert L, Krause S, Klug C, Schreiber-Katz O, Reilich P, Nagels K, Walter MC. Cost of illness in Charcot-Marie-Tooth neuropathy: Results from Germany. Neurology 2019; 92:e2027-e2037. [PMID: 30918088 DOI: 10.1212/wnl.0000000000007376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To assess cost associated with the disease-specific need of patients diagnosed with Charcot-Marie-Tooth neuropathies (CMT) in Germany. METHODS Patients with CMT were identified through the national patient registry and invited to complete a standardized questionnaire. The data collected include information about health care use, informal care, and other disease-related expenses as well as the working situation. Based on this information, we estimated the annual cost of CMT from the perspective of society. RESULTS This study included 397 patients with a genetically confirmed CMT diagnosis. We estimated total annual cost of illness (COI) of $22,362 (95% CI $19,464-$25,723) per patient, of which 67.3% were direct costs. The highest single cost factor was informal care cost. For Germany, we extrapolated total cost of CMT of $735.0 million ($639.8 million-$845.5 million). Multivariate regression analysis showed that total annual cost increased with disease severity (Charcot-Marie-Tooth Neuropathy Score). Age, CMT subtype, comorbidities, body mass index, and employment status were also predictors of a change in cost (p < 0.05). Moreover, we found differences in total cost depending on marital status, subjectively evaluated impairments, dependence on other persons, care level, educational level, and disease duration. CONCLUSIONS CMT is associated with a substantial economic burden. For the first time, the COI of CMT has been assessed and will serve as important input to decision-making in health policy, especially regarding research and development of therapies. Moreover, our results indicate the importance of the patient-reported perception of disease severity related to the consumption of resources.
Collapse
Affiliation(s)
- Elisabeth Schorling
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Simone Thiele
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Laura Gumbert
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Sabine Krause
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Constanze Klug
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Olivia Schreiber-Katz
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Peter Reilich
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Klaus Nagels
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Maggie C Walter
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany.
| |
Collapse
|
50
|
Genetic neuromuscular disorders: living the era of a therapeutic revolution. Part 1: peripheral neuropathies. Neurol Sci 2019; 40:661-669. [DOI: 10.1007/s10072-019-03778-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/16/2019] [Indexed: 12/17/2022]
|