1
|
Reza MN, Ali MR, Haque MA, Jin H, Kyoung H, Choi YK, Kim G, Chung SO. A review of sound-based pig monitoring for enhanced precision production. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2025; 67:277-302. [PMID: 40264534 PMCID: PMC12010234 DOI: 10.5187/jast.2024.e113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 04/24/2025]
Abstract
Pig farming is experiencing significant transformations, driven by technological advancements, which have greatly improved management practices and overall productivity. Sound-based technologies are emerging as a valuable tool in enhancing precision pig farming. This review explores the advancements in sound-based technologies and their role in improving precision pig farming through enhanced monitoring of health, behavior, and environmental conditions. When strategically placed on farms, non-invasive technologies such as microphones and sound sensors can continuously collect data without disturbing the animals, making them highly efficient. Farmers using sound data, can monitor key factors such as respiratory conditions, stress levels, and social behaviors, leading to improved animal welfare and optimized production. Advancements in sensor technology and data analytics have enhanced the capabilities of sound-based precision systems in pig farming. The integration of machine learning and artificial intelligence (AI) is further enhancing the capacity to interpret complex sound patterns, enabling the automated detection of abnormal behaviors or health issues. Moreover, sound-based precision technologies offer solutions for improving environmental sustainability and resource management in pig farming. By continuously monitoring ventilation, feed distribution, and other key factors, these systems optimize resource use, reduce energy consumption, and detect stressors such as heat and poor air quality. The integration of sound technologies with other precision farming tools, such as physiological monitoring sensors and automated feeding systems, further enhances farm management and productivity. However, despite the advantages, challenges remain in terms of low accuracy and high initial costs, and further research is needed to improve specificity across different pig breeds and environmental conditions. Nonetheless, acoustic technologies hold immense promise for pig farming, offering enhanced management, an optimized performance, and improved animal welfare. Continued research can refine these tools and address the challenges, paving the way for a more efficient, profitable, and sustainable future for the industry.
Collapse
Affiliation(s)
- Md Nasim Reza
- Department of Agricultural Machinery
Engineering, Graduate School, Chungnam National University,
Daejeon 34134, Korea
- Department of Smart Agricultural Systems,
Graduate School, Chungnam National University, Daejeon 34134,
Korea
| | - Md Razob Ali
- Department of Agricultural Machinery
Engineering, Graduate School, Chungnam National University,
Daejeon 34134, Korea
| | - Md Asrakul Haque
- Department of Agricultural Machinery
Engineering, Graduate School, Chungnam National University,
Daejeon 34134, Korea
| | - Hongbin Jin
- Department of Smart Agricultural Systems,
Graduate School, Chungnam National University, Daejeon 34134,
Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | | | - Gookhwan Kim
- National Institute of Agricultural
Sciences, Rural Development Administration, Jeonju 54875,
Korea
| | - Sun-Ok Chung
- Department of Agricultural Machinery
Engineering, Graduate School, Chungnam National University,
Daejeon 34134, Korea
- Department of Smart Agricultural Systems,
Graduate School, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
2
|
Zhang J, Zhao C, Yao M, Qi J, Tan Y, Shi K, Wang J, Zhou S, Li Z. Transcriptome sequencing reveals non-coding RNAs respond to porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in Kele piglets. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:663-681. [PMID: 39165737 PMCID: PMC11331363 DOI: 10.5187/jast.2023.e46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 08/22/2024]
Abstract
Co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and Haemophilus parasuis (HPS) has severely restricted the healthy development of pig breeding. Exploring disease resistance of non-coding RNAs in pigs co-infected with PRRSV and HPS is therefore critical to complement and elucidate the molecular mechanisms of disease resistance in Kele piglets and to innovate the use of local pig germplasm resources in China. RNA-seq of lungs from Kele piglets with single-infection of PRRSV or HPS and co-infection of both pathogens was performed. Two hundred and twenty-five differentially expressed long non-coding RNAs (DElncRNAs) and 30 DEmicroRNAs (DEmiRNAs) were identified and characterized in the PRRSV and HPS co-infection (PRRSV-HPS) group. Compared with the single-infection groups, 146 unique DElncRNAs, 17 unique DEmiRNAs, and 206 target differentially expressed genes (DEGs) were identified in the PRRSV-HPS group. The expression patterns of 20 DEmiRNAs and DElncRNAs confirmed by real-time quantitative polymerase chain reaction (RT-qPCR) were consistent with those determined by high-throughput sequencing. In the PRRSV-HPS group, the target DEGs were enriched in eight immune Gene Ontology terms relating to two unique DEmiRNAs and 16 DElncRNAs, and the unique target DEGs participated the host immune response to pathogens infection by affecting 15 immune-related Kyoto Encyclopedia of Genes and Genomes enrichment pathways. Notably, competitive endogenous RNA (ceRNA) networks of different groups were constructed, and the ssc-miR-671-5p miRNA was validated as a potential regulatory factor to regulate DTX4 and AEBP1 genes to achieve innate antiviral effects and inhibit pulmonary fibrosis by dual-luciferase reporter assays. These results provided insight into further study on the molecular mechanisms of resistance to PRRSV and HPS co-infection in Kele piglets.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Chunping Zhao
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Min Yao
- Inspection and Testing Department, Guizhou
Testing Center for Livestock and Poultry Germplasm, Guiyang
550002, China
| | - Jing Qi
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Ya Tan
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Kaizhi Shi
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Jing Wang
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Sixuan Zhou
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Zhixin Li
- College of Animal Science, Guizhou
University, Guiyang 550002, China
| |
Collapse
|
3
|
Huang QL, Huang LN, Zhao GY, Liu C, Pan XY, Li ZR, Jing XH, Qiu ZY, Xin RH. Naringin attenuates Actinobacillus pleuropneumoniae-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway. BMC Vet Res 2024; 20:204. [PMID: 38755662 PMCID: PMC11100192 DOI: 10.1186/s12917-024-04055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PCP), which is clinically characterized by acute hemorrhagic, necrotizing pneumonia, and chronic fibrinous pneumonia. Although many measures have been taken to prevent the disease, prevention and control of the disease are becoming increasingly difficult due to the abundance of APP sera, weak vaccine cross-protection, and increasing antibiotic resistance in APP. Therefore, there is an urgent need to develop novel drugs against APP infection to prevent the spread of APP. Naringin (NAR) has been reported to have an excellent therapeutic effect on pulmonary diseases, but its therapeutic effect on lung injury caused by APP is not apparent. Our research has shown that NAR was able to alleviate APP-induced weight loss and quantity of food taken and reduce the number of WBCs and NEs in peripheral blood in mice; pathological tissue sections showed that NAR was able to prevent and control APP-induced pathological lung injury effectively; based on the establishment of an in vivo/in vitro model of APP inflammation, it was found that NAR was able to play an anti-inflammatory role through inhibiting the MAPK/NF-κB signaling pathway and exerting anti-inflammatory effects; additionally, NAR activating the Nrf2 signalling pathway, increasing the secretion of antioxidant enzymes Nqo1, CAT, and SOD1, inhibiting the secretion of oxidative damage factors NOS2 and COX2, and enhancing the antioxidant stress ability, thus playing an antioxidant role. In summary, NAR can relieve severe lung injury caused by APP by reducing excessive inflammatory response and improving antioxidant capacity.
Collapse
Affiliation(s)
- Qi-Lin Huang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou Gansu, 730000, China
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Gansu, 730000, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R, Lanzhou Gansu, 730000, China
| | - Li-Na Huang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou Gansu, 730000, China
| | - Guan-Yu Zhao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China
| | - Chen Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou Gansu, 730000, China
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Gansu, 730000, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R, Lanzhou Gansu, 730000, China
| | - Xiang-Yi Pan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou Gansu, 730000, China
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Gansu, 730000, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R, Lanzhou Gansu, 730000, China
| | - Zhao-Rong Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou Gansu, 730000, China
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Gansu, 730000, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R, Lanzhou Gansu, 730000, China
| | - Xiao-Han Jing
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou Gansu, 730000, China
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Gansu, 730000, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R, Lanzhou Gansu, 730000, China
| | - Zheng-Ying Qiu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou Gansu, 730000, China.
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Gansu, 730000, China.
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R, Lanzhou Gansu, 730000, China.
| | - Rui-Hua Xin
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou Gansu, 730000, China.
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Gansu, 730000, China.
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R, Lanzhou Gansu, 730000, China.
| |
Collapse
|
4
|
Tenk M, Tóth G, Márton Z, Sárközi R, Szórádi A, Makrai L, Pálmai N, Szalai T, Albert M, Fodor L. Examination of the Virulence of Actinobacillus pleuropneumoniae Serovar 16 in Pigs. Vet Sci 2024; 11:62. [PMID: 38393080 PMCID: PMC10892955 DOI: 10.3390/vetsci11020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Different virulence variants of A. pleuropneumoniae are involved in the etiology of porcine pleuropneumonia. The purpose of the present trial was examination of the virulence of the Actinobacillus pleuropneumoniae A-85/14 strain, the type strain of serovar 16, in an animal challenge experiment. Thirty 12-week-old piglets seronegative for A. pleuropneumoniae were allocated into three trial groups each of 10 animals, and they were infected intranasally with 106, 107, or 108 colony forming units (cfu) of the strain, respectively. Clinical signs were recorded twice a day, and the animals were euthanized 6 days after the infection. Typical clinical signs and postmortem lesions of porcine pleuropneumonia were seen in the animals of each trial group; however, they were generally mild, and no significant differences could be seen between the three groups. Even 106 colony forming units of A. pleuropneumoniae A-85/14 strain could induce clinical signs and lesions. Based on these results, the type strain of serovar 16 of A. pleuropneumoniae must be regarded as a typical pathogenic strain of the species.
Collapse
Affiliation(s)
- Miklós Tenk
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| | - Gergely Tóth
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| | - Zsuzsanna Márton
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - Rita Sárközi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| | - Alejandra Szórádi
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| | - Nimród Pálmai
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - Tamás Szalai
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - Mihály Albert
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| |
Collapse
|
5
|
Huang Q, Li W, Jing X, Liu C, Ahmad S, Huang L, Zhao G, Li Z, Qiu Z, Xin R. Naringin's Alleviation of the Inflammatory Response Caused by Actinobacillus pleuropneumoniae by Downregulating the NF-κB/NLRP3 Signalling Pathway. Int J Mol Sci 2024; 25:1027. [PMID: 38256101 PMCID: PMC10816821 DOI: 10.3390/ijms25021027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Actinobacillus pleuropneumoniae (APP) is responsible for causing Porcine pleuropneumonia (PCP) in pigs. However, using vaccines and antibiotics to prevent and control this disease has become more difficult due to increased bacterial resistance and weak cross-immunity between different APP types. Naringin (NAR), a dihydroflavonoid found in citrus fruit peels, has been recognized as having significant therapeutic effects on inflammatory diseases of the respiratory system. In this study, we investigated the effects of NAR on the inflammatory response caused by APP through both in vivo and in vitro models. The results showed that NAR reduced the number of neutrophils (NEs) in the bronchoalveolar lavage fluid (BALF), and decreased lung injury and the expression of proteins related to the NLRP3 inflammasome after exposure to APP. In addition, NAR inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in porcine alveolar macrophage (PAMs), reduced protein expression of NLRP3 and Caspase-1, and reduced the secretion of pro-inflammatory cytokines induced by APP. Furthermore, NAR prevented the assembly of the NLRP3 inflammasome complex by reducing protein interaction between NLRP3, Caspase-1, and ASC. NAR also inhibited the potassium (K+) efflux induced by APP. Overall, these findings suggest that NAR can effectively reduce the lung inflammation caused by APP by inhibiting the over-activated NF-κB/NLRP3 signalling pathway, providing a basis for further exploration of NAR as a potential natural product for preventing and treating APP.
Collapse
Affiliation(s)
- Qilin Huang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| | - Wei Li
- Lanzhou Center for Disease Control and Prevention, Lanzhou 730050, China;
| | - Xiaohan Jing
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| | - Chen Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| | - Saad Ahmad
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| | - Lina Huang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, Lanzhou University, Lanzhou 730013, China;
| | - Guanyu Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| | - Zhaorong Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| | - Zhengying Qiu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| | - Ruihua Xin
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| |
Collapse
|
6
|
Boeters M, Garcia-Morante B, van Schaik G, Segalés J, Rushton J, Steeneveld W. The economic impact of endemic respiratory disease in pigs and related interventions - a systematic review. Porcine Health Manag 2023; 9:45. [PMID: 37848972 PMCID: PMC10583309 DOI: 10.1186/s40813-023-00342-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Understanding the financial consequences of endemically prevalent pathogens within the porcine respiratory disease complex (PRDC) and the effects of interventions assists decision-making regarding disease prevention and control. The aim of this systematic review was to identify what economic studies have been carried out on infectious endemic respiratory disease in pigs, what methods are being used, and, when feasible, to identify the economic impacts of PRDC pathogens and the costs and benefits of interventions. RESULTS By following the PRISMA method, a total of 58 studies were deemed eligible for the purpose of this systematic review. Twenty-six studies used data derived from European countries, 18 from the US, 6 from Asia, 4 from Oceania, and 4 from other countries, i.e., Canada, Mexico, and Brazil. Main findings from selected publications were: (1) The studies mainly considered endemic scenarios on commercial fattening farms; (2) The porcine reproductive and respiratory syndrome virus was by far the most studied pathogen, followed by Mycoplasma hyopneumoniae, but the absence or presence of other endemic respiratory pathogens was often not verified or accounted for; (3) Most studies calculated the economic impact using primary production data, whereas twelve studies modelled the impact using secondary data only; (4) Seven different economic methods were applied across studies; (5) A large variation exists in the cost and revenue components considered in calculations, with feed costs and reduced carcass value included the most often; (6) The reported median economic impact of one or several co-existing respiratory pathogen(s) ranged from €1.70 to €8.90 per nursery pig, €2.30 to €15.35 per fattening pig, and €100 to €323 per sow per year; and (7) Vaccination was the most studied intervention, and the outcomes of all but three intervention-focused studies were neutral or positive. CONCLUSION The outcomes and discussion from this systematic review provide insight into the studies, their methods, the advantages and limitations of the existing research, and the reported impacts from the endemic respiratory disease complex for pig production systems worldwide. Future research should improve the consistency and comparability of economic assessments by ensuring the inclusion of high impact cost and revenue components and expressing results similarly.
Collapse
Affiliation(s)
- Marloes Boeters
- Department of Population Health Sciences, section Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Beatriz Garcia-Morante
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Campus, Bellaterra, Catalonia 08193 Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Spain
| | - Gerdien van Schaik
- Department of Population Health Sciences, section Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Royal GD, Deventer, the Netherlands
| | - Joaquim Segalés
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| | - Jonathan Rushton
- Institute of Infection, Veterinary and Ecological Sciences, School of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, UK
| | - Wilma Steeneveld
- Department of Population Health Sciences, section Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
7
|
Lagua EB, Mun HS, Ampode KMB, Chem V, Kim YH, Yang CJ. Artificial Intelligence for Automatic Monitoring of Respiratory Health Conditions in Smart Swine Farming. Animals (Basel) 2023; 13:1860. [PMID: 37889795 PMCID: PMC10251864 DOI: 10.3390/ani13111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 10/29/2023] Open
Abstract
Porcine respiratory disease complex is an economically important disease in the swine industry. Early detection of the disease is crucial for immediate response to the disease at the farm level to prevent and minimize the potential damage that it may cause. In this paper, recent studies on the application of artificial intelligence (AI) in the early detection and monitoring of respiratory disease in swine have been reviewed. Most of the studies used coughing sounds as a feature of respiratory disease. The performance of different models and the methodologies used for cough recognition using AI were reviewed and compared. An AI technology available in the market was also reviewed. The device uses audio technology that can monitor and evaluate the herd's respiratory health status through cough-sound recognition and quantification. The device also has temperature and humidity sensors to monitor environmental conditions. It has an alarm system based on variations in coughing patterns and abrupt temperature changes. However, some limitations of the existing technology were identified. Substantial effort must be exerted to surmount the limitations to have a smarter AI technology for monitoring respiratory health status in swine.
Collapse
Affiliation(s)
- Eddiemar B. Lagua
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (E.B.L.); (H.-S.M.); (K.M.B.A.); (V.C.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, 255 Jungangno, Suncheon 57922, Republic of Korea
| | - Hong-Seok Mun
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (E.B.L.); (H.-S.M.); (K.M.B.A.); (V.C.)
- Department of Multimedia Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Keiven Mark B. Ampode
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (E.B.L.); (H.-S.M.); (K.M.B.A.); (V.C.)
- Department of Animal Science, College of Agriculture, Sultan Kudarat State University, Tacurong City 9800, Philippines
| | - Veasna Chem
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (E.B.L.); (H.-S.M.); (K.M.B.A.); (V.C.)
| | - Young-Hwa Kim
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Chul-Ju Yang
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (E.B.L.); (H.-S.M.); (K.M.B.A.); (V.C.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, 255 Jungangno, Suncheon 57922, Republic of Korea
| |
Collapse
|
8
|
Bossé JT, Li Y, Cohen LM, Stegger M, Angen Ø, Lacouture S, Gottschalk M, Lei L, Koene M, Kuhnert P, Bandara AB, Inzana TJ, Holden MTG, Harris D, Oshota O, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR, On Behalf Of The BRaDP T Consortium. Complete genome for Actinobacillus pleuropneumoniae serovar 8 reference strain 405: comparative analysis with draft genomes for different laboratory stock cultures indicates little genetic variation. Microb Genom 2021; 7. [PMID: 34818145 PMCID: PMC8743550 DOI: 10.1099/mgen.0.000687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report here the complete genome sequence of the widely studied Actinobacillus pleuropneumoniae serovar 8 reference strain 405, generated using the Pacific Biosciences (PacBio) RS II platform. Furthermore, we compared draft sequences generated by Illumina sequencing of six stocks of this strain, including the same original stock used to generate the PacBio sequence, held in different countries and found little genetic variation, with only three SNPs identified, all within the degS gene. However, sequences of two small plasmids, pARD3079 and p405tetH, detected by Illumina sequencing of the draft genomes were not identified in the PacBio sequence of the reference strain.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Yanwen Li
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Liza Miriam Cohen
- Department of Production Animal Clinical Sciences Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Øystein Angen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sonia Lacouture
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, P.R China
| | - Miriam Koene
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, Universität Bern, Bern, Switzerland
| | - Aloka B Bandara
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, USA
| | - Thomas J Inzana
- Present address: College of Veterinary Medicine, Long Island University, Brookville, USA.,Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, USA
| | - Matthew T G Holden
- Present address: School of Medicine, University of St Andrews, St Andrews, UK.,The Wellcome Trust Sanger Institute, Cambridge, UK
| | - David Harris
- The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Olusegun Oshota
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, UK
| | - Paul R Langford
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | | |
Collapse
|
9
|
Cohen LM, Bossé JT, Stegger M, Li Y, Langford PR, Kielland C, Klem TB, Gulliksen SM, Ranheim B, Grøntvedt CA, Angen Ø. Comparative Genome Sequence Analysis of Actinobacillus pleuropneumoniae Serovar 8 Isolates From Norway, Denmark, and the United Kingdom Indicates Distinct Phylogenetic Lineages and Differences in Distribution of Antimicrobial Resistance Genes. Front Microbiol 2021; 12:729637. [PMID: 34566934 PMCID: PMC8461171 DOI: 10.3389/fmicb.2021.729637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a disease of major impact on pig health, welfare, and productivity globally. Serovar 8 (APP) is the predominant clinical serovar in Norway and the United Kingdom (UK), and has been isolated from clinical cases in Denmark. The primary objective of this study was to characterize the genetic variability of isolates of A. pleuropneumoniae APP8 in the Norwegian population. The secondary objectives were to determine the within-host variability of APP8; to compare the APP8 bacterial populations in Norway, Denmark, and the UK, including antimicrobial resistance (AMR) gene profiles and to assess the effect of national differences in antimicrobial drug use and restricted animal movement on the occurrence of resistance. Isolates of APP8 from the UK (n=67), Denmark (n=22), and Norway (n=123) collected between 1983 and 2020 were compared using whole genome sequencing. To investigate genetic variability within individual hosts, an additional 104 APP8 isolates from the lungs of six Norwegian pigs were compared. Very low within-host variation was observed (≤ 2 single nucleotide polymorphisms). The phylogeny of 123 Norwegian APP8 isolates from 76 herds revealed some within-herd genetic variation, but substantial geographical clustering. When inferring the relatedness of the three international APP8 collections, the topology highlighted the existence of two distinct monophyletic branches characterized by the Norwegian and UK isolates, respectively. Three Danish isolates were scattered across the UK branch, whereas the remaining 19 Danish isolates clustered in two monophyletic groups nested in the Norwegian branch. Coalescence analysis, performed to estimate the divergences from a common ancestor, indicated a last common ancestor several centuries ago. The phylogenetic analyses also revealed striking differences in occurrence of AMR genes, as these were 23-times more prevalent among the UK isolates than among the Norwegian isolates. An increased understanding of the effects of population strategies is helpful in surveillance and control of infectious diseases.
Collapse
Affiliation(s)
- Liza Miriam Cohen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Janine T Bossé
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Camilla Kielland
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | | | - Birgit Ranheim
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | - Øystein Angen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
10
|
Actinobacillus pleuropneumoniae Eradication with Enrofloxacin May Lead to Dissemination and Long-Term Persistence of Quinolone Resistant Escherichia coli in Pig Herds. Antibiotics (Basel) 2020; 9:antibiotics9120910. [PMID: 33333974 PMCID: PMC7765418 DOI: 10.3390/antibiotics9120910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/28/2023] Open
Abstract
Norway has a favourable situation with regard to health status and antimicrobial usage in the pig production sector. However, one of the major disease-causing agents in the commercial pig population is Actinobacillus pleuropneumoniae (APP). In some herds, APP eradication has been performed by using enrofloxacin in combination with a partial herd depopulation. The aim of this study was to investigate the long-term effects of a single treatment event with enrofloxacin on the occurrence of quinolone resistant Escherichia coli (QREC). The study was designed as a retrospective case/control study, where the herds were selected based on treatment history. Faecal samples were taken from sows, gilts, fattening pigs and weaners for all herds where available. A semi-quantitative culturing method was used to identify the relative quantity of QREC in the faecal samples. A significant difference in overall occurrence and relative quantity of QREC was identified between the case and control herds, as well as between each animal age group within the case/control groups. The results indicate that a single treatment event with enrofloxacin significantly increased the occurrence of QREC in the herd, even years after treatment and with no subsequent exposure to quinolones.
Collapse
|