1
|
Boulling A, Corbeau J, Grohs C, Barbat A, Mortier J, Taussat S, Plassard V, Leclerc H, Fritz S, Leymarie C, Bourgeois-Brunel L, Ducos A, Guatteo R, Boichard D, Boussaha M, Capitan A. A bovine model of rhizomelic chondrodysplasia punctata caused by a deep intronic splicing variant in the GNPAT gene. Genet Sel Evol 2025; 57:23. [PMID: 40394457 PMCID: PMC12090490 DOI: 10.1186/s12711-025-00969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 04/23/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Genetic defects that occur naturally in livestock species provide valuable models for investigating the molecular mechanisms underlying rare human diseases. Livestock breeds are subject to the regular emergence of recessive genetic defects due to genetic drift and recent inbreeding. At the same time, their large population sizes provide easy access to case and control individuals and to massive amounts of pedigree, genomic and phenotypic information recorded for management and selection purposes. In this study, we investigated a lethal form of recessive chondrodysplasia observed in 21 stillborn calves of the Aubrac beef cattle breed. RESULTS Detailed examinations of three affected calves revealed proximal limb shortening, epiphyseal calcific deposits, and other pathological signs consistent with human rhizomelic chondrodysplasia punctata, a rare peroxisomal disorder caused by recessive variants in one of five genes (AGPS, FAR1, GNPAT, PEX5, and PEX7). Using homozygosity mapping, whole genome sequencing of two affected individuals, and filtering for variants found in 1867 control genomes, we reduced the list of candidate variants to a single deep intronic substitution in GNPAT (NC_037355.1:g.4039268G > A on chromosome 28 of the ARS-UCD1.2 bovine genome assembly). For verification, we performed large-scale genotyping of this variant using a custom SNP array and found a perfect genotype-phenotype correlation in 21 cases and 26 of their parents, and a complete absence of homozygotes in 1195 unaffected Aubrac controls. The g.4039268A allele segregated at a frequency of 2.6% in this population and was absent in 375,535 additional individuals from 17 breeds. Then, using in vivo and in vitro analyses, we demonstrated that the derived allele activates cryptic splice sites within intron 11 resulting in abnormal transcripts. Finally, by mining the wealth of records available in the French bovine database, we also reported suggestive effects on juvenile mortality (and not just stillbirth) in homozygotes and on muscle development in heterozygotes, which merit further investigation. CONCLUSIONS We report the first spontaneous large animal model of rhizomelic chondrodysplasia punctata and provide a diagnostic test to select against this defect in cattle. Our work also brings interesting insights into the molecular consequences of complete or partial GNPAT insufficiency in mammals.
Collapse
Affiliation(s)
- Arnaud Boulling
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| | - Julien Corbeau
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Oniris, INRAE, BIOEPAR, 44300, Nantes, France
| | - Cécile Grohs
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Anne Barbat
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Jérémy Mortier
- Service d'imagerie Médicale, DEPEC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Sébastien Taussat
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Vincent Plassard
- Service d'imagerie Médicale, DEPEC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Hélène Leclerc
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Sébastien Fritz
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | | | | | - Alain Ducos
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | | | - Didier Boichard
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Mekki Boussaha
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Aurélien Capitan
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
- ELIANCE, 75012, Paris, France.
| |
Collapse
|
2
|
Azevedo L, Amaro AP, Niza-Ribeiro J, Lopes-Marques M. Naturally occurring genetic diseases caused by de novo variants in domestic animals. Anim Genet 2024; 55:319-327. [PMID: 38323510 DOI: 10.1111/age.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
With the advent of next-generation sequencing, an increasing number of cases of de novo variants in domestic animals have been reported in scientific literature primarily associated with clinically severe phenotypes. The emergence of new variants at each generation is a crucial aspect in understanding the pathology of early-onset diseases in animals and can provide valuable insights into similar diseases in humans. With the aim of collecting deleterious de novo variants in domestic animals, we searched the scientific literature and compiled reports on 42 de novo variants in 31 genes in domestic animals. No clear disease-associated phenotype has been established in humans for three of these genes (NUMB, ANKRD28 and KCNG1). For the remaining 28 genes, a strong similarity between animal and human phenotypes was recognized from available information in OMIM and OMIA, revealing the importance of comparative studies and supporting the use of domestic animals as natural models for human diseases, in line with the One Health approach.
Collapse
Affiliation(s)
- Luísa Azevedo
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Andreia P Amaro
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - João Niza-Ribeiro
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Population Studies Department, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- EPIUnit-Epidemiology Research Unit, ISPUP-Institute of Public Health of the University of Porto, Porto, Portugal
| | - Mónica Lopes-Marques
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
MacPhillamy C, Chen T, Hiendleder S, Williams JL, Alinejad-Rokny H, Low WY. DNA methylation analysis to differentiate reference, breed, and parent-of-origin effects in the bovine pangenome era. Gigascience 2024; 13:giae061. [PMID: 39435573 PMCID: PMC11484048 DOI: 10.1093/gigascience/giae061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/19/2024] [Accepted: 07/25/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Most DNA methylation studies have used a single reference genome with little attention paid to the bias introduced due to the reference chosen. Reference genome artifacts and genetic variation, including single nucleotide polymorphisms (SNPs) and structural variants (SVs), can lead to differences in methylation sites (CpGs) between individuals of the same species. We analyzed whole-genome bisulfite sequencing data from the fetal liver of Angus (Bos taurus taurus), Brahman (Bos taurus indicus), and reciprocally crossed samples. Using reference genomes for each breed from the Bovine Pangenome Consortium, we investigated the influence of reference genome choice on the breed and parent-of-origin effects in methylome analyses. RESULTS Our findings revealed that ∼75% of CpG sites were shared between Angus and Brahman, ∼5% were breed specific, and ∼20% were unresolved. We demonstrated up to ∼2% quantification bias in global methylation when an incorrect reference genome was used. Furthermore, we found that SNPs impacted CpGs 13 times more than other autosomal sites (P < $5 \times {10}^{ - 324}$) and SVs contained 1.18 times (P < $5 \times {10}^{ - 324}$) more CpGs than non-SVs. We found a poor overlap between differentially methylated regions (DMRs) and differentially expressed genes (DEGs) and suggest that DMRs may be impacting enhancers that target these DEGs. DMRs overlapped with imprinted genes, of which 1, DGAT1, which is important for fat metabolism and weight gain, was found in the breed-specific and sire-of-origin comparisons. CONCLUSIONS This work demonstrates the need to consider reference genome effects to explore genetic and epigenetic differences accurately and identify DMRs involved in controlling certain genes.
Collapse
Affiliation(s)
- Callum MacPhillamy
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
| | - Tong Chen
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
| | - Stefan Hiendleder
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
- Robinson Research Institute,, The University of Adelaide, North Adelaide SA 5006, Australia
| | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, Univeristy of New South Wales, Sydney, NSW 2052, Australia
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
| |
Collapse
|
4
|
Nguyen TV, Vander Jagt CJ, Wang J, Daetwyler HD, Xiang R, Goddard ME, Nguyen LT, Ross EM, Hayes BJ, Chamberlain AJ, MacLeod IM. In it for the long run: perspectives on exploiting long-read sequencing in livestock for population scale studies of structural variants. Genet Sel Evol 2023; 55:9. [PMID: 36721111 PMCID: PMC9887926 DOI: 10.1186/s12711-023-00783-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
Studies have demonstrated that structural variants (SV) play a substantial role in the evolution of species and have an impact on Mendelian traits in the genome. However, unlike small variants (< 50 bp), it has been challenging to accurately identify and genotype SV at the population scale using short-read sequencing. Long-read sequencing technologies are becoming competitively priced and can address several of the disadvantages of short-read sequencing for the discovery and genotyping of SV. In livestock species, analysis of SV at the population scale still faces challenges due to the lack of resources, high costs, technological barriers, and computational limitations. In this review, we summarize recent progress in the characterization of SV in the major livestock species, the obstacles that still need to be overcome, as well as the future directions in this growing field. It seems timely that research communities pool resources to build global population-scale long-read sequencing consortiums for the major livestock species for which the application of genomic tools has become cost-effective.
Collapse
Affiliation(s)
- Tuan V. Nguyen
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | | | - Jianghui Wang
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Hans D. Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
| | - Ruidong Xiang
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, VIC 3052 Australia
| | - Michael E. Goddard
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, VIC 3052 Australia
| | - Loan T. Nguyen
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD 4072 Australia
| | - Elizabeth M. Ross
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD 4072 Australia
| | - Ben J. Hayes
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD 4072 Australia
| | - Amanda J. Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
| | - Iona M. MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| |
Collapse
|
5
|
Ballan M, Bovo S, Schiavo G, Schiavitto M, Negrini R, Fontanesi L. Genomic diversity and signatures of selection in meat and fancy rabbit breeds based on high-density marker data. Genet Sel Evol 2022; 54:3. [PMID: 35062866 PMCID: PMC8780294 DOI: 10.1186/s12711-022-00696-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Domestication of the rabbit (Oryctolagus cuniculus) has led to a multi-purpose species that includes many breeds and lines with a broad phenotypic diversity, mainly for external traits (e.g. coat colours and patterns, fur structure, and morphometric traits) that are valued by fancy rabbit breeders. As a consequence of this human-driven selection, distinct signatures are expected to be present in the rabbit genome, defined as signatures of selection or selective sweeps. Here, we investigated the genome of three Italian commercial meat rabbit breeds (Italian Silver, Italian Spotted and Italian White) and 12 fancy rabbit breeds (Belgian Hare, Burgundy Fawn, Champagne d’Argent, Checkered Giant, Coloured Dwarf, Dwarf Lop, Ermine, Giant Grey, Giant White, Rex, Rhinelander and Thuringian) by using high-density single nucleotide polymorphism data. Signatures of selection were identified based on the fixation index (FST) statistic with different approaches, including single-breed and group-based methods, the latter comparing breeds that are grouped based on external traits (different coat colours and body sizes) and types (i.e. meat vs. fancy breeds). Results We identified 309 genomic regions that contained signatures of selection and that included genes that are known to affect coat colour (ASIP, MC1R and TYR), coat structure (LIPH), and body size (LCORL/NCAPG, COL11A1 and HOXD) in rabbits and that characterize the investigated breeds. Their identification proves the suitability of the applied methodologies for capturing recent selection events. Other regions included novel candidate genes that might contribute to the phenotypic variation among the analyzed breeds, including genes for pigmentation-related traits (EDNRA, EDNRB, MITF and OCA2) and body size, with a strong candidate for dwarfism in rabbit (COL2A1). Conclusions We report a genome-wide view of genetic loci that underlie the main phenotypic differences in the analyzed rabbit breeds, which can be useful to understand the shift from the domestication process to the development of breeds in O. cuniculus. These results enhance our knowledge about the major genetic loci involved in rabbit external traits and add novel information to understand the complexity of the genetic architecture underlying body size in mammals. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00696-9.
Collapse
|
6
|
Jacinto JGP, Häfliger IM, Gentile A, Drögemüller C. A Heterozygous Missense Variant in MAP2K2 in a Stillborn Romagnola Calf with Skeletal-Cardio-Enteric Dysplasia. Animals (Basel) 2021; 11:ani11071931. [PMID: 34209498 PMCID: PMC8300254 DOI: 10.3390/ani11071931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Skeletal dysplasias encompass a clinical-, pathological- and genetically heterogeneous group of disorders characterized by abnormal cartilage and/or bone formation, growth, and remodeling. They may belong to the so-called RASopathies, congenital conditions caused by heterozygous variants in genes that encode components of the Ras/mitogen-activated protein kinase (MAPK) cell signaling pathway. Herein, an affected calf of the Italian Romagnola breed was reported showing a skeletal-cardio-enteric dysplasia. We identified a most likely disease-causing mutation in the MAP2K2 gene by whole-genome sequencing (WGS). The MAP2K2 gene is known to be related with dominant inherited cardio-facio-cutaneous syndrome in humans, but it was so far unknown to cause a similar disease in domestic animals. We assume that the identified missense variant that was predicted to impair the function of the protein, occurred either within the germline of the dam or post-zygotically in the embryo. Rare lethal diseases such as the skeletal-cardio-enteric dysplasia in livestock are usually not characterized to the molecular level, mainly because of the lack of funds and diagnostic opportunities. Precise WGS-based diagnostics enables the understanding of rare diseases and supports the value of monitoring cattle breeding populations for fatal genetic defects. Abstract RASopathies are a group of developmental disorders caused by dominant mutations in genes that encode components of the Ras/mitogen-activated protein kinase (MAPK) cell signaling pathway. The goal of this study was to characterize the pathological phenotype of a Romagnola stillborn calf with skeletal-cardio-enteric dysplasia and to identify a genetic cause by whole-genome sequencing (WGS). The calf showed reduced fetal growth, a short-spine, a long and narrow face, cardiac defects and heterotopy of the spiral colon. Genetic analysis revealed a private heterozygous missense variant in MAP2K2:p.Arg179Trp, located in the protein kinase domain in the calf, and not found in more than 4500 control genomes including its sire. The identified variant affecting a conserved residue was predicted to be deleterious and most likely occurred de novo. This represents the first example of a dominant acting, and most likely pathogenic, variant in MAP2K2 in domestic animals, thereby providing the first MAP2K2-related large animal model, especially in respect to the enteric malformation. In addition, this study demonstrates the utility of WGS-based precise diagnostics for understanding sporadic congenital syndromic anomalies in cattle and the general utility of continuous surveillance for rare hereditary defects in cattle.
Collapse
Affiliation(s)
- Joana G. P. Jacinto
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (J.G.P.J.); (A.G.)
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | - Irene M. Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | - Arcangelo Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (J.G.P.J.); (A.G.)
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
- Correspondence:
| |
Collapse
|
7
|
Jacinto JGP, Häfliger IM, Gentile A, Drögemüller C, Bolcato M. A 6.7 kb deletion in the COL2A1 gene in a Holstein calf with achondrogenesis type II and perosomus elumbis. Anim Genet 2020; 52:244-245. [PMID: 33316082 DOI: 10.1111/age.13033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Joana G P Jacinto
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, 40064, Italy.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Irene M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Arcangelo Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, 40064, Italy
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Marilena Bolcato
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, 40064, Italy
| |
Collapse
|