1
|
Hemati H, Blanton MB, Koura J, Khadka R, Grant KA, Messaoudi I. Chronic alcohol consumption enhances the differentiation capacity of hematopoietic stem and progenitor cells into osteoclast precursors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636743. [PMID: 39975302 PMCID: PMC11839057 DOI: 10.1101/2025.02.05.636743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Chronic alcohol consumption (CAC) is associated with an enhanced risk of bone fracture, reduced bone density, and osteoporosis. We have previously shown using a rhesus macaque model of voluntary ethanol consumption that CAC induces functional, transcriptomic, and epigenomic changes in hematopoietic stem and progenitor cells (HSPCs) and their resultant monocytes/macrophages, skewing them towards a hyper-inflammatory response. Here, we extended those studies and investigated alterations in osteoclasts, which, in postnatal life, are differentiated from HSPCs and play a critical role in maintaining bone homeostasis. Analysis using spectral flow cytometry revealed a skewing of HSPCs towards granulocyte-monocyte progenitors (GMPs) with the CAC group that was in concordance with an increased number of colony-forming unit-granulocyte/macrophage (CFU-GM). Additionally, HSPCs from animals in the CAC group incubated with M-CSF and RANKL were more likely to differentiate into osteoclasts, as evidenced by increased Tartrate-Resistant Acid Phosphatase (TRAP) staining and bone resorption activity. Moreover, single-cell RNA sequencing of differentiated HSPCs identified three clusters of osteoclast precursors in the CAC group with enhanced gene expression in pathways associated with cellular response to stimuli, membrane trafficking, and vesicle-mediated transport. Collectively, these data show that CAC-derived hematopoietic progenitor cells exhibit a higher capacity to differentiate into osteoclast precursors. These findings provide critical insights for future research on the mechanisms by which CAC disrupts monopoiesis homeostasis and enhances osteoclast precursors, thereby contributing to reduced bone density.
Collapse
Affiliation(s)
- Hami Hemati
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Madison B Blanton
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Jude Koura
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Rupak Khadka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, OR, United States
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, OR, United States
| | - Ilhem Messaoudi
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
2
|
Wang J, Yan D, Wang S, Zhao A, Hou X, Zheng X, Guo J, Shen L, Bao Y, Jia W, Yu X, Hu C, Zhang Z. Osteopenia Metabolomic Biomarkers for Early Warning of Osteoporosis. Metabolites 2025; 15:66. [PMID: 39852408 PMCID: PMC11767427 DOI: 10.3390/metabo15010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Introduction: This study aimed to capture the early metabolic changes before osteoporosis occurs and identify metabolomic biomarkers at the osteopenia stage for the early prevention of osteoporosis. Materials and Methods: Metabolomic data were generated from normal, osteopenia, and osteoporosis groups with 320 participants recruited from the Nicheng community in Shanghai. We conducted individual edge network analysis (iENA) combined with a random forest to detect metabolomic biomarkers for the early warning of osteoporosis. Weighted Gene Co-Expression Network Analysis (WGCNA) and mediation analysis were used to explore the clinical impacts of metabolomic biomarkers. Results: Visual separations of the metabolic profiles were observed between three bone mineral density (BMD) groups in both genders. According to the iENA approach, several metabolites had significant abundance and association changes in osteopenia participants, confirming that osteopenia is a critical stage in the development of osteoporosis. Metabolites were further selected to identify osteopenia (nine metabolites in females; eight metabolites in males), and their ability to discriminate osteopenia was improved significantly compared to traditional bone turnover markers (BTMs) (female AUC = 0.717, 95% CI 0.547-0.882, versus BTMs: p = 0.036; male AUC = 0.801, 95% CI 0.636-0.966, versus BTMs: p = 0.007). The roles of the identified key metabolites were involved in the association between total fat-free mass (TFFM) and osteopenia in females. Conclusion: Osteopenia was identified as a tipping point during the development of osteoporosis with metabolomic characteristics. A few metabolites were identified as candidate early-warning biomarkers by machine learning analysis, which could indicate bone loss and provide new prevention guidance for osteoporosis.
Collapse
Affiliation(s)
- Jie Wang
- Department of Osteoporosis, Metabolic Bone Disease and Genetic Research Unit, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dandan Yan
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai 200233, China
| | - Suna Wang
- Clinical Research Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Aihua Zhao
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xuhong Hou
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaojiao Zheng
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jingyi Guo
- Clinical Research Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Li Shen
- Clinical Research Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai 200233, China
| | - Wei Jia
- Hong Kong Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiangtian Yu
- Clinical Research Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhenlin Zhang
- Department of Osteoporosis, Metabolic Bone Disease and Genetic Research Unit, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
3
|
Yorgan TA, Zhu Y, Wiedemann P, Schöneck K, Pohl S, Schweizer M, Amling M, Barvencik F, Oheim R, Schinke T. Inactivation of spermine synthase in mice causes osteopenia due to reduced osteoblast activity. J Bone Miner Res 2024; 39:1606-1620. [PMID: 39331754 DOI: 10.1093/jbmr/zjae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 09/29/2024]
Abstract
Spermine synthase, encoded by the SMS gene, is involved in polyamine metabolism, as it is required for the synthesis of spermine from its precursor molecule spermidine. Pathogenic variants of SMS are known to cause Snyder-Robinson syndrome (SRS), an X-linked recessive disorder causing various symptoms, including intellectual disability, muscular hypotonia, infertility, but also skeletal abnormalities, such as facial dysmorphisms and osteoporosis. Since the impact of a murine SMS deficiency has so far only been analyzed in Gy mice, where a large genomic deletion also includes the neighboring Phex gene, there is only limited knowledge about the potential role of SMS in bone cell regulation. In the present manuscript, we describe 2 patients carrying distinct SMS variants, both diagnosed with osteoporosis. Whereas the first patient displayed all characteristic hallmarks of SRS, the second patient was initially diagnosed, based on laboratory findings, as a case of adult-onset hypophosphatasia. To study the impact of SMS inactivation on bone remodeling, we took advantage of a newly developed mouse model carrying a pathogenic SMS variant (p.G56S). Compared to their wildtype littermates, 12-wk-old male SMSG56S/0 mice displayed reduced trabecular bone mass and cortical thickness, as assessed by μCT analysis of the femur. This phenotype was histologically confirmed by the analysis of spine and tibia sections, where we also observed a moderate enrichment of non-mineralized osteoid in SMSG56S/0 mice. Cellular and dynamic histomorphometry further identified a reduced bone formation rate as a main cause of the low bone mass phenotype. Likewise, primary bone marrow cells from SMSG56S/0 mice displayed reduced capacity to form a mineralized matrix ex vivo, thereby suggesting a cell-autonomous mechanism. Taken together, our data identify SMS as an enzyme with physiological relevance for osteoblast activity, thereby demonstrating an important role of polyamine metabolism in the control of bone remodeling.
Collapse
Affiliation(s)
- Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Yihao Zhu
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Philip Wiedemann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Kenneth Schöneck
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| |
Collapse
|
4
|
Lee CC, Chuang CC, Chen CH, Huang YP, Chang CY, Tung PY, Lee MJ. In vitro and in vivo studies on exogenous polyamines and α-difluoromethylornithine to enhance bone formation and suppress osteoclast differentiation. Amino Acids 2024; 56:43. [PMID: 38935136 PMCID: PMC11211182 DOI: 10.1007/s00726-024-03403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Exogenous polyamines, including putrescine (PUT), spermidine (SPD), and spermine (SPM), and the irreversible inhibitor of the rate-limiting enzyme ornithine decarboxylase (ODC) of polyamine biosynthesis, α-difluoromethylornithine (DFMO), are implicated as stimulants for bone formation. We demonstrate in this study the osteogenic potential of exogenous polyamines and DFMO in human osteoblasts (hOBs), murine monocyte cell line RAW 264.7, and an ovariectomized rat model. The effect of polyamines and DFMO on hOBs and RAW 264.7 cells was studied by analyzing gene expression, alkaline phosphatase (ALP) activity, tartrate-resistant acid phosphatase (TRAP) activity, and matrix mineralization. Ovariectomized rats were treated with polyamines and DFMO and analyzed by micro computed tomography (micro CT). The mRNA level of the early onset genes of osteogenic differentiation, Runt-related transcription factor 2 (Runx2) and ALP, was significantly elevated in hOBs under osteogenic conditions, while both ALP activity and matrix mineralization were enhanced by exogenous polyamines and DFMO. Under osteoclastogenic conditions, the gene expression of both receptor activator of nuclear factor-κB (RANK) and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) was reduced, and TRAP activity was suppressed by exogenous polyamines and DFMO in RAW 264.7 cells. In an osteoporotic animal model of ovariectomized rats, SPM and DFMO were found to improve bone volume in rat femurs, while trabecular thickness was increased in all treatment groups. Results from this study provide in vitro and in vivo evidence indicating that polyamines and DFMO act as stimulants for bone formation, and their osteogenic effect may be associated with the suppression of osteoclastogenesis.
Collapse
Affiliation(s)
- Chien-Ching Lee
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, 70965, Taiwan
- Department of Medical Science Industries, Chang Jung Christian University, No.1, Changda Rd., Gueiren District, Tainan, 711301, Taiwan
| | - Chia-Chun Chuang
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, 70965, Taiwan
- Department of Medical Science Industries, Chang Jung Christian University, No.1, Changda Rd., Gueiren District, Tainan, 711301, Taiwan
| | - Chung-Hwan Chen
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 80145, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Yuan-Pin Huang
- Department of Cosmetics and Fashion Styling, Cheng Shiu University, Kaohsiung, 83347, Taiwan
| | - Chiao-Yi Chang
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, 711301, Taiwan
| | - Pei-Yi Tung
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, 711301, Taiwan
| | - Mon-Juan Lee
- Department of Medical Science Industries, Chang Jung Christian University, No.1, Changda Rd., Gueiren District, Tainan, 711301, Taiwan.
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, 711301, Taiwan.
| |
Collapse
|
5
|
Wu B, Liu S. Structural Insights into the Mechanisms Underlying Polyaminopathies. Int J Mol Sci 2024; 25:6340. [PMID: 38928047 PMCID: PMC11203672 DOI: 10.3390/ijms25126340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Polyamines are ubiquitous in almost all biological entities and involved in various crucial physiological processes. They are also closely associated with the onset and progression of many diseases. Polyaminopathies are a group of rare genetic disorders caused by alterations in the function of proteins within the polyamine metabolism network. Although the identified polyaminopathies are all rare diseases at present, they are genetically heritable, rendering high risks not only to the carriers but also to their descendants. Meanwhile, more polyaminopathic patients might be discovered with the increasing accessibility of gene sequencing. This review aims to provide a comprehensive overview of the structural variations of mutated proteins in current polyaminopathies, in addition to their causative genes, types of mutations, clinical symptoms, and therapeutic approaches. We focus on analyzing how alterations in protein structure lead to protein dysfunction, thereby facilitating the onset of diseases. We hope this review will offer valuable insights and references for the future clinical diagnosis and precision treatment of polyaminopathies.
Collapse
Affiliation(s)
- Bing Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
6
|
Cressman A, Morales D, Zhang Z, Le B, Foley J, Murray-Stewart T, Genetos DC, Fierro FA. Effects of Spermine Synthase Deficiency in Mesenchymal Stromal Cells Are Rescued by Upstream Inhibition of Ornithine Decarboxylase. Int J Mol Sci 2024; 25:2463. [PMID: 38473716 PMCID: PMC10931026 DOI: 10.3390/ijms25052463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Despite the well-known relevance of polyamines to many forms of life, little is known about how polyamines regulate osteogenesis and skeletal homeostasis. Here, we report a series of in vitro studies conducted with human-bone-marrow-derived pluripotent stromal cells (MSCs). First, we show that during osteogenic differentiation, mRNA levels of most polyamine-associated enzymes are relatively constant, except for the catabolic enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1), which is strongly increased at both mRNA and protein levels. As a result, the intracellular spermidine to spermine ratio is significantly reduced during the early stages of osteoblastogenesis. Supplementation of cells with exogenous spermidine or spermine decreases matrix mineralization in a dose-dependent manner. Employing N-cyclohexyl-1,3-propanediamine (CDAP) to chemically inhibit spermine synthase (SMS), the enzyme catalyzing conversion of spermidine into spermine, also suppresses mineralization. Intriguingly, this reduced mineralization is rescued with DFMO, an inhibitor of the upstream polyamine enzyme ornithine decarboxylase (ODC1). Similarly, high concentrations of CDAP cause cytoplasmic vacuolization and alter mitochondrial function, which are also reversible with the addition of DFMO. Altogether, these studies suggest that excess polyamines, especially spermidine, negatively affect hydroxyapatite synthesis of primary MSCs, whereas inhibition of polyamine synthesis with DFMO rescues most, but not all of these defects. These findings are relevant for patients with Snyder-Robinson syndrome (SRS), as the presenting skeletal defects-associated with SMS deficiency-could potentially be ameliorated by treatment with DFMO.
Collapse
Affiliation(s)
- Amin Cressman
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - David Morales
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - Zhenyang Zhang
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - Bryan Le
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - Jackson Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA; (J.F.); (T.M.-S.)
| | - Tracy Murray-Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA; (J.F.); (T.M.-S.)
| | - Damian C. Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Fernando A. Fierro
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
- Department of Cell Biology and Human Anatomy, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
7
|
Stewart TM, Foley JR, Holbert CE, Khomutov M, Rastkari N, Tao X, Khomutov AR, Zhai RG, Casero RA. Difluoromethylornithine rebalances aberrant polyamine ratios in Snyder-Robinson syndrome. EMBO Mol Med 2023; 15:e17833. [PMID: 37702369 PMCID: PMC10630878 DOI: 10.15252/emmm.202317833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Snyder-Robinson syndrome (SRS) results from mutations in spermine synthase (SMS), which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonia, and seizures. Symptom management is the only treatment. Reduced SMS activity causes spermidine accumulation while spermine levels are reduced. The resulting exaggerated spermidine:spermine ratio is a biochemical hallmark of SRS that tends to correlate with symptom severity. Our studies aim to pharmacologically manipulate polyamine metabolism to correct this imbalance as a therapeutic strategy for SRS. Here we report the repurposing of 2-difluoromethylornithine (DFMO), an FDA-approved inhibitor of polyamine biosynthesis, in rebalancing spermidine:spermine ratios in SRS patient cells. Mechanistic in vitro studies demonstrate that, while reducing spermidine biosynthesis, DFMO also stimulates the conversion of spermidine into spermine in hypomorphic SMS cells and induces uptake of exogenous spermine, altogether reducing the aberrant ratios. In a Drosophila SRS model characterized by reduced lifespan, DFMO improves longevity. As nearly all SRS patient mutations are hypomorphic, these studies form a strong foundation for translational studies with significant therapeutic potential.
Collapse
Affiliation(s)
- Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Jackson R Foley
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Cassandra E Holbert
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Maxim Khomutov
- Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
| | - Noushin Rastkari
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Xianzun Tao
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Alex R Khomutov
- Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
| | - R Grace Zhai
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| |
Collapse
|
8
|
Lyu Z, Hu Y, Guo Y, Liu D. Modulation of bone remodeling by the gut microbiota: a new therapy for osteoporosis. Bone Res 2023; 11:31. [PMID: 37296111 PMCID: PMC10256815 DOI: 10.1038/s41413-023-00264-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 06/12/2023] Open
Abstract
The gut microbiota (GM) plays a crucial role in maintaining the overall health and well-being of the host. Recent studies have demonstrated that the GM may significantly influence bone metabolism and degenerative skeletal diseases, such as osteoporosis (OP). Interventions targeting GM modification, including probiotics or antibiotics, have been found to affect bone remodeling. This review provides a comprehensive summary of recent research on the role of GM in regulating bone remodeling and seeks to elucidate the regulatory mechanism from various perspectives, such as the interaction with the immune system, interplay with estrogen or parathyroid hormone (PTH), the impact of GM metabolites, and the effect of extracellular vesicles (EVs). Moreover, this review explores the potential of probiotics as a therapeutic approach for OP. The insights presented may contribute to the development of innovative GM-targeted therapies for OP.
Collapse
Affiliation(s)
- Zhengtian Lyu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Stewart TRM, Foley JR, Holbert CE, Khomutov MA, Rastkari N, Tao X, Khomutov AR, Zhai RG, Casero RA. Difluoromethylornithine rebalances aberrant polyamine ratios in Snyder-Robinson syndrome: mechanism of action and therapeutic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534977. [PMID: 37034775 PMCID: PMC10081208 DOI: 10.1101/2023.03.30.534977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Snyder-Robinson Syndrome (SRS) is caused by mutations in the spermine synthase (SMS) gene, the enzyme product of which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonic musculature, and seizures, along with other more variable symptoms. Currently, medical management focuses on treating these symptoms without addressing the underlying molecular cause of the disease. Reduced SMS catalytic activity in cells of SRS patients causes the accumulation of spermidine, while spermine levels are reduced. The resulting exaggeration in spermidine-to-spermine ratio is a biochemical hallmark of SRS that tends to correlate with symptom severity in the patient. Our studies aim to pharmacologically manipulate polyamine metabolism to correct this polyamine imbalance and investigate the potential of this approach as a therapeutic strategy for affected individuals. Here we report the use of difluoromethylornithine (DFMO; eflornithine), an FDA-approved inhibitor of polyamine biosynthesis, in re-establishing normal spermidine-to-spermine ratios in SRS patient cells. Through mechanistic studies, we demonstrate that, while reducing spermidine biosynthesis, DFMO also stimulates the conversion of existing spermidine into spermine in cell lines with hypomorphic variants of SMS. Further, DFMO treatment induces a compensatory uptake of exogenous polyamines, including spermine and spermine mimetics, cooperatively reducing spermidine and increasing spermine levels. In a Drosophila SRS model characterized by reduced lifespan, adding DFMO to the feed extended lifespan. As nearly all known SRS patient mutations are hypomorphic, these studies form a foundation for future translational studies with significant therapeutic potential.
Collapse
|
10
|
Placental sex-dependent spermine synthesis regulates trophoblast gene expression through acetyl-coA metabolism and histone acetylation. Commun Biol 2022; 5:586. [PMID: 35705689 PMCID: PMC9200719 DOI: 10.1038/s42003-022-03530-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
Placental function and dysfunction differ by sex but the mechanisms are unknown. Here we show that sex differences in polyamine metabolism are associated with escape from X chromosome inactivation of the gene encoding spermine synthase (SMS). Female placental trophoblasts demonstrate biallelic SMS expression, associated with increased SMS mRNA and enzyme activity. Polyamine depletion in primary trophoblasts reduced glycolysis and oxidative phosphorylation resulting in decreased acetyl-coA availability and global histone hypoacetylation in a sex-dependent manner. Chromatin-immunoprecipitation sequencing and RNA-sequencing identifies progesterone biosynthesis as a target of polyamine regulated gene expression, and polyamine depletion reduced progesterone release in male trophoblasts. The effects of polyamine depletion can be attributed to spermine as SMS-silencing recapitulated the effects on energy metabolism, histone acetylation, and progesterone release. In summary, spermine metabolism alters trophoblast gene expression through acetyl-coA biosynthesis and histone acetylation, and SMS escape from X inactivation explains some features of human placental sex differences.
Collapse
|
11
|
Bhardwaj A, Sapra L, Tiwari A, Mishra PK, Sharma S, Srivastava RK. "Osteomicrobiology": The Nexus Between Bone and Bugs. Front Microbiol 2022; 12:812466. [PMID: 35145499 PMCID: PMC8822158 DOI: 10.3389/fmicb.2021.812466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
A growing body of scientific evidence supports the notion that gut microbiota plays a key role in the regulation of various physiological and pathological processes related to human health. Recent findings have now established that gut microbiota also contributes to the regulation of bone homeostasis. Studies on animal models have unraveled various underlying mechanisms responsible for gut microbiota-mediated bone regulation. Normal gut microbiota is thus required for the maintenance of bone homeostasis. However, dysbiosis of gut microbiota communities is reported to be associated with several bone-related ailments such as osteoporosis, rheumatoid arthritis, osteoarthritis, and periodontitis. Dietary interventions in the form of probiotics, prebiotics, synbiotics, and postbiotics have been reported in restoring the dysbiotic gut microbiota composition and thus could provide various health benefits to the host including bone health. These dietary interventions prevent bone loss through several mechanisms and thus could act as potential therapies for the treatment of bone pathologies. In the present review, we summarize the current knowledge of how gut microbiota and its derived microbial compounds are associated with bone metabolism and their roles in ameliorating bone health. In addition to this, we also highlight the role of various dietary supplements like probiotics, prebiotics, synbiotics, and postbiotics as promising microbiota targeted interventions with the clinical application for leveraging treatment modalities in various inflammatory bone pathologies.
Collapse
Affiliation(s)
- Asha Bhardwaj
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Abhay Tiwari
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, India
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Satyawati Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
12
|
Tantak MP, Sekhar V, Tao X, Zhai RG, Phanstiel O. Development of a Redox-Sensitive Spermine Prodrug for the Potential Treatment of Snyder Robinson Syndrome. J Med Chem 2021; 64:15593-15607. [PMID: 34695351 DOI: 10.1021/acs.jmedchem.1c00419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Snyder Robinson Syndrome (SRS) is a rare disease associated with a defective spermine synthase gene and low intracellular spermine levels. In this study, a spermine replacement therapy was developed using a spermine prodrug that enters cells via the polyamine transport system. The prodrug was comprised of three components: a redox-sensitive quinone "trigger", a "trimethyl lock (TML)" aryl "release mechanism", and spermine. The presence of spermine in the design facilitated uptake by the polyamine transport system. The quinone-TML motifs provided a redox-sensitive agent, which upon intracellular reduction generated a hydroquinone, which underwent intramolecular cyclization to release free spermine and a lactone byproduct. Rewardingly, most SRS fibroblasts treated with the prodrug revealed a significant increase in intracellular spermine. Administering the spermine prodrug through feeding in a Drosophila model of SRS showed significant beneficial effects. In summary, a spermine prodrug is developed and provides a lead compound for future spermine replacement therapy experiments.
Collapse
Affiliation(s)
- Mukund P Tantak
- Department of Medical Education, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826-3227, United States
| | - Vandana Sekhar
- Department of Medical Education, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826-3227, United States
| | - Xianzun Tao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, Florida 33136, United States
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, Florida 33136, United States
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826-3227, United States
| |
Collapse
|
13
|
Wu M, Wang H, Kong D, Shao J, Song C, Yang T, Zhang Y. miR-452-3p inhibited osteoblast differentiation by targeting Smad4. PeerJ 2021; 9:e12228. [PMID: 34692253 PMCID: PMC8485836 DOI: 10.7717/peerj.12228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Osteoblast differentiation is a complex process that is essential for normal bone formation. A growing number of studies have shown that microRNAs (miRNAs) are key regulators in a variety of physiological and pathological processes, including osteogenesis. In this study, BMP2 was used to induce MC3T3-E1 cells to construct osteoblast differentiation cell model. Then, we investigated the effect of miR-452-3p on osteoblast differentiation and the related molecular mechanism by RT-PCR analysis, Western blot analysis, ALP activity, and Alizarin Red Staining. We found that miR-452-3p was significantly downregulated in osteoblast differentiation. Overexpression miR-452-3p (miR-452-3p mimic) significantly inhibited the expression of osteoblast marker genes RUNX2, osteopontin (OPN), and collagen type 1 a1 chain (Col1A1), and decreased the number of calcium nodules and ALP activity. In contrast, knockdown miR-452-3p (miR-452-3p inhibitor) produced the opposite effect. In terms of mechanism, we found that Smad4 may be the target of miR-452-3p, and knockdown Smad4 (si-Smad4) partially inhibited the osteoblast differentiation enhanced by miR-452-3p. Our results suggested that miR-452-3p plays an important role in osteoblast differentiation by targeting Smad4. Therefore, miR-452-3p is expected to be used in the treatment of bone formation and regeneration.
Collapse
Affiliation(s)
- Ming Wu
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Hongyan Wang
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Dece Kong
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Jin Shao
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Chao Song
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Tieyi Yang
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Yan Zhang
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| |
Collapse
|
14
|
Mouskou S, Katerelos A, Doulgeraki A, Leka-Emiri S, Manolakos E, Papoulidis I, Ververi A, Vartzelis G, Korona A, Mastroyanni S, Voudris K. Novel Hemizygous Missense Variant of Spermine Synthase ( SMS) Gene Causes Snyder-Robinson Syndrome in a Four-Year-Old Boy. Mol Syndromol 2021; 12:194-199. [PMID: 34177437 DOI: 10.1159/000514122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/29/2020] [Indexed: 11/19/2022] Open
Abstract
Snyder-Robinson syndrome (SRS) is an extremely rare X-linked intellectual disability syndrome (MRXSSR; MIM #309583). The main clinical features of SRS include psychomotor delay, hypotonia, and asthenic-type body habitus - reduced body weight and bone abnormalities (osteoporosis, fractures, kyphoscoliosis). We report a case of SRS with a hemizygous missense variant in the SMS gene,c.334C>G (p.Pro112Ala), in a 4-year-old boy, who initially developed hypotonia, delayed motor skills, and subsequently epilepsy. This variant in SMS was found to be de novo. To the best of our knowledge, this novel SMS gene variant has never been previously reported in disease-related variation databases, such as ClinVar or HGMD.
Collapse
Affiliation(s)
- Stella Mouskou
- Department of Neurology, 'P & A Kyriakou' Children's Hospital, Athens, Greece
| | | | - Artemis Doulgeraki
- Department of Bone and Mineral Metabolism, Institute of Child Health, Athens, Greece
| | - Sofia Leka-Emiri
- Department of Endocrinology-Growth and Development, 'P & A Kyriakou' Children's Hospital, Athens, Greece
| | | | | | - Athina Ververi
- Access To Genome, Clinical Laboratory Genetics, Athens, Greece
| | - Georgios Vartzelis
- Department of Neurology, 'P & A Kyriakou' Children's Hospital, Athens, Greece
| | - Anastasia Korona
- Department of Neurology, 'P & A Kyriakou' Children's Hospital, Athens, Greece
| | - Sotiria Mastroyanni
- Department of Neurology, 'P & A Kyriakou' Children's Hospital, Athens, Greece
| | | |
Collapse
|
15
|
Kong SH, Kim JH, Shin CS. Serum Spermidine as a Novel Potential Predictor for Fragility Fractures. J Clin Endocrinol Metab 2021; 106:e582-e591. [PMID: 33099626 DOI: 10.1210/clinem/dgaa745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Metabolomics is an emerging tool that provides insights into the dynamics of phenotypic changes. It is a potential method for the discovery of novel serum markers of fracture. OBJECTIVE To identify metabolite parameters that can be used as a proxy for osteoporotic fracture risk. DESIGN Prospective study based on the Ansung cohort in Korea. SETTING The general community. PARTICIPANTS A total of 1504 participants with metabolomic analyses. INTERVENTIONS None. MAIN OUTCOME MEASURE Fragility fractures. RESULTS We measured 135 baseline metabolite profiles in fasting serum of the participants. The participants had a mean age of 60.2 years and were comprised of 585 (38.9%) men. During a mean 9-year follow-up, 112 osteoporotic fracture events occurred. Of all metabolites measured, only serum spermidine concentrations were positively associated with the risk of fracture (hazard ratio [HR] per 1 μM of spermidine 1.35, 95% confidence interval [CI] = 1.03-1.65, P = 0.020) after adjusting for age, sex, body mass index, diabetes, hypertension, smoking status, previous fracture history, and baseline tibial quantitative ultrasound. Participants with spermidine concentrations >1.57 μM had a 2.2-fold higher risk of fractures (95% CI 1.08-4.51, P = 0.030) compared with those with concentrations ≤1.57 μM after adjustment. In a subgroup analysis, women with baseline spermidine concentrations >1.57 μM also had a 2.4-fold higher risk of fracture than those with concentrations ≤1.57 μM (95% CI 1.02-5.48, P = 0.047). CONCLUSIONS Increased baseline spermidine concentrations were associated with a risk of osteoporotic fracture during a mean 9-year follow-up. The biological significance of the metabolites in the musculoskeletal system could be a subject for future studies.
Collapse
Affiliation(s)
- Sung Hye Kong
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
16
|
Dontaine P, Kottos E, Dassonville M, Balasel O, Catros V, Soblet J, Perlot P, Vilain C. Digestive involvement in a severe form of Snyder-Robinson syndrome: Possible expansion of the phenotype. Eur J Med Genet 2020; 64:104097. [PMID: 33186760 DOI: 10.1016/j.ejmg.2020.104097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 11/30/2022]
Abstract
Snyder-Robinson syndrome (OMIM #309583) is a rare X-linked condition, caused by mutation in the SMS gene (MIM *300105), characterized by a wide spectrum of clinical signs including developmental delay, epilepsy, asthenic habitus, dysmorphism, osteopenia, and renal or genital anomalies. Here we describe two maternal half-brothers who both presented with severe neurodevelopmental delay, seizures, hearing loss, facial dysmorphism, renal and ophthalmologic anomalies, failure to thrive and premature death. A novel p.(Gly203Asp) variant was found at the hemizygous state in the two boys, and an elevated Spermidine/Spermine ratio confirmed the diagnosis of Snyder-Robinson syndrome. One of the brothers presented with gastrointestinal symptoms, with jejunal stenosis, enteral feeding intolerance, failure to thrive due to a dysfunctional gastrointestinal system, cholestasis and exocrine pancreatic insufficiency. Although more studies will be needed to understand its mechanisms, this observation lends further support to the possibility of severe digestive involvement in Snyder Robinson syndrome.
Collapse
Affiliation(s)
- Pauline Dontaine
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium
| | - Elisa Kottos
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium
| | - Martine Dassonville
- Department of Pediatric Surgery, Hôpital Universitaire des Enfants Reine Fabiola, Universite Libre de Bruxelles, Brussels, Belgium
| | - Ovidiu Balasel
- Department of Neonatalogy, Hôpital Universitaire des Enfants Reine Fabiola, Universite Libre de Bruxelles, Brussels, Belgium
| | - Véronique Catros
- Univ Rennes, Inserm, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), CRB Santé Rennes, F-35000, Rennes, France
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium; Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium
| | - Pascale Perlot
- Department of Pediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Universite Libre de Bruxelles, Brussels, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium; Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
17
|
Comprehensive Analysis of RNA-Seq Gene Expression Profiling of Brain Transcriptomes Reveals Novel Genes, Regulators, and Pathways in Autism Spectrum Disorder. Brain Sci 2020; 10:brainsci10100747. [PMID: 33080834 PMCID: PMC7603078 DOI: 10.3390/brainsci10100747] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with deficits in social communication ability and repetitive behavior. The pathophysiological events involved in the brain of this complex disease are still unclear. METHODS In this study, we aimed to profile the gene expression signatures of brain cortex of ASD patients, by using two publicly available RNA-seq studies, in order to discover new ASD-related genes. RESULTS We detected 1567 differentially expressed genes (DEGs) by meta-analysis, where 1194 were upregulated and 373 were downregulated genes. Several ASD-related genes previously reported were also identified. Our meta-analysis identified 235 new DEGs that were not detected using the individual RNA-seq studies used. Some of those genes, including seven DEGs (PAK1, DNAH17, DOCK8, DAPP1, PCDHAC2, and ERBIN, SLC7A7), have been confirmed in previous reports to be associated with ASD. Gene Ontology (GO) and pathways analysis showed several molecular pathways enriched by the DEGs, namely, osteoclast differentiation, TNF signaling pathway, complement and coagulation cascade. Topological analysis of protein-protein interaction of the ASD brain cortex revealed proteomics hub gene signatures: MYC, TP53, HDAC1, CDK2, BAG3, CDKN1A, GABARAPL1, EZH2, VIM, and TRAF1. We also identified the transcriptional factors (TFs) regulating DEGs, namely, FOXC1, GATA2, YY1, FOXL1, USF2, NFIC, NFKB1, E2F1, TFAP2A, HINFP. CONCLUSION Novel core genes and molecular signatures involved with ASD were identified by our meta-analysis.
Collapse
|
18
|
Komrakova M, Blaschke M, Ponce ML, Klüver A, Köpp R, Hüfner M, Schieker M, Miosge N, Siggelkow H. Decreased Expression of the Human Urea Transporter SLC14A1 in Bone is Induced by Cytokines and Stimulates Adipogenesis of Mesenchymal Progenitor Cells. Exp Clin Endocrinol Diabetes 2020; 128:582-595. [PMID: 31958845 DOI: 10.1055/a-1084-3888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The human urea transporter SLC14A1 (HUT11/UT-B) has been suggested as a marker for the adipogenic differentiation of bone cells with a relevance for bone diseases. We investigated the function of SLC14A1 in different cells models from bone environment. SLC14A1 expression and cytokine production was investigated in bone cells obtained from patients with osteoporosis. Gene and protein expression of SLC14A1 was studied during adipogenic or osteogenic differentiation of human mesenchymal progenitor cells (hMSCs) and of the single-cell-derived hMSC line (SCP-1), as well as in osteoclasts and chondrocytes. Localization was determined by histochemical methods and functionality by urea transport experiments. Expression of SLC14A1 mRNA was lower in cells from patients with osteoporosis that produced high levels of cytokines. Accordingly, when adding a combination of cytokines to SCP-1 SLC14A1 mRNA expression decreased. SLC14A1 mRNA expression decreased after both osteogenic and more pronounced adipogenic stimulation of hMSCs and SCP-1 cells. The highest SLC14A1 expression was determined in undifferentiated cells, lowest in chondrocytes and osteoclasts. Downregulation of SLC14A1 by siRNA resulted in an increased expression of interleukin-6 and interleukin-1 beta as well as adipogenic markers. Urea influx through SLC14A1 increased expression of osteogenic markers, adipogenic markers were suppressed. SLC14A1 protein was localized in the cell membrane and the cytoplasm. Summarizing, the SLC14A1 urea transporter affects early differentiation of hMSCs by diminishing osteogenesis or by favoring adipogenesis, depending on its expression level. Therefore, SLC14A1 is not unequivocally an adipogenic marker in bone. Our findings suggest an involvement of SLC14A1 in bone metabolism and inflammatory processes and disease-dependent influences on its expression.
Collapse
Affiliation(s)
- Marina Komrakova
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Martina Blaschke
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
- Endokrinologikum Göttingen, Göttingen, Germany
| | - Maria Laura Ponce
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Anne Klüver
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Regine Köpp
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Matthias Schieker
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximillians-University (LMU), Munich, Germany
| | - Nicolai Miosge
- Bone tissue regeneration work group, University Medical Center Göttingen, Göttingen, Germany
| | - Heide Siggelkow
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
- Endokrinologikum Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Murray Stewart T, Khomutov M, Foley JR, Guo X, Holbert CE, Dunston TT, Schwartz CE, Gabrielson K, Khomutov A, Casero RA. ( R, R)-1,12-Dimethylspermine can mitigate abnormal spermidine accumulation in Snyder-Robinson syndrome. J Biol Chem 2020; 295:3247-3256. [PMID: 31996374 DOI: 10.1074/jbc.ra119.011572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/21/2020] [Indexed: 11/06/2022] Open
Abstract
Snyder-Robinson syndrome (SRS) is an X-linked intellectual disability syndrome caused by a loss-of-function mutation in the spermine synthase (SMS) gene. Primarily affecting males, the main manifestations of SRS include osteoporosis, hypotonic stature, seizures, cognitive impairment, and developmental delay. Because there is no cure for SRS, treatment plans focus on alleviating symptoms rather than targeting the underlying causes. Biochemically, the cells of individuals with SRS accumulate excess spermidine, whereas spermine levels are reduced. We recently demonstrated that SRS patient-derived lymphoblastoid cells are capable of transporting exogenous spermine and its analogs into the cell and, in response, decreasing excess spermidine pools to normal levels. However, dietary supplementation of spermine does not appear to benefit SRS patients or mouse models. Here, we investigated the potential use of a metabolically stable spermine mimetic, (R,R)-1,12-dimethylspermine (Me2SPM), to reduce the intracellular spermidine pools of SRS patient-derived cells. Me2SPM can functionally substitute for the native polyamines in supporting cell growth while stimulating polyamine homeostatic control mechanisms. We found that both lymphoblasts and fibroblasts from SRS patients can accumulate Me2SPM, resulting in significantly decreased spermidine levels with no adverse effects on growth. Me2SPM administration to mice revealed that Me2SPM significantly decreases spermidine levels in multiple tissues. Importantly, Me2SPM was detectable in brain tissue, the organ most affected in SRS, and was associated with changes in polyamine metabolic enzymes. These findings indicate that the (R,R)-diastereomer of 1,12-Me2SPM represents a promising lead compound in developing a treatment aimed at targeting the molecular mechanisms underlying SRS pathology.
Collapse
Affiliation(s)
- Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| | - Maxim Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Jackson R Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Cassandra E Holbert
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| | - Tiffany T Dunston
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| | | | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Alexey Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287.
| |
Collapse
|
20
|
Ramsay AL, Alonso-Garcia V, Chaboya C, Radut B, Le B, Florez J, Schumacher C, Fierro FA. Modeling Snyder-Robinson Syndrome in multipotent stromal cells reveals impaired mitochondrial function as a potential cause for deficient osteogenesis. Sci Rep 2019; 9:15395. [PMID: 31659216 PMCID: PMC6817887 DOI: 10.1038/s41598-019-51868-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/08/2019] [Indexed: 01/30/2023] Open
Abstract
Patients with Snyder-Robinson Syndrome (SRS) exhibit deficient Spermidine Synthase (SMS) gene expression, which causes neurodevelopmental defects and osteoporosis, often leading to extremely fragile bones. To determine the underlying mechanism for impaired bone formation, we modelled the disease by silencing SMS in human bone marrow - derived multipotent stromal cells (MSCs) derived from healthy donors. We found that silencing SMS in MSCs led to reduced cell proliferation and deficient bone formation in vitro, as evidenced by reduced mineralization and decreased bone sialoprotein expression. Furthermore, transplantation of MSCs in osteoconductive scaffolds into immune deficient mice shows that silencing SMS also reduces ectopic bone formation in vivo. Tag-Seq Gene Expression Profiling shows that deficient SMS expression causes strong transcriptome changes, especially in genes related to cell proliferation and metabolic functions. Similarly, metabolome analysis by mass spectrometry, shows that silencing SMS strongly impacts glucose metabolism. This was consistent with observations using electron microscopy, where SMS deficient MSCs show high levels of mitochondrial fusion. In line with these findings, SMS deficiency causes a reduction in glucose consumption and increase in lactate secretion. Our data also suggests that SMS deficiency affects iron metabolism in the cells, which we hypothesize is linked to deficient mitochondrial function. Altogether, our studies suggest that SMS deficiency causes strong transcriptomic and metabolic changes in MSCs, which are likely associated with the observed impaired osteogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Ashley L Ramsay
- Institute for Regenerative Cures, University of California Davis, 2921 Stockton Blvd, Sacramento, CA, USA
| | - Vivian Alonso-Garcia
- Institute for Regenerative Cures, University of California Davis, 2921 Stockton Blvd, Sacramento, CA, USA
| | - Cutter Chaboya
- Institute for Regenerative Cures, University of California Davis, 2921 Stockton Blvd, Sacramento, CA, USA
| | - Brian Radut
- Institute for Regenerative Cures, University of California Davis, 2921 Stockton Blvd, Sacramento, CA, USA
| | - Bryan Le
- Institute for Regenerative Cures, University of California Davis, 2921 Stockton Blvd, Sacramento, CA, USA
| | - Jose Florez
- Institute for Regenerative Cures, University of California Davis, 2921 Stockton Blvd, Sacramento, CA, USA
| | - Cameron Schumacher
- Institute for Regenerative Cures, University of California Davis, 2921 Stockton Blvd, Sacramento, CA, USA
| | - Fernando A Fierro
- Institute for Regenerative Cures, University of California Davis, 2921 Stockton Blvd, Sacramento, CA, USA.
- Department of Cell Biology and Human Anatomy, University of California, Davis, USA.
| |
Collapse
|
21
|
Larcher L, Norris JW, Lejeune E, Buratti J, Mignot C, Garel C, Keren B, Schwartz CE, Whalen S. The complete loss of function of the SMS gene results in a severe form of Snyder-Robinson syndrome. Eur J Med Genet 2019; 63:103777. [PMID: 31580924 DOI: 10.1016/j.ejmg.2019.103777] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/12/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023]
Abstract
Snyder-Robinson syndrome (SRS) is an X-linked syndromic intellectual disability condition caused by variants in the spermine synthase gene (SMS). The syndrome is characterized by facial dysmorphism, thin body build, kyphoscoliosis, osteoporosis, hypotonia, developmental delay and associated neurological features (seizures, unsteady gait, abnormal speech). Until now, only missense variants with a functionally characterized partial loss of function (LoF) have been described. Here we describe the first complete LoF variant, Met303Lysfs*, in a male patient with a severe form of Snyder-Robinson syndrome. He presented with multiple malformations and severly delayed development, and died at 4 months of age. Functional in vitro assays showed a complete absence of functional SMS protein. Taken together, our findings and those of previously reported patients confirm that pathogenic variants of SMS are indeed LoF and that there might exist a genotype-phenotype correlation between the type of variant and the severity of the syndrome.
Collapse
Affiliation(s)
- Lise Larcher
- APHP, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme", Paris, France.
| | - Joy W Norris
- JC Self Research Institute Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC, 29649, USA
| | - Elodie Lejeune
- APHP, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme", Paris, France
| | - Julien Buratti
- APHP, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme", Paris, France
| | - Cyril Mignot
- APHP, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme", Paris, France; APHP, UF de Génétique clinique, Centre de Référence Maladies Rares « Anomalies du développement et syndromes malformatifs », Hôpital Armand Trousseau, Paris, France
| | - Catherine Garel
- APHP, Service de Radiologie, Hôpital Armand Trousseau, Paris, France
| | - Boris Keren
- APHP, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme", Paris, France
| | - Charles E Schwartz
- JC Self Research Institute Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC, 29649, USA
| | - Sandra Whalen
- APHP, UF de Génétique clinique, Centre de Référence Maladies Rares « Anomalies du développement et syndromes malformatifs », Hôpital Armand Trousseau, Paris, France
| |
Collapse
|
22
|
Polyamine Homeostasis in Snyder-Robinson Syndrome. Med Sci (Basel) 2018; 6:medsci6040112. [PMID: 30544565 PMCID: PMC6318755 DOI: 10.3390/medsci6040112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 02/04/2023] Open
Abstract
Loss-of-function mutations of the spermine synthase gene (SMS) result in Snyder-Robinson Syndrome (SRS), a recessive X-linked syndrome characterized by intellectual disability, osteoporosis, hypotonia, speech abnormalities, kyphoscoliosis, and seizures. As SMS catalyzes the biosynthesis of the polyamine spermine from its precursor spermidine, SMS deficiency causes a lack of spermine with an accumulation of spermidine. As polyamines, spermine, and spermidine play essential cellular roles that require tight homeostatic control to ensure normal cell growth, differentiation, and survival. Using patient-derived lymphoblast cell lines, we sought to comprehensively investigate the effects of SMS deficiency on polyamine homeostatic mechanisms including polyamine biosynthetic and catabolic enzymes, derivatives of the natural polyamines, and polyamine transport activity. In addition to decreased spermine and increased spermidine in SRS cells, ornithine decarboxylase activity and its product putrescine were significantly decreased. Treatment of SRS cells with exogenous spermine revealed that polyamine transport was active, as the cells accumulated spermine, decreased their spermidine level, and established a spermidine-to-spermine ratio within the range of wildtype cells. SRS cells also demonstrated elevated levels of tissue transglutaminase, a change associated with certain neurodegenerative diseases. These studies form a basis for further investigations into the leading biochemical changes and properties of SMS-mutant cells that potentially represent therapeutic targets for the treatment of Snyder-Robinson Syndrome.
Collapse
|
23
|
Gong S, Sovio U, Aye IL, Gaccioli F, Dopierala J, Johnson MD, Wood AM, Cook E, Jenkins BJ, Koulman A, Casero RA, Constância M, Charnock-Jones DS, Smith GC. Placental polyamine metabolism differs by fetal sex, fetal growth restriction, and preeclampsia. JCI Insight 2018; 3:120723. [PMID: 29997303 PMCID: PMC6124516 DOI: 10.1172/jci.insight.120723] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/31/2018] [Indexed: 02/02/2023] Open
Abstract
Preeclampsia and fetal growth restriction (FGR) are major causes of the more than 5 million perinatal and infant deaths occurring globally each year, and both are associated with placental dysfunction. The risk of perinatal and infant death is greater in males, but the mechanisms are unclear. We studied data and biological samples from the Pregnancy Outcome Prediction (POP) study, a prospective cohort study that followed 4,212 women having first pregnancies from their dating ultrasound scan through delivery. We tested the hypothesis that fetal sex would be associated with altered placental function using multiomic and targeted analyses. We found that spermine synthase (SMS) escapes X-chromosome inactivation (XCI) in the placenta and is expressed at lower levels in male primary trophoblast cells, and male cells were more sensitive to polyamine depletion. The spermine metabolite N1,N12-diacetylspermine (DiAcSpm) was higher in the female placenta and in the serum of women pregnant with a female fetus. Higher maternal serum levels of DiAcSpm increased the risk of preeclampsia but decreased the risk of FGR. To our knowledge, DiAcSpm is the first maternal biomarker to demonstrate opposite associations with preeclampsia and FGR, and this is the first evidence to implicate polyamine metabolism in sex-related differences in placentally related complications of human pregnancy.
Collapse
Affiliation(s)
- Sungsam Gong
- Department of Obstetrics and Gynaecology, NIHR Cambridge Comprehensive Biomedical Research Centre
| | - Ulla Sovio
- Department of Obstetrics and Gynaecology, NIHR Cambridge Comprehensive Biomedical Research Centre,,Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience
| | - Irving L.M.H. Aye
- Department of Obstetrics and Gynaecology, NIHR Cambridge Comprehensive Biomedical Research Centre,,Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience
| | - Francesca Gaccioli
- Department of Obstetrics and Gynaecology, NIHR Cambridge Comprehensive Biomedical Research Centre,,Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience
| | - Justyna Dopierala
- Department of Obstetrics and Gynaecology, NIHR Cambridge Comprehensive Biomedical Research Centre,,Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience
| | - Michelle D. Johnson
- Department of Obstetrics and Gynaecology, NIHR Cambridge Comprehensive Biomedical Research Centre,,Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience
| | | | - Emma Cook
- Department of Obstetrics and Gynaecology, NIHR Cambridge Comprehensive Biomedical Research Centre
| | - Benjamin J. Jenkins
- NIHR BRC Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Albert Koulman
- NIHR BRC Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Miguel Constância
- Department of Obstetrics and Gynaecology, NIHR Cambridge Comprehensive Biomedical Research Centre,,Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience,,University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom
| | - D. Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, NIHR Cambridge Comprehensive Biomedical Research Centre,,Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience
| | - Gordon C.S. Smith
- Department of Obstetrics and Gynaecology, NIHR Cambridge Comprehensive Biomedical Research Centre,,Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience
| |
Collapse
|
24
|
Li C, Brazill JM, Liu S, Bello C, Zhu Y, Morimoto M, Cascio L, Pauly R, Diaz-Perez Z, Malicdan MCV, Wang H, Boccuto L, Schwartz CE, Gahl WA, Boerkoel CF, Zhai RG. Spermine synthase deficiency causes lysosomal dysfunction and oxidative stress in models of Snyder-Robinson syndrome. Nat Commun 2017; 8:1257. [PMID: 29097652 PMCID: PMC5668419 DOI: 10.1038/s41467-017-01289-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Polyamines are tightly regulated polycations that are essential for life. Loss-of-function mutations in spermine synthase (SMS), a polyamine biosynthesis enzyme, cause Snyder-Robinson syndrome (SRS), an X-linked intellectual disability syndrome; however, little is known about the neuropathogenesis of the disease. Here we show that loss of dSms in Drosophila recapitulates the pathological polyamine imbalance of SRS and causes survival defects and synaptic degeneration. SMS deficiency leads to excessive spermidine catabolism, which generates toxic metabolites that cause lysosomal defects and oxidative stress. Consequently, autophagy-lysosome flux and mitochondrial function are compromised in the Drosophila nervous system and SRS patient cells. Importantly, oxidative stress caused by loss of SMS is suppressed by genetically or pharmacologically enhanced antioxidant activity. Our findings uncover some of the mechanisms underlying the pathological consequences of abnormal polyamine metabolism in the nervous system and may provide potential therapeutic targets for treating SRS and other polyamine-associated neurological disorders.
Collapse
Affiliation(s)
- Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jennifer M Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sha Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
| | - Christofer Bello
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Marie Morimoto
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Lauren Cascio
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Rini Pauly
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
| | - Luigi Boccuto
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Charles E Schwartz
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Cornelius F Boerkoel
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China.
| |
Collapse
|
25
|
Gall T, Valkanas E, Bello C, Markello T, Adams C, Bone WP, Brandt AJ, Brazill JM, Carmichael L, Davids M, Davis J, Diaz-Perez Z, Draper D, Elson J, Flynn ED, Godfrey R, Groden C, Hsieh CK, Fischer R, Golas GA, Guzman J, Huang Y, Kane MS, Lee E, Li C, Links AE, Maduro V, Malicdan MCV, Malik FS, Nehrebecky M, Park J, Pemberton P, Schaffer K, Simeonov D, Sincan M, Smedley D, Valivullah Z, Wahl C, Washington N, Wolfe LA, Xu K, Zhu Y, Gahl WA, Tifft CJ, Toro C, Adams DR, He M, Robinson PN, Haendel MA, Zhai RG, Boerkoel CF. Defining Disease, Diagnosis, and Translational Medicine within a Homeostatic Perturbation Paradigm: The National Institutes of Health Undiagnosed Diseases Program Experience. Front Med (Lausanne) 2017; 4:62. [PMID: 28603714 PMCID: PMC5445140 DOI: 10.3389/fmed.2017.00062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022] Open
Abstract
Traditionally, the use of genomic information for personalized medical decisions relies on prior discovery and validation of genotype-phenotype associations. This approach constrains care for patients presenting with undescribed problems. The National Institutes of Health (NIH) Undiagnosed Diseases Program (UDP) hypothesized that defining disease as maladaptation to an ecological niche allows delineation of a logical framework to diagnose and evaluate such patients. Herein, we present the philosophical bases, methodologies, and processes implemented by the NIH UDP. The NIH UDP incorporated use of the Human Phenotype Ontology, developed a genomic alignment strategy cognizant of parental genotypes, pursued agnostic biochemical analyses, implemented functional validation, and established virtual villages of global experts. This systematic approach provided a foundation for the diagnostic or non-diagnostic answers provided to patients and serves as a paradigm for scalable translational research.
Collapse
Affiliation(s)
- Timothy Gall
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Elise Valkanas
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Christofer Bello
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | - Thomas Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Christopher Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - William P. Bone
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Alexander J. Brandt
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer M. Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | | | - Mariska Davids
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Joie Davis
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | - David Draper
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Elise D. Flynn
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Rena Godfrey
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Catherine Groden
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | | | - Roxanne Fischer
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gretchen A. Golas
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Jessica Guzman
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Yan Huang
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Megan S. Kane
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Elizabeth Lee
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | - Amanda E. Links
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Valerie Maduro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - May Christine V. Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Fayeza S. Malik
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | - Michele Nehrebecky
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | - Paul Pemberton
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Katherine Schaffer
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Dimitre Simeonov
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Murat Sincan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Damian Smedley
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Zaheer Valivullah
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Colleen Wahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Nicole Washington
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Lynne A. Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karen Xu
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | - William A. Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Cynthia J. Tifft
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Camillo Toro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - David R. Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Miao He
- Palmieri Metabolic Disease Laboratory, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter N. Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Melissa A. Haendel
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
| | - R. Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | - Cornelius F. Boerkoel
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Gahl WA, Mulvihill JJ, Toro C, Markello TC, Wise AL, Ramoni RB, Adams DR, Tifft CJ. The NIH Undiagnosed Diseases Program and Network: Applications to modern medicine. Mol Genet Metab 2016; 117:393-400. [PMID: 26846157 PMCID: PMC5560125 DOI: 10.1016/j.ymgme.2016.01.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The inability of some seriously and chronically ill individuals to receive a definitive diagnosis represents an unmet medical need. In 2008, the NIH Undiagnosed Diseases Program (UDP) was established to provide answers to patients with mysterious conditions that long eluded diagnosis and to advance medical knowledge. Patients admitted to the NIH UDP undergo a five-day hospitalization, facilitating highly collaborative clinical evaluations and a detailed, standardized documentation of the individual's phenotype. Bedside and bench investigations are tightly coupled. Genetic studies include commercially available testing, single nucleotide polymorphism microarray analysis, and family exomic sequencing studies. Selected gene variants are evaluated by collaborators using informatics, in vitro cell studies, and functional assays in model systems (fly, zebrafish, worm, or mouse). INSIGHTS FROM THE UDP In seven years, the UDP received 2954 complete applications and evaluated 863 individuals. Nine vignettes (two unpublished) illustrate the relevance of an undiagnosed diseases program to complex and common disorders, the coincidence of multiple rare single gene disorders in individual patients, newly recognized mechanisms of disease, and the application of precision medicine to patient care. CONCLUSIONS The UDP provides examples of the benefits expected to accrue with the recent launch of a national Undiagnosed Diseases Network (UDN). The UDN should accelerate rare disease diagnosis and new disease discovery, enhance the likelihood of diagnosing known diseases in patients with uncommon phenotypes, improve management strategies, and advance medical research.
Collapse
Affiliation(s)
- William A Gahl
- NIH Undiagnosed Diseases Network, Common Fund, Office of the Director and the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - John J Mulvihill
- NIH Undiagnosed Diseases Network, Common Fund, Office of the Director and the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Department of Pediatrics, University of Oklahoma, Oklahoma City, OK, United States.
| | - Camilo Toro
- NIH Undiagnosed Diseases Network, Common Fund, Office of the Director and the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Thomas C Markello
- NIH Undiagnosed Diseases Network, Common Fund, Office of the Director and the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Anastasia L Wise
- NIH Undiagnosed Diseases Network, Common Fund, Office of the Director and the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rachel B Ramoni
- Department for Biomedical Informatics, Harvard Medical School, Department of Oral Health Policy and Epidemiology, Harvard Dental School, Cambridge, MA, United States
| | - David R Adams
- NIH Undiagnosed Diseases Network, Common Fund, Office of the Director and the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Cynthia J Tifft
- NIH Undiagnosed Diseases Network, Common Fund, Office of the Director and the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|