1
|
Pearson AJ, Mukherjee K, Fattori V, Lipp M. Opportunities and challenges for global food safety in advancing circular policies and practices in agrifood systems. NPJ Sci Food 2024; 8:60. [PMID: 39237595 PMCID: PMC11377707 DOI: 10.1038/s41538-024-00286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/21/2024] [Indexed: 09/07/2024] Open
Abstract
Sustainable agrifood systems are needed to provide safe and nutritious food for the growing world's population. To improve sustainability, transforming linear policies and practices in agrifood systems into circularity will be critical, with food safety considerations key for the success of this shift. This review provides a synthesis of the current and emerging risks, data gaps, and opportunities for food safety in agrifood initiatives aiming to advance circular economy models.
Collapse
Affiliation(s)
- Andrew J Pearson
- Agrifood Systems and Food Safety Division, Food and Agriculture Organization of the United Nations, Rome, Italy.
- Tonkin + Taylor Ltd, Wellington, New Zealand.
| | - Keya Mukherjee
- Agrifood Systems and Food Safety Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Vittorio Fattori
- Agrifood Systems and Food Safety Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Markus Lipp
- Agrifood Systems and Food Safety Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| |
Collapse
|
2
|
Li Q, Yi P, Zhang J, Shan Y, Lin Y, Wu M, Wang K, Tian G, Li J, Zhu T. Bioconversion of food waste to crayfish feed using solid-state fermentation with yeast. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15325-15334. [PMID: 36169850 DOI: 10.1007/s11356-022-23100-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
In order to realize the value-added utilization of food waste (FW), the preparation of crayfish (Procambarus clarkii) feed by yeast fermentation was investigated. Firstly, the suitable fermentation condition was obtained through a single factor experiment as follows: the initial moisture of the FW was adjusted to 60% with bran and inoculated with a 2% yeast mixture (Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica, 3:2:1) followed by aerobic solid-state fermentation for 7 days. The crude protein and acid-soluble protein contents in the fermented feed were 25.14% and 5.16%, which were increased by 8% and 140.67%, respectively. The crude fat content was 0.74%, decreased by 68.29%. The content of antioxidant glutathione (571.78 μg/g) increased 63.33%, and the activities of protease and amylase increased nearly 9 and 3 times, respectively. The maximum degradation rates of aflatoxin B1, zearalenone, and deoxynivalenol were 63.83%, 77.52%, and 80.16%, respectively. The fermented feeds were evaluated by substituting (0%, 10%, 30%, 50%, and 100%) commercial diet for crayfish (30-day culture period). When the replacement proportion was 30%, the weight gain of crayfish reached 44.87% (initial body weight 13.98 ± 0.41 g), which was significantly increased by 10.25% compared with the control (p = 0.0005). In addition, the lysozyme and SOD enzyme activities in crayfish hepatopancreas were also increased significantly. Our findings suggest that yeast-fermented feed from FW can replace 30% of crayfish's conventional diet, which may improve crayfish's antioxidant capacity and enhance non-specific immunity by providing molecules such as glutathione.
Collapse
Affiliation(s)
- Qinping Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Puhong Yi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianze Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yudong Shan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yongfeng Lin
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, Jiangsu, China
| | - Ming Wu
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, Jiangsu, China
| | - Kun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guangming Tian
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, Jiangsu, China
| | - Ji Li
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, Jiangsu, China
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
3
|
Specific importance of low level dietary supplementation of Lypomyces starkeyi CB1807 yeast strain in red sea bream ( Pagrus major). ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Most probiotic yeast supplement in fish exhibit beneficial effect at ≤1% of the dietary proportion. This study aimed at evaluating the specific effects of Lypomyces starkeyi CB1807 yeast strain supplemented at ≤1% of dietary proportion on the performance of juvenile red sea bream (Pagrus major, 1.9 ± 0.04 g). Five diets were supplemented with yeast at graded levels of 0% (Control diet ‘CD1’), 0.05% (D2), 0.1% (D3), 0.5% (D4), and 1.0% (D5). After 45-days of feeding trial, significant (P<0.05) improvement was detected on final body weight (FBW) and body weight gain (BWG) in fish fed D3 and D5 compared to control. Low values of total cholesterol (T-Cho) and aspartate aminotransferase (AST) were recorded in fish groups fed on D2, D4, and D5, respectively. Fish fed on D3, D4 and D5 diets showed high (P<0.05) values of serum, mucus and liver lysozyme compared to control. Fish fed on D5 showed high values of Total immunoglobulin (Ig) compared to control. Fish fed on D2 showed strong correlation with biological antioxidant activity (BAP), superoxide dismutase (SOD) and catalase activity (CAT). The biological antioxidant potential (BAP) activity in fish fed on D2 was significantly higher compared to control (P<0.05). The reactive oxygen metabolites (d-ROM) were significantly lower in fish fed on D2 and D3 compared to CD1 (P<0.05). Peroxidase activity was improved significantly (P<0.05) in fish fed on D3, D4 and D5 compared to control. The tolerance ability (LT50) of fish fed on D5 against low salinity stress were significantly higher compared to control (P<0.05). It was concluded that dietary benefits of spent L. starkeyi yeast at ≤1% showed considerable improvement in antioxidant capacity in red sea bream, P. major.
Collapse
|
4
|
Jach ME, Serefko A, Ziaja M, Kieliszek M. Yeast Protein as an Easily Accessible Food Source. Metabolites 2022; 12:63. [PMID: 35050185 PMCID: PMC8780597 DOI: 10.3390/metabo12010063] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, the awareness and willingness of consumers to consume healthy food has grown significantly. In order to meet these needs, scientists are looking for innovative methods of food production, which is a source of easily digestible protein with a balanced amino acid composition. Yeast protein biomass (single cell protein, SCP) is a bioavailable product which is obtained when primarily using as a culture medium inexpensive various waste substrates including agricultural and industrial wastes. With the growing population, yeast protein seems to be an attractive alternative to traditional protein sources such as plants and meat. Moreover, yeast protein biomass also contains trace minerals and vitamins including B-group. Thus, using yeast in the production of protein provides both valuable nutrients and enhances purification of wastes. In conclusion, nutritional yeast protein biomass may be the best option for human and animal nutrition with a low environmental footprint. The rapidly evolving SCP production technology and discoveries from the world of biotechnology can make a huge difference in the future for the key improvement of hunger problems and the possibility of improving world food security. On the market of growing demand for cheap and environmentally clean SCP protein with practically unlimited scale of production, it may soon become one of the ingredients of our food. The review article presents the possibilities of protein production by yeast groups with the use of various substrates as well as the safety of yeast protein used as food.
Collapse
Affiliation(s)
- Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki Street 4a, 20-093 Lublin, Poland;
| | - Maria Ziaja
- Institute of Physical Culture Studies, Medical College, University of Rzeszów, Cicha Street 2a, 35-326 Rzeszów, Poland;
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159C, 02-776 Warsaw, Poland
| |
Collapse
|
5
|
Rye and Oat Agricultural Wastes as Substrate Candidates for Biomass Production of the Non-Conventional Yeast Yarrowia lipolytica. SUSTAINABILITY 2020. [DOI: 10.3390/su12187704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to test rye straw, rye bran and oat bran hydrolysates as substrates for growth of the yeast Yarrowia lipolytica, a microorganism known to have large biotechnological potential. First, after the combined process of acid-enzymatic hydrolysis, the concentration and composition of fermentable monosaccharides in the obtained hydrolysates were analyzed. Glucose was the main sugar, followed by xylose and arabinose. Rye bran hydrolysate had the highest sugar content—80.8 g/L. The results showed that this yeast was able to grow on low-cost medium and produce biomass that could be used as a feed in the form of single cell protein. The biomass of yeast grown in oat bran hydrolysate was over 9 g/L after 120 h, with the biomass total yield and total productivity values of 0.141 g/g and 0.078 g/h, respectively. The protein contents in yeast biomass were in the range of 30.5–44.5% of dry weight. Results obtained from Y. lipolytica cultivated in rye bran showed high content of exogenous amino acid (leucine 3.38 g, lysine 2.93 g, threonine 2.31 g/100 g of dry mass) and spectrum of unsaturated fatty acid with predominantly oleic acid—59.28%. In conclusion, these results demonstrate that lignocellulosic agricultural waste, after hydrolysis, could be efficiently converted to feed-related yeast biomass.
Collapse
|
6
|
Abstract
Single-cell ingredients (SCI) are a relatively broad class of materials that encompasses bacterial, fungal (yeast), microalgal-derived products or the combination of all three microbial groups into microbial bioflocs and aggregates. In this review we focus on those dried and processed single-cell organisms used as potential ingredients for aqua-feeds where the microorganisms are considered non-viable and are used primarily to provide protein, lipids or specific nutritional components. Among the SCI, there is a generalised dichotomy in terms of their use as either single-cell protein (SCP) resources or single-cell oil (SCO) resources, with SCO products being those oleaginous products containing 200 g/kg or more of lipids, whereas those products considered as SCP resources tend to contain more than 300 g/kg of protein (on a dry basis). Both SCP and SCO are now widely being used as protein/amino acid sources, omega-3 sources and sources of bioactive molecules in the diets of several species, with the current range of both these ingredient groups being considerable and growing. However, the different array of products becoming available in the market, how they are produced and processed has also resulted in different nutritional qualities in those products. In assessing this variation among the products and the application of the various types of SCI, we have taken the approach of evaluating their use against a set of standardised evaluation criteria based around key nutritional response parameters and how these criteria have been applied against salmonids, shrimp, tilapia and marine fish species.
Collapse
|
7
|
Blomqvist J, Pickova J, Tilami SK, Sampels S, Mikkelsen N, Brandenburg J, Sandgren M, Passoth V. Oleaginous yeast as a component in fish feed. Sci Rep 2018; 8:15945. [PMID: 30374026 PMCID: PMC6206134 DOI: 10.1038/s41598-018-34232-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/12/2018] [Indexed: 11/09/2022] Open
Abstract
This study investigates the replacement of vegetable oil (VO) in aquaculture feed for Arctic char (Salvelinus alpinus) with oil produced by the oleaginous yeast Lipomyces starkeyi grown in lignocellulose (wheat straw) hydrolysate. VO is extensively used to partially replace fish oil in aquaculture feed, which can be seen as non-sustainable. VO itself is becoming a limited resource. Plant oils are used in many different applications, including food, feed and biodiesel. Its replacement in non-food applications is desirable. For this purpose, yeast cells containing 43% lipids per g dry weight were mechanically disrupted and incorporated into the fish feed. There were no significant differences in this pilot study, regarding weight and length gain, feed conversion ratio, specific growth rate, condition factor and hepatosomatic index between the control and the yeast oil fed group. Fatty and amino acid composition of diet from both groups was comparable. Our results in fish demonstrate that it is possible to replace VO by yeast oil produced from lignocellulose, which may broaden the range of raw materials for food production and add value to residual products of agriculture and forestry.
Collapse
Affiliation(s)
- Johanna Blomqvist
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Box 7015, S-75007, Uppsala, Sweden.,Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Jana Pickova
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Box 7015, S-75007, Uppsala, Sweden
| | - Sarvenaz Khalili Tilami
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Institute of Aquaculture and Protection of Waters, Husova tř. 458/102, 370 05, České Budějovice, Czech Republic
| | - Sabine Sampels
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Box 7015, S-75007, Uppsala, Sweden
| | - Nils Mikkelsen
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Box 7015, S-75007, Uppsala, Sweden
| | - Jule Brandenburg
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Box 7015, S-75007, Uppsala, Sweden
| | - Mats Sandgren
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Box 7015, S-75007, Uppsala, Sweden
| | - Volkmar Passoth
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Box 7015, S-75007, Uppsala, Sweden.
| |
Collapse
|
8
|
Zavadenko NN, Khondkaryan GS, Bembeeva RT, Kholin AA, Saverskaya EN. [Human prion diseases: current issues]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:88-95. [PMID: 30040808 DOI: 10.17116/jnevro20181186188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prion diseases, or transmissible spongiform encephalopathies, are a group of neurodegenerative diseases with progressive dementia and movement disorders. There are three variants of prion diseases pathogenesis: direct contamination, genetic and sporadic forms. The following clinical forms are known: Creutzfeldt-Jakob disease (common type), variant Creutzfeldt-Jakob disease, Gerstmann-Straussler-Scheinker disease, variably protease-sensitive prionopathy, fatal insomnia and fatal familial insomnia, kuru, prion disease associated with diarrhea and autonomic neuropathy. Clinical characteristic of prion diseases, molecular-genetic aspects of their pathogenesis and current diagnostic approaches are discussed. Because of the lack of effective treatment, prevention of both alimentary prion infections (consumption of contaminated meat products) and transmissible iatrogenic infections (the use of biopreparations from animal tissues) is important. The safety of such biopreparations should be ensured by modern manufacturing technologies and specially developed procedures that meet international requirements and standards.
Collapse
Affiliation(s)
- N N Zavadenko
- Pirogov Russian National Research Medical University of the Russian Federation Ministry of Health, Moscow, Russia
| | - G Sh Khondkaryan
- Pirogov Russian National Research Medical University of the Russian Federation Ministry of Health, Moscow, Russia
| | - R Ts Bembeeva
- Pirogov Russian National Research Medical University of the Russian Federation Ministry of Health, Moscow, Russia
| | - A A Kholin
- Pirogov Russian National Research Medical University of the Russian Federation Ministry of Health, Moscow, Russia
| | - E N Saverskaya
- Institute of Medical and Social Technologies, Moscow State University of Food Production, Moscow, Russia
| |
Collapse
|