1
|
Coker H, Denvir AC, Robertson IJ, Shackelford CEB, Li WH, Lin CW, Watters RM, Sparks DL, Smith AP, Howe JA. Aeroponic Technology for Accelerated Weathering of Extraterrestrial Regolith to Extract Plant Essential Nutrients and Generate Arable Soils. ACS EARTH & SPACE CHEMISTRY 2025; 9:337-348. [PMID: 40008137 PMCID: PMC11849031 DOI: 10.1021/acsearthspacechem.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Advancements in off-world food and fiber production should seek to utilize regolith as a source of nutrients and prepare it for use as a solid plant growth substrate. Towards this goal, aeroponic biowaste streams containing both inorganic nutrients and root system efflux from plants provide an opportunity for accelerated weathering and enhancement of extraterrestrial soils. To test this hypothesis, an aeroponic system was built that contained Martian simulant (Mars Mojave Simulant-2; MMS-2), inert sand, and a no-filter control to evaluate the in-line filters for simultaneous mineral weathering and recycling of biowastes from wheat. The growth performance of wheat in aeroponics was highly productive across all treatments. After inundation with biowastes from the aeroponic system growing wheat for 40 days, MMS-2 sorbed P and K and released Al, B, Ca, Fe, Mn, Na, and S into the nutrient solution. Generated plant biowaste was mixed into MMS-2 and sand treatments, which increased the extractable Fe, K, Mg, P, and S in MMS-2. Substrate chemical properties were quantified (e.g., total C and N, total and extractable elements, pH, EC, particle size, and P species). Augmentation of MMS-2 with aeroponic biowastes followed by amendment with plant residue greatly improved wheat growth compared with the unmodified MMS-2, which resulted in plant death. This technology expands lunar/Martian base agriculture by offering a means to acquire nutrients from weathered regolith while simultaneously improving the fertility of extraterrestrial soils.
Collapse
Affiliation(s)
- Harrison
R. Coker
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - Aenghus C. Denvir
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - Isaiah J. Robertson
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - Caleb E. B. Shackelford
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - Wen-hui Li
- Department
of Soil and Environmental Sciences, National
Chung-Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Chia-wei Lin
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - Rachel M. Watters
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - Donald L. Sparks
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - A. Peyton Smith
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - Julie A. Howe
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Benaoune S, Merzougui A, Remmani R, Bouzidi N, Ruiz-Canales A, Akacha I, Djellouli A. Dual-Activated Tamarix Gallica-Derived Carbons for Enhanced Glyphosate Adsorption: A Comparative Study of Phosphoric and Sulfuric Acid Activation. MATERIALS (BASEL, SWITZERLAND) 2025; 18:511. [PMID: 39942177 PMCID: PMC11818085 DOI: 10.3390/ma18030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
This study investigates the efficacy of activated carbons (ACs) derived from Tamarix gallica (TG) leaves for glyphosate removal from aqueous solutions. Two chemical activation methods, using phosphoric acid (H3PO4) and sulfuric acid (H2SO4), were compared to optimize adsorbent performance. The resulting materials, labeled AC-H3PO4 and AC-H2SO4, were comprehensively characterized using XRD, FTIR, SEM-EDS, BET analysis, and pHpzc determination, revealing distinct physicochemical properties. AC-H3PO4 exhibited a larger surface area (580.37 m2/g) and more developed pore structure compared to AC-H2SO4 (241.58 m2/g). Adsorption kinetics were best described by the pseudo-first-order model for both adsorbents. Isothermal studies demonstrated that AC-H3PO4 followed a pore-filling mechanism best described by the Dubinin-Radushkevich model, while AC-H2SO4 showed multilayer adsorption fitting the Freundlich model. Both adsorbents exhibited high glyphosate removal capacities, with maximum Langmuir adsorption capacities of 247.58 mg/g and 235.13 mg/g for AC-H3PO4 and AC-H2SO4, respectively. The mean free energy of adsorption (E) values confirmed physisorption as the dominant mechanism. This research highlights the potential of TG-derived activated carbons as sustainable and effective adsorbents for glyphosate remediation in water treatment applications, demonstrating the impact of activation methods on adsorption performance.
Collapse
Affiliation(s)
- Saliha Benaoune
- Research Laboratory in Civil Engineering, Hydraulics, Sustainable Development and Environment (LAR-GHYDE), University Mohamed Khider, Biskra 07000, Algeria; (S.B.); (A.M.); (I.A.)
| | - Abdelkarim Merzougui
- Research Laboratory in Civil Engineering, Hydraulics, Sustainable Development and Environment (LAR-GHYDE), University Mohamed Khider, Biskra 07000, Algeria; (S.B.); (A.M.); (I.A.)
| | - Rania Remmani
- Department of Engineering, Miguel Hernández University, 03312 Alicante, Spain;
| | - Narimene Bouzidi
- Scientific and Technical Research Center on Arid Regions Omar El-Bernaoui, Biskra 07000, Algeria; (N.B.); (A.D.)
| | | | - Imane Akacha
- Research Laboratory in Civil Engineering, Hydraulics, Sustainable Development and Environment (LAR-GHYDE), University Mohamed Khider, Biskra 07000, Algeria; (S.B.); (A.M.); (I.A.)
| | - Amir Djellouli
- Scientific and Technical Research Center on Arid Regions Omar El-Bernaoui, Biskra 07000, Algeria; (N.B.); (A.D.)
| |
Collapse
|
3
|
Pereira CG, Neng NR, Custódio L. From Threat to Opportunity: Harnessing the Invasive Carpobrotus edulis (L.) N.E.Br for Nutritional and Phytotherapeutic Valorization Amid Seasonal and Spatial Variability. Mar Drugs 2023; 21:436. [PMID: 37623717 PMCID: PMC10456270 DOI: 10.3390/md21080436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Carpobrotus edulis (L.) N.E.Br. (Hottentot-fig) is a problematic invasive species found in coastal areas worldwide. Mechanical removal is a common control method, leaving the removed biomass available as a possible source of natural phytochemicals with prospective commercial applications. While the Hottentot-fig's vegetative organs have been studied previously, this work establishes for the first time a seasonal and spatial comparative analysis of its nutritional, chemical, and bioactivity profiles (in three locations over four seasons). Proximate and mineral contents were assessed, along with its phenolic composition and in vitro antioxidant and anti-inflammatory properties. Hottentot-fig's biomass offered a good supply of nutrients, mainly carbohydrates, proteins, and minerals, with a tendency for higher concentrations of the most relevant minerals and proteins in autumn and winter, and in plants from sites A (Ria de Alvor lagoon) and B (Ancão beach). The extracts were rich in polyphenolics, with higher levels in spring and summer, especially for luteolin-7-O-glucoside and salicylic and coumaric acids. The extracts were also effective antioxidants, with stronger radical scavenging activities in spring and summer, along with anti-inflammatory properties. Our results suggest that the usually discarded plant material of this invasive halophyte could be valuable as a source of natural products with potential biotechnological applications in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Catarina Guerreiro Pereira
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal;
| | - Nuno R. Neng
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz School of Health and Science, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Luísa Custódio
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal;
| |
Collapse
|
4
|
Monção M, Wretborn T, Rova U, Matsakas L, Christakopoulos P. Salicornia dolichostachya organosolv fractionation: towards establishing a halophyte biorefinery. RSC Adv 2022; 12:28599-28607. [PMID: 36320546 PMCID: PMC9540244 DOI: 10.1039/d2ra04432c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Halophytes are a potential source of lignocellulosic material for biorefinery, as they can be grown in areas unsuitable for the cultivation of crops aimed at food production. To enable the viable use of halophytes in biorefineries, the present study investigated how different organosolv process parameters affected the fractionation of green pressed fibers of Salicornia dolichostachya. We produced pretreated solids characterized by up to 51.3% ± 1.7% cellulose, a significant increase from 25.6% ± 1.3% in untreated fibers. A delignification yield of as high as 60.7%, and hemicellulose removal of as high as 86.1% were also achieved in the current study. The obtained cellulose could be completely converted to glucose via enzymatic hydrolysis within 24 h. The lignin fractions obtained were of high purity, with sugar contamination of only 1.22% w/w and ashes below 1% w/w in most samples. Finally, up to 29.1% ± 0.4% hemicellulose was recovered as a separate product, whose proportion of oligomers to total sugars was 69.9% ± 3.0%. To the best of our knowledge, this is the first report in which Salicornia fibers are shown to be a suitable feedstock for organosolv biomass fractionation. These results expand the portfolio of biomass sources for biorefinery applications. An organosolv method was developed for the fractionation of fibers of a halophyte plant in a biorefinery approach. Salicornia dolichostachya was used as raw material allowing the production of cellulose, hemicellulose, and lignin fractions.![]()
Collapse
Affiliation(s)
- Maxwel Monção
- Department of Civil, Environmental and Natural Resources Engineering, Luleå Tekniska UniversitetSE-971 87LuleåSweden+46 (0) 920 493043
| | - Tobias Wretborn
- Department of Civil, Environmental and Natural Resources Engineering, Luleå Tekniska UniversitetSE-971 87LuleåSweden+46 (0) 920 493043
| | - Ulrika Rova
- Department of Civil, Environmental and Natural Resources Engineering, Luleå Tekniska UniversitetSE-971 87LuleåSweden+46 (0) 920 493043
| | - Leonidas Matsakas
- Department of Civil, Environmental and Natural Resources Engineering, Luleå Tekniska UniversitetSE-971 87LuleåSweden+46 (0) 920 493043
| | - Paul Christakopoulos
- Department of Civil, Environmental and Natural Resources Engineering, Luleå Tekniska UniversitetSE-971 87LuleåSweden+46 (0) 920 493043
| |
Collapse
|
5
|
Halophytes as Medicinal Plants against Human Infectious Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Halophytes have long been used for medicinal purposes. However, for many decades, their use was entirely empirical, with virtually no knowledge of the bioactive compounds underlying the different applications. In recent decades, the growing problem of antibiotic resistance triggered the research on alternative antimicrobial approaches, and halophytes, along with other medicinal plants, regained attention as an underexplored pharmacological vein. Furthermore, the high nutritional/nutraceutical/pharmacological value of some halophytic species may represent added value to the emerging activity of saline agriculture and targeted modification of the rhizosphere, with plant-growth-promoting bacteria being attempted to be used as a tool to modulate the plant metabolome and enhance the expression of interesting metabolites. The objective of this review is to highlight the potential of halophytes as a valuable, and still unexplored, source of antimicrobial compounds for clinical applications. For that, we provide a critical perspective on the empirical use of halophytes in traditional medicine and a state-or-the-art overview of the most relevant plant species and metabolites related with antiviral, antifungal and antibacterial activities.
Collapse
|
6
|
Belghith I, Senkler J, Abdelly C, Braun HP, Debez A. Changes in leaf ecophysiological traits and proteome profile provide new insights into variability of salt response in the succulent halophyte Cakile maritima. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:613-624. [PMID: 35190022 DOI: 10.1071/fp21151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/01/2022] [Indexed: 05/20/2023]
Abstract
Natural variability of stress tolerance in halophytic plants is of significance both ecologically and in view of identifying molecular traits for salt tolerance in plants. Using ecophysiological and proteomic analyses, we address these phenomena in two Tunisian accessions of the oilseed halophyte, Cakile maritima Scop., thriving on arid and semi-arid Mediterranean bioclimatic stages (Djerba and Raoued, respectively), with a special emphasis on the leaves. Changes in biomass, photosynthetic gas exchange and pigment concentrations in C. maritima plants treated with three salinity levels (0, 100 and 300mM NaCl) were monitored for 1month. Comparative two-dimensional gel electrophoresis (2-DE) revealed 94 and 56 proteins of differential abundance in Raoued and Djerba accessions, respectively. These salinity-responsive proteins were mainly related to photosynthesis and oxidative phosphorylation (OXPHOS). Although Djerba accession showed a lower biomass productivity, it showed a slightly higher CO2 assimilation rate than Raoued accession when salt-treated. Photosynthesis impairment in both accessions under salinity was also suggested by the lower abundance of proteins involved in Calvin cycle and electron transfer. A significant increase of protein spots involved in the OXPHOS system was found in Djerba accession, suggesting an increase in mitochondrial respiration for increased ATP production under saline conditions, whereas a lesser pronounced trend was observed for Raoued accession. The latter showed in addition higher abundance of proteins involved in photorespiration. Salt-challenged plants of Djerba also likely developed mechanisms for scavenging ROS in leaves as shown by the increase in superoxide dismutase and thioredoxin, while an opposite trend was found in Raoued.
Collapse
Affiliation(s)
- Ikram Belghith
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia; and Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Street 2, 30419 Hannover, Germany; and Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Jennifer Senkler
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Street 2, 30419 Hannover, Germany
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Street 2, 30419 Hannover, Germany
| | - Ahmed Debez
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia; and Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Street 2, 30419 Hannover, Germany
| |
Collapse
|
7
|
Kouhen M, García-Caparrós P, Twyman RM, Abdelly C, Mahmoudi H, Schillberg S, Debez A. Improving environmental stress resilience in crops by genome editing: insights from extremophile plants. Crit Rev Biotechnol 2022; 43:559-574. [PMID: 35606905 DOI: 10.1080/07388551.2022.2042481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In basic and applied sciences, genome editing has become an indispensable tool, especially the versatile and adaptable CRISPR/Cas9 system. Using CRISPR/Cas9 in plants has enabled modifications of many valuable traits, including environmental stress tolerance, an essential aspect when it comes to ensuring food security under climate change pressure. The CRISPR toolbox enables faster and more precise plant breeding by facilitating: multiplex gene editing, gene pyramiding, and de novo domestication. In this paper, we discuss the most recent advances in CRISPR/Cas9 and alternative CRISPR-based systems, along with the technical challenges that remain to be overcome. A revision of the latest proof-of-concept and functional characterization studies has indeed provided more insight into the quantitative traits affecting crop yield and stress tolerance. Additionally, we focus on the applications of CRISPR/Cas9 technology in regard to extremophile plants, due to their significance on: industrial, ecological and economic levels. These still unexplored genetic resources could provide the means to harden our crops against the threat of climate change, thus ensuring food security over the next century.
Collapse
Affiliation(s)
- Mohamed Kouhen
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia.,Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almeria, CIAIMBITAL, Almería, Spain
| | | | - Chedly Abdelly
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia
| | - Henda Mahmoudi
- International Center for Biosaline Agriculture, Academic City, Near Zayed University, Dubai, United Arab Emirates
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Ahmed Debez
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia
| |
Collapse
|
8
|
Mader AE, Holtman GA, Welz PJ. Treatment wetlands and phyto-technologies for remediation of winery effluent: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150544. [PMID: 34619225 DOI: 10.1016/j.scitotenv.2021.150544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The composition and concentration of contaminants present in winery wastewater fluctuate through space and time, presenting a challenge for traditional remediation methods. Bio-hydrogeochemical engineered systems, such as treatment wetlands, have been demonstrated to effectively reduce contaminant loads prior to disposal or reuse of the effluent. This review identifies and details the status quo and challenges associated with (i) the characteristics of winery wastewater, and the (ii) functional components, (iii) operational parameters, and (iv) performance of treatment wetlands for remediation of winery effluent. Potential solutions to challenges associated with these aspects are presented, based on the latest literature. A particular emphasis has been placed on the phytoremediation of winery wastewater, and the rationale for selection of plant species for niche bioremediatory roles. This is attributed to previously reported low-to-negative removal percentages of persistent contaminants, such as salts and heavy metals that may be present in winery wastewater. A case for the inclusion of selected terrestrial halophytes in treatment wetlands and in areas irrigated using winery effluent is discussed. These are plant species that have an elevated ability to accumulate, cross-tolerate and potentially remove a range of persistent contaminants from winery effluent via various phytotechnologies (e.g., phytodesalination).
Collapse
Affiliation(s)
- Anthony E Mader
- School of Animal, Plant, and Environmental Sciences, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Gareth A Holtman
- Department of Civil Engineering, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa; Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa
| | - Pamela J Welz
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa.
| |
Collapse
|
9
|
Dong X, Wang J, Liu X, Singh BP, Sun H. Characterization of halophyte biochar and its effects on water and salt contents in saline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11831-11842. [PMID: 34553280 DOI: 10.1007/s11356-021-16526-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Biochar is a beneficial soil amendment; however, biochar-based properties are mainly determined by the feedstocks and the pyrolysis temperature. Nevertheless, considering the vast biomass of halophyte, little is known about how the halophyte-derived biochar improves saline soils. In this study, we firstly produced biochars by using three different halophytes, including Tamarix chinensis (recretohalophyte), Suaeda salsa (euhalophyte), and Phragmites australis (pseudo-halophyte) at 300, 500, and 700 °C, and compared their chemical and physical properties. We applied halophyte (Tamarix chinensis and Phragmites australis) biochars (pyrolysis at 500 °C) into 0-20 cm saline soil at 2% and 4% (w/w) rates to investigate the saline soil water, salt, and pH dynamics in a 12-month column experiment. The results showed that as the pyrolytic temperature increase, biochar yield and pore diameter decreased by 37.5-44.0% and 34.6-89.7%, respectively; in contrast, biochar pH, specific surface area, and total volume increased by 24.8-47.8%, 3-37 times and 1-9 times, respectively. The halophyte types significantly controlled biochar carbon and dissolved salt content and electrical conductivity. Halophyte biochar application can increase soil water and salt content, and application of 4% of Tamarix chinensis-derived biochar can increase more soil moisture than the soil salinity, and it can maintain soil pH at a stable level, which would be a potential way to improve saline soil properties. The results are valuable for choosing halophyte types and optimizing pyrolytic temperatures for halophyte biochar production through specific environmental usage.
Collapse
Affiliation(s)
- Xinliang Dong
- Key Laboratory of Agricultural Water Resources, The Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Hebei, 050021, China
| | - Jintao Wang
- Key Laboratory of Agricultural Water Resources, The Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Hebei, 050021, China.
| | - Xiaojing Liu
- Key Laboratory of Agricultural Water Resources, The Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Hebei, 050021, China
| | - Bhupinder Pal Singh
- University of New England, Armidale, NSW, 2351, Australia
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW, 2568, Australia
| | - Hongyong Sun
- Key Laboratory of Agricultural Water Resources, The Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Hebei, 050021, China
| |
Collapse
|
10
|
Halophyte Plants and Their Residues as Feedstock for Biogas Production—Chances and Challenges. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The importance of green technologies is steadily growing. Salt-tolerant plants have been proposed as energy crops for cultivation on saline lands. Halophytes such as Salicornia europaea, Tripolium pannonicum, Crithmum maritimum and Chenopodium quinoa, among many other species, can be cultivated in saline lands, in coastal areas or for treating saline wastewater, and the biomass might be used for biogas production as an integrated process of biorefining. However, halophytes have different salt tolerance mechanisms, including compartmentalization of salt in the vacuole, leading to an increase of sodium in the plant tissues. The sodium content of halophytes may have an adverse effect on the anaerobic digestion process, which needs adjustments to achieve stable and efficient conversion of the halophytes into biogas. This review gives an overview of the specificities of halophytes that needs to be accounted for using their biomass as feedstocks for biogas plants in order to expand renewable energy production. First, the different physiological mechanisms of halophytes to grow under saline conditions are described, which lead to the characteristic composition of the halophyte biomass, which may influence the biogas production. Next, possible mechanisms to avoid negative effects on the anaerobic digestion process are described, with an overview of full-scale applications. Taking all these aspects into account, halophyte plants have a great potential for biogas and methane production with yields similar to those produced by other energy crops and the simultaneous benefit of utilization of saline soils.
Collapse
|
11
|
Yang S, Sun X, Jiang X, Wang L, Tian J, Li L, Zhao M, Zhong Q. Characterization of the Tibet plateau Jerusalem artichoke ( Helianthus tuberosus L.) transcriptome by de novo assembly to discover genes associated with fructan synthesis and SSR analysis. Hereditas 2019; 156:9. [PMID: 30774580 PMCID: PMC6364414 DOI: 10.1186/s41065-019-0086-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/27/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Jerusalem artichoke (Helianthus tuberosus L.) is a characteristic crop in the Qinghai-Tibet Plateau which has rapidly developed and gained socioeconomic importance in recent years. Fructans are abundant in tubers and represent the foundation for their formation, processing and utilization of yield; and are also widely used in new sugar-based materials, bioenergy processing, ecological management, and functional feed. To identify key genes in the metabolic pathway of fructans in Jerusalem artichoke, high-throughput sequencing was performed using Illumina Hi Seq™ 2500 equipment to construct a transcriptome library. RESULTS Qinghai-Tibet Plateau Jerusalem artichoke "Qingyu No.1" was used as the material; roots, stems, leaves, flowers and tubers of Jerusalem artichoke in its flowering stage were mixed into a mosaic of the Jerusalem artichoke transcriptome library, obtaining 63,089 unigenes with an average length of 713.6 bp. Gene annotation through the Nr, Swiss Prot, GO, KOG and KEGG databases revealed 34.95 and 46.91% of these unigenes had similar sequences in the Nr and Swiss Prot databases. The GO classification showed the Jerusalem artichoke unigenes were divided into three ontologies, with a total of 49 functional groups encompassing biological processes, cellular components, and molecular functions. Among them, there were more unigenes involved in the functional groups for cellular processes, metabolic processes, and single-organism processes. 38,999 unigenes were annotated by KOG and divided into 25 categories according to their functions; the most common annotation being general function prediction. A total of 13,878 unigenes (22%) were annotated in the KEGG database, with the largest proportion corresponding to pathways related to carbohydrate metabolism. A total of 12 unigenes were involved in the synthesis and degradation of fructan. Cluster analysis revealed the candidate 12 unigene proteins were dispersed in the 5 major families of proteins involved in fructan synthesis and degradation. The synergistic effect of INV gene is necessary during fructose synthesis and degradation in Jerusalem artichoke tuber development. The sequencing data from the transcriptome of this species can provide a reliable data basis for the identification and assessment of the expression of the members of the INV gene family.A simple sequence repeat (SSR) loci search was performed on the transcriptome data of Jerusalem artichoke, identifying 6635 eligible SSR loci with a large proportion of dinucleotide and trinucleotide repeats, and the most different motifs were repeated 5 times and 6 times. Dinucleotide and trinucleotide repeat motifs were the most frequent, with AG/CT and ACC/GGT repeat motifs accounting for the highest proportion. CONCLUSIONS In this study, a database search of the transcriptome of the Jerusalem artichoke from the Qinghai Tibet Plateau was conducted by high throughput sequencing technology to obtain important transcriptional and SSR loci information. This allowed characterization of the overall expression features of the Jerusalem artichoke transcriptome, identifying the key genes involved in metabolism in this species. In turn, this offers a foundation for further research on the regulatory mechanisms of fructan metabolism in Jerusalem artichoke.
Collapse
Affiliation(s)
- Shipeng Yang
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
| | - Xuemei Sun
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
| | - Xiaoting Jiang
- Qinghai Higher Vocational & Technical College Institute, Ledu, 810799 China
| | - Lihui Wang
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
| | - Jie Tian
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
| | - Li Li
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
| | - Mengliang Zhao
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
| | - Qiwen Zhong
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
| |
Collapse
|
12
|
Abstract
Scientists are trained to tell stories, scientific stories. Training is also needed to comprehend and contextualize these highly nuanced and technical stories because they are designed to explicitly convey scientific results, delineate their limitations, and describe a reproducible “plot” so that any thorough reenactment can achieve a similar conclusion. Although a carefully constructed scientific story may be crystal clear to other scientists in the same discipline, they are often inaccessible to broader audiences. This is problematic as scientists are increasingly expected to communicate their work to broader audiences that range from specialists in other disciplines to the general public. In fact, science communication is of increasing importance to acquire funding and generate effective outreach, as well as introduce, and sometimes even justify, research to society. This paper suggests a simple and flexible framework to translate a complex scientific publication into a broadly-accessible comic format. Examples are given for embedding scientific details into an easy-to-understand storyline. A background story is developed and panels are generated that convey scientific information via plain language coupled with recurring comic elements to maximize comprehension and memorability. This methodology is an attempt to alleviate the inherent limitations of interdisciplinary and public comprehension that result from standard scientific publication and dissemination practices. We also hope that this methodology will help colleagues enter into the field of science comics.
Collapse
|
13
|
Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation. SUSTAINABILITY 2018. [DOI: 10.3390/su10051364] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
The features that distinguish lichenases from other polysaccharide-hydrolyzing enzymes and the relevance of lichenases for biotechnological applications. Appl Microbiol Biotechnol 2018; 102:3951-3965. [DOI: 10.1007/s00253-018-8904-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/16/2023]
|